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Abstract 
A glance at Bessel functions shows they behave similar to the damped sinusoidal function. In this 
paper two physical examples (pendulum and spring-mass system with linearly increasing length 
and mass respectively) have been used as evidence for this observation. It is shown in this paper 
how Bessel functions can be approximated by the damped sinusoidal function. The numerical 
method that is introduced works very well in adiabatic condition (slow change) or in small time 
(independent variable) intervals. The results are also compared with the Lagrange polynomial. 
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1. Introduction 
A brief view of the graphs of Bessel and sinusoidal functions shows they are very similar. Bessel functions look 
like damped sinusoidal functions. Sinusoidal functions are well known for all of us and we have seen the foot 
prints of them almost everywhere. We knew them from trigonometry but Bessel functions are new for college 
students and seem more complicated and the students get familiar with them usually in differential equation. 
Bessel and sinusoidal functions are solution of Bessel and harmonic differential equations. We know these dif-
ferential equations belong to the family of Sturm-Liouville equation. Bessel and sinusoidal functions are ortho-
gonal function and they appear in the solution of some partial differential equations. The type of orthogonal 
function that appears in the solution depends on the geometry, physics (the form of the differential equation) and 
the boundary conditions. In spite of the similarity between them still for the students dealing with Bessel func-
tion is more difficult than sinusoidal function. 

The purpose of this paper is using a pedagogical method to show the similarity between them through two  
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physical examples. Basically this is an attempt to understand the mathematics through physics. This method is 
based on the similarity between the form of Bessel and sinusoidal functions and their similarity has been inter-
preted by these examples. This paper is not aiming to discuss or prove fundamental similarities or differences 
between these two groups of functions. Basically our observation shows Bessel functions behave like sinusoidal 
functions with decreasing amplitude and varying period. In this paper two examples are given to understand the 
root of these behaviors. These examples are the lengthening pendulum and spring-mass system with variable 
mass. Both length and mass in the pendulum and the spring-mass system respectively increase linearly with time. 
Finally for these examples the results of the exact solution (Bessel function) are compared with the approxima-
tion method (damped sinusoidal function). 

In addition to this pedagogical method (physical perspective of Bessel equation) the damped sinusoidal func-
tion is a good numerical approximation for Bessel function. It is compared with the Lagrange polynomial fitting; 
this method provides results better than the Lagrange polynomial fitting. 

2. The Lengthening Pendulum 
The lengthening pendulum which is known also as Lorentz’s pendulum is similar to a simple pendulum with in-
creasing length ( )0l l vt= +  at constant rate ( )0v > , with initial length of 0l  [1]-[8]. Its equation of motion is 

2

2

d 2 d sin 0.
dd

v g
l t lt

θ θ θ+ + =                                     (1) 

where θ  is the pendulum angle relative to the vertical axis and g  is gravitational acceleration. By changing 
variable from t  to l  and by using the small angle approximation (1) becomes: 

2

2 2

d 2 d 0.
dd

g
l ll v l

θ θ θ+ + =                                      (2) 

The solution of (2) is given by Bessel function as following 
( ) ( )1 1J u Y u

A B
u u

θ = +                                      (3) 

where 
2 gl

u
v

= . If 0θ θ=  and 0θ =  at 0t =  then the constants are given by ( )
2
0

0 2 0
π
2
u

A Y uθ= −  and 

( )
2
0

0 2 0
π
2
u

B J uθ=  where 0u  is the initial value of u . If 0l  and v  are related to each other such that 

0
0

2 gl
u

v
=  is a zero of ( )2 0J u  then the solution is 

( )1J u
C

u
θ =                                         (4) 

where 
( )
0 0

1 0

.
u

C
J u

θ
=  

To understand the solution in terms of the sinusoidal function, Equation (1) for the small angle approximation 
can be written as 

( ) ( )
2

2
02

d d2 0.
dd

t t
tt

θ θγ ω θ+ + =                                (5) 

where ( ) vt
l

γ =  and ( )2
0

gt
l

ω = . Notice that since l  is time dependent, ( )tγ  and ( )0 tω  are functions of  

time. If an adiabatic condition (slow change) is considered or if small time intervals are chosen then ( )tγ  and 
( )0 tω  are almost constant and the equation of motion is similar to damped simple pendulum. Then its solution  

for under damped condition ( )2 2
0γ ω<  is ( ) ( )( ) ( )( )1 2e sin cost t c t t c t tγθ ω ω−  = +   where frequency of mo- 

tion is given by 2 2 2
0ω ω γ= −  and it is function of time. For small time interval ( )1n nt t t −∆ = −  the solution at 
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nt  can be written in terms of the conditions of the pendulum at 1nt − : 
( )( ) ( )( )1

