Nonlinear Super Integrable Couplings of a Super Integrable Hierarchy

Sixing Tao
School of Mathematics and Information Science, Shangqiu Normal University, Shangqiu, China
Email: taosixing@163.com

Received 1 March 2016; accepted 6 April 2016; published 13 April 2016

Abstract

Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.

Keywords
Lie Super Algebra, Nonlinear Super Integrable Couplings, A Super Integrable Hierarchy, Super Hamiltonian Structures

1. Introduction

With the development of soliton theory, super integrable systems associated with Lie super algebra have aroused growing attentions by many mathematicians and physicists. It was known that super integrable systems contained the odd variables, which would provide more prolific fields for mathematical researchers and physical ones. Several super integrable systems including super AKNS hierarchy, super KdV hierarchy, super KP hierarchy, etc., have been studied in [1]-[4]. There are some interesting results on the super integrable systems, such as Darboux transformation in [5], super Hamiltonian structures in [6] [7], binary nonlinearization [8] and reciprocal transformation [9] and so on.

In this paper, we hope to construct nonlinear super integrable couplings of this super integrable hierarchy which was constructed in [16] through enlarging matrix Lie super algebra. We take the Lie algebra \(B(0,1) \) as an example to illustrate the approach for extending Lie super algebras. Based on the enlarged Lie super algebra \(g((6,2)) \), we work out nonlinear super integrable Hamiltonian couplings of this super integrable hierarchy. Finally, we will reduce the nonlinear super integrable couplings to some special cases.

2. Enlargement of Lie Super Algebra $B(0, 1)$

Consider the Lie super algebra $B(0, 1)$. Its basis is

$$
E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
E_2 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},
E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
E_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

(1)

where E_1, E_2, E_3 are even elements and E_4, E_5 are odd elements. Their non-zero (anti)commutation relations are

$$
$$

(2)

Let us enlarge the Lie super algebra $B(0, 1)$ to the Lie super algebra $gl(6, 2)$ with a basis

$$
e_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},
e_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},
e_3 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},
e_4 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.
$$

(3)

where $e_1, e_2, e_3, e_4, e_5, e_6$ are even, and e_7, e_8 are odd.

The generator of Lie super algebra $gl(6, 2)$ satisfies the following (anti)commutation relations:

$$
[e_i, e_j] = -2e_i, [e_i, e_j] = -2e_j, [e_i, e_j] = e_i - e_j + e_3, [e_i, e_j] = e_j - e_i + e_3, [e_i, e_j] = e_j - e_i + e_3,
[e_i, e_j] = 0.
$$

(4)

Define a loop super algebra corresponding to the Lie super algebra $gl(6, 2)$, denote by

$$
\tilde{gl}(6, 2) = gl(6, 2) \otimes \mathbb{C}[\lambda, \lambda^{-1}] = \{e_i^m, e_i \in gl(6, 2), i = 1, 2, \cdots, m = 0, \pm 1, \pm 2, \cdots\}.
$$

(5)

The corresponding (anti)commutative relations are given as

$$
[e_i^m, e_j^n] = [e_i, e_j]^{m+n}, \forall e_i, e_j \in gl(6, 2).
$$

(6)

3. Nonlinear Super Integrable Couplings of a Super Integrable Hierarchy

If let us start from an enlarged spectral problem associated with $gl(6, 2)$,

$$
\phi_i = U(u, \lambda) \phi, U = e_1(1) + q e_2(0) + re_3(0) + u_1 e_4(0) + u_2 e_5(0) + \alpha e_6(0) + \beta e_8(0)
$$

$$
\begin{pmatrix}
\begin{array}{cccc}
\lambda + q & u_2 & u_1 & \alpha \\
\lambda - q & -u_2 & -u_1 & \beta \\
0 & r + u_2 & \lambda + q + u_1 & 0 \\
0 & 0 & \lambda - q - u_1 & -r - u_2 \\
\beta & -\alpha & 0 & \alpha \\
\end{array}
\end{pmatrix}
$$

(7)
where \(q, r, u_1, u_2 \) are even potentials, but \(\alpha, \beta \) are odd ones.

