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ABSTRACT 

In this article we proposed a method for constructing approximations to periodic solutions of one class nonautono- 
mous system of ordinary differential equations. It is based on successive approximation scheme using parallel sym- 
bolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive ap- 
proximations on the period, and also considered an example of a second order system where the described scheme of 
calculations can be applied. 
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1. Introduction 

Quite often (and in practice as well) there appears a prob- 
lem of constructing of periodic solutions of the normal sys- 
tem of ordinary differential equations of the form 

 , x f t x ,                  (1) 

where  x t —vector function of a real variable t,  
—vector function equal to 

),( xtf

    , f t x x h t  ,             (2) 

where vector  x


—multidimensional polynomial and 
function  is a trigonometric polynomial (T-periodic 
vector function). 

h t

Many of the theorems [1] of existence of periodic solu- 
tions of system (1) use the fundamental fact that such solu- 
tions are completely determined by the fixed points of the 
shift operator along the trajectories of the system. These 
theorems can not be used to direct finding of the desired 
periodic solution. 

Let it be known that the system (1) has a unique 
T-periodic solution  x t . Examples of systems that have 
a unique periodic solution, are the systems with conver- 
gence [2,3]. In this article one class of such systems would 
be considered so that for them we provide a method of 
constructing of approximations to the solution  x t ; 
given the conditions imposed on the function f, it allows 
showing the convergence of the scheme of successive ap- 
proximations on the period. At that it introduces an auxil- 

iary system for constructing in a symbolic form of ap- 
proximation to some periodic function, which depends on 
the initial conditions for the system (1). By varying those 
conditions we will find an approximation to the solution 

 x t . The parallel calculations can be used to improve 
efficiency of calculation process. The symbolic form of 
representation is convenient because it further allows you 
to analyze the harmonic components of the desired appro- 
ximation. 

2. The Conditions Imposed on Original  
System 

We shall consider the class of systems (1), which obeys 
the following conditions: 

1) The system (1) is a system with convergence, i.e., it 
has a unique T-periodic solution  x t , that asymptoti- 
cally stable in whole. 

2) Closed ball  of radius r, which contains the val- 
ues of function 

rS
 x t , is contained within a ball RS  of 

radius R. For vectors   and   from RS  Lipschitz 
inequality takes place 

    l        ,              (3) 

where the positive number l satisfies the condition 

 1 2l  T .                   (4) 

3) There can be found a positive number M, such that 
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for all vectors x from RS  takes place 

 , , 2f t x M r TM R   .          (5) 

3. The Transition to Auxiliary System of  
Equations 

To simplify the notation let’s assume that initial time mo- 
ment is zero. Let’s rewrite (1) in the integral form 

    
0

, d
t

x t C f x     , 

where vector C defines the initial conditions. So far as 
 x t —T-periodic function then 

   0x x T C   

0

. 

Then 

  
0

, d
T

f x    .            (6) 

Therefore 

  
0

1
, d

T

f x
T

    0 . 

So far as function  x t  satisfies the system (1), then 
it also satisfies the system 

    
0

1
, ,

T

y f t y f y
T

d     .         (7) 

Let’s pass from Equation (7) to the integral relation: 

       
0 0

1
, ,

t T

y t C f s y s f y s
T

  
 

   
 
  d d .  (8) 

Let’s notice that transition to the auxiliary system (8) is 
necessary because the nested integral (mean integral value 
over the period) in calculations allows avoiding the ap- 
pearance degrees of t in symbolic expressions. This re- 
duces the amount of memory allocated for them, and also 
forms a symbolic representation of the desired function as 
an approximation to the Fourier series of periodic solu-
tions of system (1). 

4. Scheme of Successive Approximations 

To obtain an approximation to the solution  x t  on the 
period, first let’s construct an approximation to a func- 
tion that is a solution to the system (8). Then by varying 
the vector C let’s find the desired approximation. To do 
this let’s show that we are in terms of applicability of the 
method of successive approximations. 

Let —space of continuous T-periodic vector func- 
tions 


 y t  with values in a ball RS . The distance be- 

tween the functions  we’ll define as ,p q

 
 

   
0,

, max
t T

p q p t q t


  . 

Thus space   is metric. In  let’s consider an op- 
erator 



       

 

0 0

0

1
, ,

d .

t T

t

y t C f s y s f y s
T

C u s s

  d d
 

    
 

 

 


 (9) 

Let’s show that function 

   g t y  t  

belongs to space  , when . y
By virtue of (9) and C r  (we will search a vector 

C  in a ball r , because it contains values of a function S
 x t ) we obtain: 

   
 

  
0, ,

0

d 2 max ,
t

t T y
t C u s s r T f t y t

 
   g . 

Given that  y t  takes values from RS , and inequal- 
ity (5), we obtain 

 g t R  

for all  0,t T . 
Now let’s show the T-periodicity of function  g t : 

    0g t T g t    

for any real values t. With (9) let’s consider the differ- 
ence 

       

   

0 0

0

0

d d

d d

t T t

t T

t

.

g t T g t u s s u s s

u s s u s s





   

 

 

 
 

Since the function f T-periodic in t and  y t  is also 
T-periodic then function  will be T-periodic. In 
view of this making the change 

 u s
s a T   in first inte- 

gral we obtain 

       

   

0

0

0

d d

d d

t

T t

T

T

.

g t T g t u a a u s s

u s s u s s





   

 

 

 
 

Let’s assume 

  
0

, d
T

B f y    . 

Then 

      
0

1
, d

1
0.