1, 1 1 2, 1 1e sin cosn t
n n n n nc t c tγθ ω ω−− ∆

− − − − = ∆ + ∆  . This solution shows how Bessel functions can be re-  

lated to the damped sinusoidal solution.  

The equation of motion can also be written in terms of 
2 gl

u
v

=  which is a dimensionless variable as fol- 

lowing: 
2

2

d 3 d 0.
dd u uu

θ θ θ+ + =                                      (6) 

In this case the damping coefficient is ( ) 3
2

u
u

γ = . Again under adiabatic condition the solution at the 

neighborhood of nu  is ( )e sinnu
n n nA u aγθ ω−≅ + , where 3

2n
nu

γ = , 2 21n nω γ= −  and for n nγ ω  we have  

1nω ≅ . Therefore for large u  the period approaches to 2π  like sinusoidal function. By comparing with the  

exact solution (Bessel function) at the neighborhood of nu  we have: 
( ) ( )1 e sinnu

n n n

J u
C u

u
γ ω β−≅ +  where  

nC  and nβ  are given by the condition of the problem at nu . This is an observation based on the solution of 
the lengthening pendulum and it is not a mathematical proof and depends on two constant ( nC  and nβ ) that 
should be determined by the condition at nu . 

3. Spring-Mass System with Linearly Increasing Mass 
In this case the mass is increased in steady rate: 0m m tα= +  where 0m  is the initial mass and 0α >  is the 
rate of change of the mass. The same treatment as previous case has been used. The equation of motion is: 

2

2

d d 0.
dd

x x k x
m t mt
α

+ + =                                    (7) 

where k  is the spring constant. By changing variable from t  to m  in (7) we have 
2

2 2

d 1 d 0.
dd

x x k x
m mm mα

+ + =                                  (8) 

The solution of (8) is given by Bessel function as following: 

( ) ( )0 0x AJ u BY u= +                                   (9) 

where 2 kmu
α

= . The initial conditions of ( ) 00x x=  and ( )0 0x =  give ( )0
0 1 0

π
2
u

A x Y u= −  and  

( )0
0 1 0

π
2
u

B x J u=  where 0u  is the value of u  at 0t = . If 0m  and α  are adjusted such that 0
0

2 km
u

α
=   

is a zero of ( )1 0J u  then the solution is 

( )0x CJ u=                                      (10) 

where 
( )

0

0 0

.
x

C
J u

=  Equation (7) can be written as 

( ) ( )
2

2
02

d d2 0
dd

x xt t x
tt

γ ω+ + = ,                            (11) 

where ( )
2

t
m
αγ =  and ( )2

0
kt
m

ω = . Since m  is time dependent, again ( )tγ  and ( )0 tω  are functions of  

time. The same as the pendulum case for adiabatic condition or for the small time interval ( )tγ  and ( )0 tω  
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are almost constant then the equation of motion is similar to damped harmonic motion. Then its solution for un-  
der damped condition ( )2 2

0γ ω<  is ( ) ( )( ) ( )( )1 2e sin cost t c t t c t tγθ ω ω−  = +   where angular frequency of the  

motion is 2 2 2
0ω ω γ= −  and it is function of time. 

The equation of motion in terms of 2 kmu
α

=  which is dimensionless is 

2

2

d 1 d 0.
dd

x x x
u uu

+ + =                                   (12) 

In this case the damping coefficient is ( ) 1
2

u
u

γ = . Again under adiabatic condition the solution at the 

neighborhood of nu  is ( )e sinnu
n n nx A u aγ ω−≅ + , where 1

2n
nu

γ = , 2 21n nω γ= −  and for n nγ ω  we have  

1nω ≅ . For large u  the period approaches to 2π  like sinusoidal function. By comparing with the exact solu-  
tion (Bessel function) at the neighborhood of nu  we have ( ) ( )0 e sinnu

n n nJ u C uγ ω β−≅ +  where nC  and nβ   
are given by the conditions of the system at nu . This is physical evidence based on observation and it is not a 
mathematical proof. 