In order to obtain super integrable couplings of super integrable hierarchy, we solve the adjoint representation of (7),

\[
V = [U, V],
\]

with

\[
V = Ae_1(0) + Be_2(0) + Ce_1(0) + Ee_1(0) + Fe_1(0) + Ge_1(0) + \rho e_2(0) + \delta e_3(0)
\]

\[
\begin{pmatrix}
C & A + B & G & E + F & \rho \\
A - B & -C & E - F & -G & \delta \\
0 & 0 & C + G & A + B + E + F & 0 \\
0 & 0 & -A + B + E - F & -A - E & 0 \\
\delta & -\rho & -\delta & \rho & 0
\end{pmatrix}
\]

where \(A, B, C, E, F \) and \(G \) are commuting fields, and \(\rho, \delta \) are anti-commuting fields. Substituting

\[
F = \sum_{n=0}^{\infty} F_n \lambda^{-m} G = \sum_{n=0}^{\infty} C_n \lambda^{-m} E = \sum_{n=0}^{\infty} E_n \lambda^{-m},
\]

into previous equation gives the following recursive formulas

\[
A_{n+1} = 2B_n - 2qC_n - \alpha \rho_m + \beta \delta_m,
\]

\[
B_{n+1} = 2rA_n - 2C_{n+1} - \alpha \rho_m - \beta \delta_m,
\]

\[
C_{n+1} = 2qA_n - 2B_{n+1} + \beta \rho_m + \alpha \delta_m,
\]

\[
E_{n+1} = 2u_n B_n - 2u_n C_n + 2rF_n + 2u_n F_n - 2qG_n - 2u_n G_n + \alpha \rho_m - \beta \delta_m,
\]

\[
F_{n+1} = 2u_n A_n + 2rE_n + 2u_n E_n - 2G_{n+1} + \alpha \rho_m + \beta \delta_m,
\]

\[
G_{n+1} = 2u_n A_n + 2qE_n + 2u_n E_n - 2F_{n+1} - \alpha \rho_m - \beta \delta_m,
\]

\[
\rho_{n+1} = -\beta A_n - \beta B_n - \alpha C_n + r \rho_m + q \delta_m + \delta_{n+1},
\]

\[
\delta_{n+1} = -\alpha A_n + \alpha B_n + \beta C_n - q \rho_m + \rho_{n+1} - r \delta_m.
\]

From previous equations, we can successively deduce

\[
A_0 = 1, B_0 = C_0 = F_0 = G_0 = \rho_0 = \delta_0 = 0, E_0 = \varepsilon = \text{const}, A_1 = 0, B_1 = q, C_1 = r, E_1 = 0, F_1 = \varepsilon q + u_1 + \varepsilon u_2,
\]

\[
G_1 = \varepsilon r + u_2 + \varepsilon u_2, \rho_2 = \alpha, \delta_2 = \frac{1}{2} \left(\frac{1}{2} r - \frac{1}{2} r^2 - \frac{1}{2} \rho \right), B_2 = -\frac{1}{2} r, C_2 = -\frac{1}{2} u_1, E_2 = \frac{1}{2} \varepsilon q^2 - \frac{1}{2} \varepsilon r^2 + \frac{1}{2} \varepsilon u_2 + \frac{1}{2} \varepsilon u_2,
\]

\[
\rho_3 = \beta, \delta_3 = \alpha, A_3 = \frac{1}{2} \left(\frac{1}{2} r - \frac{1}{2} r^2 - \frac{1}{2} r^2 - \frac{1}{2} \rho \right), B_3 = \frac{1}{2} q r, C_3 = \frac{1}{2} q r - \frac{1}{2} q r + \frac{1}{2} q r + \frac{1}{2} q r - \frac{1}{2} q r + \frac{1}{2} q r + \frac{1}{2} q r - \frac{1}{2} q r + \frac{1}{2} q r + \frac{1}{2} q r - \frac{1}{2} q r + \frac{1}{2} q r + \frac{1}{2} q r, E_3 = \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r, F_3 = \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r, G_3 = \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r - \frac{1}{2} \varepsilon q r + \frac{1}{2} \varepsilon q r, \delta_3 = \frac{1}{2} \left(\frac{1}{2} r^2 - \frac{1}{2} r^2 - \frac{1}{2} r^2 - \frac{1}{2} \rho \right).
\]
Equations (11) can be written as

\[
\begin{pmatrix}
-2B_{m+1} - F_{m+1} \\
2C_{m+1} + G_{m+1} \\
-B_{m+1} - F_{m+1} \\
C_{m+1} + G_{m+1} \\
-\delta_{m+1} \\
-\rho_{m+1}
\end{pmatrix} = L
\begin{pmatrix}
-2B_m - F_m \\
2C_m + G_m \\
-B_m - F_m \\
C_m + G_m \\
-\delta_m \\
-\rho_m
\end{pmatrix},
\]

where

\[
L = \begin{pmatrix}
2q\delta^\alpha r & 2q\delta^\alpha q + \frac{1}{2} \delta & 2u \delta^\alpha r + 2q\delta^\alpha u_j + 2u \delta^\alpha u_j \\
\frac{1}{2} \delta - 2q\delta^\alpha r & -2r \delta^\alpha q & 2u \delta^\alpha r - 2u \delta^\alpha u_j \\
0 & 0 & 2q\delta^\alpha r + 2q\delta^\alpha u_j + 2u \delta^\alpha u_j \\
0 & 0 & \frac{1}{2} \delta + 2q\delta^\alpha q + 2u \delta^\alpha q + 2u \delta^\alpha u_j \\
-\beta - 2r \delta^\alpha r & \alpha - 2r \delta^\alpha q & -\alpha + 2r \delta^\alpha r \\
-\alpha + 2u \delta^\alpha r & \alpha - 2u \delta^\alpha q & -\beta - 2u \delta^\alpha q
\end{pmatrix}
\]

Then, let us consider the spectral problem (7) with the following auxiliary problem

\[
\phi_s = V^{(s)} = \sum_{j=0}^{n} \left(\begin{array}{lllll}
C_j & A_j + B_j & G_j & E_j + F_j & \rho_j \\
A_j - B_j & -C_j & E_j + F_j & -G_j & \delta_j \\
0 & 0 & C_j + G_j & A_j + B_j + E_j + F_j & 0 \\
0 & 0 & A_j - B_j + E_j - F_j & -C_j - G_j & 0 \\
\delta_j & -\rho_j & -\delta_j & \rho_j & 0
\end{array} \right) \lambda_{s-j} \phi_s.
\]

From the compatible condition \(\phi_s|_{\lambda_s} = \phi_s|_{\lambda_s} \), according to (7) and (14), we get the zero curvature equation

\[
U_s - V^{(s)} + [U_s, V^{(s)}] = 0.
\]

which gives a nonlinear Lax super integrable hierarchy

\[
U_s = \begin{pmatrix}
q \\
r \\
u_1 \\
u_2 \\
\alpha \\
\beta
\end{pmatrix} = \begin{pmatrix}
-2C_{m+1} \\
-2B_{m+1} \\
-2G_{m+1} \\
-2F_{m+1} \\
\delta_{m+1} \\
\rho_{m+1}
\end{pmatrix}.
\]

The super integrable hierarchy (16) is a nonlinear super integrable couplings for the integrable hierarchy in [16]

\[
\hat{u}_{s+1} = \begin{pmatrix}
q \\
r \\
\alpha \\
\beta
\end{pmatrix} = \begin{pmatrix}
-2C_{s+1} \\
-2B_{s+1} \\
\delta_{s+1} \\
\rho_{s+1}
\end{pmatrix}.
\]

4. Super Hamiltonian Structure

A direct calculation reads

\[
\text{Str}(U_s, V) = 4A + 2E, \text{Str}(U_s, V) = -4B - 2F, \text{Str}(U_{s+1}, V) = 4C + 2G,
\]

\[
\text{Str}(U_{s+1}, V) = -2B - 2F, \text{Str}(U_{s+2}, V) = 2C + 2G, \text{Str}(U_{s}, V) = 2\delta, \text{Str}(U_{s}, V) = -2\rho.
\]
Substituting above results into the super trace identity [7]
\[
\frac{\delta}{\delta u} \left[\text{Str} \left(\frac{\partial U}{\partial \lambda} \right) V \right] = \lambda^{\gamma} \frac{\delta}{\delta \lambda} \lambda^{\gamma} \left(\text{Str} \left(\frac{\partial U}{\partial \lambda} \right) V \right),
\]
and comparing the coefficients of λ^{n+1} on both side of (19)
\[
\frac{\delta}{\delta u} \left[(4A_{s1} + 2E_{s1}) \right] dx = \lambda^{\gamma} \frac{\delta}{\delta \lambda} \lambda^{\gamma} \left(\begin{array}{c} -4B_n - 2E_n \\ 4C_n + 2G_n \\ -2B_n - 2F_n \\ 2C_n + 2G_n \end{array} \right), n \geq 0.
\]