4. The Quadratic Lagrange Polynomial for Numerical Comparison 
In general the damped sinusoidal function provides a good approximation for Bessel functions. It can be com-
pared with the quadratic Lagrange polynomial fitting which is given by [9] [10] 

( )
1 1

N
j

i
i j N i j

j i

u u
x u x

u u= ≤ ≤
≠

 − =  − 
 

∑ ∏                                (13) 

For the quadratic case 3N =  and three points, ( ) ( )1 1 2 2, , ,u x u x  and ( )3 3,u x , are needed. 

5. Results and Discussion 
In this section some results are shown for both cases. The numerical values are used are not based on any physi-
cal reason and they are used just for comparison of these two methods. 

In both of these problems there are two independent variables ( ( ), lθ  for pendulum and ( ),x m  for 
spring-mass system). Change in the momentum is due to both variables. Appearance of the first derivatives (θ  
and x  for pendulum and spring-mass system respectively) make them different from the simple harmonic mo-
tion. This is because of the change of the momentum due to the second independent variable ( l  for the pendu-
lum and m  for the spring-mass system). Mathematically this first derivative plays the role of the damping term 
that causes the amplitude decay. In reality there is no drag force like air resistance in these two cases but they 
are not conservative system their energies depend on time [1]. The total mechanical energy is the sum of the ki-
netic and the potential energy and for the pendulum case the energy density (energy per unit mass) is  

( ) ( ) ( )2 2 2 2 2 2 21 1cos 1 2
2 2

E l l gl l l gl
m

θ θ θ θ= + − ≅ + − −   . By substitution of (4) into this expression the energy 

density is given by ( ) ( )( )
2

2 2 2 2
1 2

1
2 8

E Cv gl J u J u v
m

 = − + +  . The last (Bessel’s) term is proportional to 2v  

(like kinetic energy). This term decays down and the energy density approaches to 21
2

v gl− . Since l  in- 

creases with time the energy decreases. The power density is given by  

( ) ( ) ( ) ( )
2

1 0 2 3
1 d

d 8
p E v C ggv J u J u J u J u
m m t l
= = − + −   . Again the Bessel’s term decays and the power densi- 

ty converges to 0Tgv F v− = − <  where TF  is the string tension at this limit (at large value of time). Therefore 
the exact solution shows the energy of the system deceases as we expected from the approximation method  
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based on the damped oscillation. Figure 1 shows the energy density and power density for the case of ν = 
0.2048 m/s. It shows power density is negative and it decreases with time and approaches to 2.007gv− = −
W/kg. 

The amplitude decays as e nuγ−  but nγ  is inversely proportional to nu  therefore the rate of the change of  

the amplitude decreases. The angular frequency 21n nω γ= −  increases as nu  increases and approaches to 1, 

( )lim 1
n

nu
ω

→∞
= , therefore the period is inversely related to u  (it decreases as u  increases). This means for  

large u  the amplitude and frequency converge to almost constant values or the solution behaves like simple  

harmonic motion. We know u  by itself is function of time (
2 gl

u
v

=  and 2 kmu
α

= ) and it increases by  

time and consequently the period increases by time. This can be clarified by giving the frequencies in terms of 
( l  and m ) which are functions of time. The frequencies in terms of t  for the pendulum and the spring-mass  

system are ( )
2

2

g vt
l l

ω = −  and ( )
2

24
kt
m m

αω = −  respectively. For large value of time (large l  and m ) 

they approach to g
l

 and k
m

. That means they get smaller and the periods become larger as time increases.  

Figure 2 shows the results of two methods. For these results the small time intervals (less than the local period) 
have been used. This is a good criterion for the time step size in adaptive numerical method. Figure 2 shows the 
approximation method (damped sinusoidal method) agrees very well with the exact solution (Bessel function) 
for small time intervals. One can observe from this figure the period increases with time. 