From the initial values in (11), we obtain $\gamma = 0$. Thus we have
\[
\frac{\delta H_n}{\delta u} = \begin{cases}
\begin{array}{c}
-2B_n - F_n \\
2C_n + G_n \\
-B_n - F_n \\
-C_n + G_n \\
-\rho_n
\end{array}
\end{cases},
H_n = -\frac{1}{n+1} \left[2A_{s1} + E_{s1} \right] dx, n \geq 0.
\]

It then follows that the nonlinear super integrable couplings (16) possess the following super Hamiltonian form
\[
u_s = K_s(u) = J \frac{\delta H_n}{\delta u}.
\]
where
\[
J = \begin{pmatrix}
0 & -2 & 0 & 2 & 0 & 0 \\
2 & 0 & -2 & 0 & 0 & 0 \\
0 & 2 & 0 & -4 & 0 & 0 \\
-2 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}.
\]
is a super Hamiltonian operator and $H_n(n \geq 0)$ are Hamiltonian functions.

5. Reductions
Taking $\alpha = \beta = 0$, (16) reduces to a nonlinear integrable couplings of the integrable hierarchy in [15].
When $n = 2$ in (16), we obtain the nonlinear super integrable couplings of the second order super integrable equations
\[
\begin{align*}
q_{s1} &= -\frac{1}{2} r_{ss} - q^3 r + r + 2r \alpha \beta + \alpha \beta s - \alpha s \beta,
\end{align*}
\[
\begin{align*}
r_{s2} &= -\frac{1}{2} q_{ss} - q^3 + qr^2 + 2q \alpha \beta - q \alpha s - \beta \beta s,
\end{align*}
\[
\begin{align*}
u_{u_{s1}} &= -\frac{1}{2} q_{ss} - q^3 + qr^2 + (e + 1)(-\frac{1}{2} u_{ss} - 2qru - 2quu_s + 3ru_r)
\end{align*}
\[
\begin{align*}
&+ 3r^2 u - ru_r - u_r u_q - q^3 u_r + r^3 u_r + u_{s1}^2) - 2q \alpha \beta + \alpha \beta + \alpha s \beta,
\end{align*}
\[
\begin{align*}
u_{u_{s2}} &= -\frac{1}{2} q_{ss} - q^3 + qr^2 + (e + 1)(-\frac{1}{2} u_{ss} + 2qru + 2ruu_s - 3ru_r)
\end{align*}
\[
\begin{align*}
&+ 3r^2 u + q u_r + u_r u_q - 3q^3 u_r - u_{s1}^2) - 2q \alpha \beta + \alpha \beta + \beta \beta s,
\end{align*}
\[
\begin{align*}
\alpha_{s1} &= \beta_{ss} - \frac{1}{2} q \alpha - \frac{1}{2} r \beta + \frac{1}{2} q^2 \beta - \frac{1}{2} r \beta - q \alpha s - r \beta s,
\end{align*}
\[
\begin{align*}
\alpha_{s2} &= \alpha_{ss} + \frac{1}{2} r \alpha + \frac{1}{2} q \beta + \frac{1}{2} q^2 \alpha - \frac{1}{2} r^2 \alpha + r \alpha s + \alpha \beta s.
\end{align*}
\]
Let \(\varepsilon = 0 \) in (24), we have