Suppose the pendulum problem has been solved exactly for some initial conditions. This solution is given in 
(4) by Bessel functions and at a given nu  the exact conditions of the motion, ( nθ  and nθ ), can be found and  
substituted into, ( )e sinnu

n n nA u aγθ ω−≅ + , to find nA  and na . Figure 3 shows this solution for 0 5.13562u =   
(the first zero of ( )2J u ) with initial conditions of 0 10θ =   and 0 0θ = . The solution corresponding to 

100nu =  has been shown by a dot on the graph. At this point the exact and the approximation solutions should  
 

 
Figure 1. Energy density and power density for the lengthening pendulum: u0 = 30.571 

0.2048v =  m/s, 0 5θ =   and 0 0.θ =                                           
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Figure 2. The results of exact (Bessel) and the approximation (damped sinusoidal) solu-
tion for the lengthening pendulum ( 0 30.571,u = 0.2048v =  m/s, 0 5θ =   and 0 0θ = ). 
Since the small time interval has been used the results of both methods are quite agree 
with each other (no differences can be seen).                                      

 

 
Figure 3. The results of the exact solution, Bessel function (solid line), and the approxi-
mation method, damped sinusoidal solution (dot line), for the lengthening pendulum: l0 = 
1 m, 0 0 05.13562,  10 ,  0,  u θ θ= = =

 100,nu = 0.002 radnθ = and 45.6811 10nθ
−= − ×  

rad/s. The solution corresponding to 100nu =  has been shown by a dot on the graph.    
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match with each other through the condition at nu  (i.e. nθ  and nθ ). Using these conditions from the exact 
solution and impose them on the approximation (damped sinusoidal) method gives us the approximation solu-
tion at the neighborhood of this point. Figure 3 shows the results agree with each other particularly near this 
point. One can see the deviation of the approximation method from the exact solution away from this point es-
pecially for small u . In this case we are not using small time interval and the figure shows the results over sev-
eral periods. 

Figure 4 shows the same results as Figure 3 but for the spring-mass system, in this case the exact solution is 
given in terms of ( )0J u . Again the results of the exact solution and the approximation method are quite similar. 
The deviation of these two methods at small u  is shown in Figure 5. Again we can observe for nu u>  the 
results are matched very well. 

In the Lagrange polynomial fitting three points are needed but for the damped sinusoidal function only the 
value of Bessel function and its derivative at a point are needed. This is a big advantage of this method compare 
to the Lagrange polynomial fitting. The Bessel function is oscillatory therefore the order of polynomial in a 
large interval should be higher and more points are needed. Figure 6 shows the comparison of these two tech-
niques with the exact Bessel function. 

The results from Figure 6 shows the damped sinusoidal function is a better approximation compare to the 
Lagrange polynomial fitting. It is obvious for the larger interval the quadratic polynomial is not a reasonable ap-
proximation and higher order polynomial with more points are needed. The results of this paper shows in long 
interval the damped sinusoidal is good numerical approximation. 

6. Conclusions 
The graphs of Bessel functions are similar to the damped sinusoidal solution. In this paper this observation has 
been investigated by two physical examples. The Bessel’s equation has been compared with the equation of the 
damped simple harmonic motion. The solutions of these methods are compared at the neighborhood of an arbi-
trary point. The results are shown the approximation method works very well particularly when u is large (i.e. 
for large value of independent variable for example time in this paper for two examples). The damped sinusoidal  

 

 
Figure 4. The results of the exact solution (Bessel function, solid line) and the approxi-
mation method (damped sinusoidal solution, dot line) for the mass-spring system: m0 = 1 
kg, u0 = 3.832, x0 = 1 m, un = 100, xn = −0.0496 m and 0.1915nx = −  m/s. The solution 
corresponding to un = 100 has been shown by a dot on the graph.                      



M. Asadi-Zeydabadi 
 

 
33 

 
Figure 5. The results of the exact solution (Bessel function, solid line) and the approxi-
mation (damped sinusoidal, dot line) method for the mass-spring system: m0 = 1 kg, u0 = 
3.832, x0 = 1 m, un = 10, xn = 0.6106 m and 0.1079nx =  m/s. The solution correspond-
ing to un = 10, has been shown by a dot on the graph.                               