\[
\begin{align*}
q_{i_2} &= -\frac{1}{2} r_{ss} - q^2 r + r^3 + 2 r \alpha \beta + \alpha \beta_s - \alpha_s \beta, \\
r_{i_2} &= -\frac{1}{2} q_{ss} - q^3 + q r^2 + 2 q \alpha \beta - \alpha \alpha_s - \beta \beta_s, \\
u_{i_1 i_2} &= -\frac{1}{2} u_{i_1 i_2} - 2 q u_1 u_2 + 3 r u_1^2 + 3 r^2 u_1 - r u_1^2 u_2 - q u_1^3 u_2 + q^2 u_2^2 - 2 r \alpha \beta + \alpha \alpha_s + \alpha \beta_s, \\
u_{i_2 i_2} &= -\frac{1}{2} u_{i_2 i_2} + 2 q r u_2 + 2 r u_2 - 3 q u_1^3 + r^2 u_1 + q u_1^3 u_2 + u_2^2 - 3 q u_1^3 - 2 q \alpha \beta + \alpha \alpha_s + \alpha \beta_s, \\
\alpha_{i_2} &= \beta_{ss} - \frac{1}{2} q \alpha - \frac{1}{2} r \beta + \frac{1}{2} q^2 \beta - \frac{1}{2} r^2 \beta - q \alpha_s - r \beta_s, \\
\beta_{i_2} &= \alpha_{ss} + \frac{1}{2} r \alpha + \frac{1}{2} q \beta + \frac{1}{2} q^2 \alpha - \frac{1}{2} r^2 \alpha + r \alpha_s + q \beta_s.
\end{align*}
\]

Especially, taking \(\alpha = \beta = 0 \) in (24), we can obtain the nonlinear integrable couplings of the second order integrable equations

\[
\begin{align*}
q_{i_2} &= -\frac{1}{2} r_{ss} - q^2 r + r^3, \\
r_{i_2} &= -\frac{1}{2} q_{ss} - q^3 + q r^2, \\
u_{i_1 i_2} &= -\frac{1}{2} e r_{ss} - e q^2 r + e r^3 + (\varepsilon + 1)(-\frac{1}{2} u_{i_1 i_2} - 2 q u_1 - 2 q u_2 + 3 r u_1^2 + 3 r^2 u_1 - r u_1^2 u_2 - q u_1^3 u_2 + q^2 u_2^2), \\
u_{i_2 i_2} &= -\frac{1}{2} e q_{ss} - e q^3 + e q r^2 + (\varepsilon + 1)(-\frac{1}{2} u_{i_2 i_2} + 2 q r u_2 + 2 r u_2 - 3 q u_1^3 + r^2 u_1 + q u_1^3 u_2 + u_2^2 - 3 q u_1^3 - u_1^4).
\end{align*}
\]

If setting \(\varepsilon = -1, u_1 = -q, u_2 = -r \) in (24), we obtain the second order super integrable equations of (17)

\[
\begin{align*}
q_{i_2} &= -\frac{1}{2} r_{ss} - q^2 r + r^3 + 2 r \alpha \beta + \alpha \beta_s - \alpha_s \beta, \\
r_{i_2} &= -\frac{1}{2} q_{ss} - q^3 + q r^2 + 2 q \alpha \beta - \alpha \alpha_s - \beta \beta_s, \\
\alpha_{i_2} &= \beta_{ss} - \frac{1}{2} q \alpha - \frac{1}{2} r \beta + \frac{1}{2} q^2 \beta - \frac{1}{2} r^2 \beta - q \alpha_s - r \beta_s, \\
\beta_{i_2} &= \alpha_{ss} + \frac{1}{2} r \alpha + \frac{1}{2} q \beta + \frac{1}{2} q^2 \alpha - \frac{1}{2} r^2 \alpha + r \alpha_s + q \beta_s.
\end{align*}
\]

6. Conclusion

In this paper, we introduced an approach for constructing nonlinear integrable couplings of super integrable hierarchy. Zhang [17] once employed two kinds of explicit Lie algebra \(F \) and \(G \) to obtain the nonlinear integrable couplings of the GJ hierarchy and Yang hierarchy, respectively. It is easy to see that Lie algebra \(F \) given in [17] is isomorphic to the Lie algebra span \(\{e_1, e_2, e_3, e_4, e_5, e_6\} \) in \(gl(6, 2) \). So we can obtain nonlinear integrable couplings of super GJ and Yang hierarchy easily. The method in this paper can be applied to other super integrable systems for constructing their super integrable couplings.

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (No.132300410202), the Science and Technology Key Research Foundation of the Education Department of Henan Province (No. 14A110010), the Youth Backbone Teacher Foundation of Shangqiu Normal University(No. 2013GGJS02).
References