 

 
Figure 6. Bessel function, x = J0(u), the damped sinusoidal function, and the 
quadratic Lagrange polynomial. The given points for Bessel function, J0(0.5) 
= 0.9385, J0(2.0) = 0.2239 and J0(4.0) = −0.3971, are shown in figure.        

 
function not only is a good way to interpret the property of the Bessel equation but also is a good numerical ap-
proximation. The comparison with the Lagrange polynomial shows the numerical advantage of the damped si-
nusoidal function. 
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In this paper we use two physical examples but this method can be generalized for any Bessel’s equation. The  

general form of Bessel’s equation is ( ) ( )
2

2 2
2

d d1 1 0
dd

y yu p u y
uu

 + + − =  . Again by using the appropriate ini- 

tial value for u  the final solution can be given in terms of either ( )pJ u  or ( )pY u . The damped sinusoidal  

solution at the neighborhood of a given point ( )nu  is given by ( ( )e sinnu
n n ny A u aγ ω−≅ + ) where 1

n
nu

γ =  

and ( ) ( )2 2 2 21 1n np u p uω γ = − − ≅ −  . The values of Bessel function and its derivative at nu  are used to  

find nA  and na . This method can be considered as a good perturbation method for the problems that are in-
volved Bessel function. This method can improve numerical techniques for some particular equations. In the 
same way we can look at other functions like Legendre polynomial. The Legendre differential equation is given  

by ( ) ( )
2

2
2

d d1 2 1 0
dd

y yu u y
uu

− − + + =   with 1 1u− ≤ ≤ . We can write the differential equation in the form 

damping harmonic oscillation 
2

2
2

d d 0
dd

y y y
uu

γ ω− + =  with 
( )2

2
1

u
u

γ =
−

 and 
( )
( )2

1
1 u

ω
+

=
−

 

. In this case the so- 

lution is growing up and the ω  increases by  . Notice that the polynomial is defined in region of 1 1u− ≤ ≤ . 

References 
[1] Werner, A. and Eliezer, J.C. (1969) The Lengthening Pendulum. Journal of Australian Mathematical Society, 9, 331- 

336. http://dx.doi.org/10.1017/S1446788700007254 
[2] Littlewood, J.E. (1963) Lorentz’s Pendulum Problem. Annals of Physics, 21, 233-249.  

http://dx.doi.org/10.1016/0003-4916(63)90107-6 

[3] Littlewood, J.E. (1964) Adiabatic Invariance III. The Equation ( ),xx V x ω= − . Annals of Physics, 29, 1-12. 
http://dx.doi.org/10.1016/0003-4916(64)90188-5 

[4] Littlewood, J.E. (1964) Adiabatic Invariance IV: Note on a New Method for Lorentz’s Pendulum Problem. Annals of 
Physics, 29, 13-18. http://dx.doi.org/10.1016/0003-4916(64)90189-7 

[5] Littlewood, J.E. (1964) Adiabatic Invariance V. Multiple Periods. Annals of Physics, 30, 138-153. 
http://dx.doi.org/10.1016/0003-4916(64)90307-0 

[6] Brearley, M.N. (1966) The Simple Pendulum with Uniformly Changing String Length. Proceedings of the Edinburgh 
Mathematical Society (Series 2), 15, 61-66. 

[7] Sánchez-Soto, L.L. and Zoido, J. (2013) Variations on the Adiabatic Invariance: The Lorentz Pendulum. American 
Journal of Physics, 81, 57. http://dx.doi.org/10.1119/1.4763746 

[8] Boas, M.L. (2006) Mathematical Methods in the Physical Science. 3rd Edition, Wiley, 598-599.  
[9] Gil, A., Segura, J. and Temme, N. (2007) Numerical Methods for Special Functions. SIAM. 

http://dx.doi.org/10.1137/1.9780898717822 
[10] Garcia, A.L. (2000) Method for Physics. 2nd Edition, Prentice-Hall, NJ. 

http://dx.doi.org/10.1017/S1446788700007254
http://dx.doi.org/10.1016/0003-4916(63)90107-6
http://dx.doi.org/10.1016/0003-4916(64)90188-5
http://dx.doi.org/10.1016/0003-4916(64)90189-7
http://dx.doi.org/10.1016/0003-4916(64)90307-0
http://dx.doi.org/10.1119/1.4763746
http://dx.doi.org/10.1137/1.9780898717822

	Bessel Function and Damped Simple Harmonic Motion
	Abstract
	Keywords
	1. Introduction
	2. The Lengthening Pendulum
	3. Spring-Mass System with Linearly Increasing Mass
	4. The Quadratic Lagrange Polynomial for Numerical Comparison
	5. Results and Discussion
	6. Conclusions
	References