T

g t T g t f s y s B s
T

B BT
T

      

  


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Thus if  then . y g 
Let’s show that mapping y  is contracted. Let’s es- 

timate 

 
 

     

      

0,
0

0

, max , ,

1
, , d d .

t

t T

T

p q f s p s f s q s

f p f q s
T



    



   


  






 

By virtue of inequality (3) and (2) we obtain 

   , 2 ,p q lT p q    . 

From (4) it follows that 

2 1lT  . 

Thus the mapping is a compression. 
Then, according to the method of successive approxi- 

mations the scheme 

       1 1
0 0

1
, ,

t T

m m my t C f s y s f y s
T

   


   

 
  d d


 

(10) 

converges to solution of a system (8). 

5. Finding Periodic Solution 

Since the right part of the system (1) on x a multidimen- 
sional polynomial and in t it is a trigonometric polyno- 
mial the initial function  0y t  it is advisable to choose 
equal to vector C or as 

   0 cosy t C t , 

where 2 T   , i.e., . 0

Note that the multiplication of two (and, consequently, 
any number of) trigonometric functions (cos or sin) and 
also an extent of such functions [4], can be represented as 
sum of a constant vector and trigonometric polynomial, 
and during the integration of trigonometric polynomial is 
obtained the same sum. Then from the scheme (10), each 
iteration can be calculated symbolically. At that the 
transformation of trigonometric functions in symbolic 
form, as well as their symbolic integration, are parallel- 
ized. The idea of parallelism lies in the formula (10): 
calculations for each component of the vector 

y 

 my t  
might be produced independently of each other and store 
the obtained symbolic expressions in network database 
which accessible for computational process in a distrib- 
uted computing environment. 

Following the formula (10), we build a function 
 my t  to such value m, when 

 1max , ,
r

m m c
C S

y y 
             (11) 

where c —accuracy for the scheme (10). 
Let’s consider the integral 

  
0

, d
T

I f y    . 

When substituting a character expression for the function 
we obtain vector function from C. Then redenote 

 C I  . 

We need to find a vector C such  that there 
takes place an Equation (6), i.e. 

C C 

  0C   .               (12) 

So far as the system (1) has a unique periodic solution 
then system of algebraic Equations (12) in region  will 
also have a unique solution. 

rS

The system (12) is equivalent to 

   , 0C C    . 

From where we get the optimization problem to find an 
approximate value of vector : C

     , min, rC C C С S     .      (13) 

The transition from the system (12) of algebraic equa- 
tions to the problem (13) related to the fact that directly in 
the calculations the functio )(t  is defined approxi- 
mately by using the criterion (11

n
). 

 y

6. An Example of a Nonlinear Second-Order  
System 

As an example of using the described method let’s consider 
a nonlinear oscillations equation (in this subsection, we 
rename some functions, as is customary in well-known 
literature) 

     x q x x g x p t    ,           (14) 

where 

   20.01 1 2q x x  , 

  0.03g x x , 

  0.01cos 24p t t  , 

T period of right part is equal to 12 . According to 
Theorem 8.1 [2] for an Equation (14) the convergence 
property is executed. 
From an Equation (14) let’s move to an equivalent system 

of second order [2], where right part has the form (2): 

    ,  x y Q x P t y g x      ,       (15) 

where 

    3

0

2
d 0.01

3

x

Q x q x x      
  , 
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     
0

1
d sin 2

2400

t

4P t p t   . 

Let’s find the radius r of the ball r , where all solutions 
of system (15) are bounded. To do this, let’s first show the 
fulfillment of conditions 1 - 4 [2]: 

S

1) Functions q, g and p are continuous, g satisfies a 
Lipschitz condition with constant 0.03. 

2) The value of numbers a,   and   is equal to 1/12, 
73/7200 and 1/400 respectively so that  q x   when 
x a ,  g x   when x a ,  g x    when 
x a  . 

3) A function  is bounded at all t, i.e.,   P t
 P t E , 1 1200E  . 
4) There exists such number 1 259, 200  , that 

 Q x E    

when x a , 

 Q x E     

when x a  ; when   0G x  x a , where 

    2

0

d 0.015G x g x  
x

. 

Then any solution of system (15) is bounded in a rectan-
gle, defined by inequalities 

0 1,x a y b     , 

where 0  so that   0Q x E    when x a . Let’s 
choose it as equal to 

 0 max
x a

Q x E


  . 

Since —everywhere increasing function then  Q x

0  . The value of constant 1  is chosen as [2] 

1 0a
 


   , 

where —any positive number and 

 max
x a

g x


  [2]. 

Let’s assume 3 1200    . Then 

3 600b  . 

Thus, radius r may be taken equal to 

2 2 7 30r a b   . 

Now let’s establish the fulfillment of conditions 3 and 2 
from section 2 of given article. Let’s rewrite the system (15) 

in a vector form: 

 ,z w t z , 

where       ,z t x t y t . Let’s consider a ball RS  of 
radius 

0.5R   

which have inside a ball . Then from (15) rS

 
  

0, ,

3

,

2 max ,

2
2 max 0.01 0.03

3

.

t T z

x R y R

r T w t z t

r T y x x E x

R

 

 



           


 

Local implementation of the Lipschitz condition for the 
function  z  is established the following way. Let’s 
represent 

     1 2 1 2 1,z z A x x z z    2 , 

where the A matrix has the form 

   2 2
1 1 2 2

1 2

2
0.01 1 1

, 3

0.03 0

x x x x
A x x

          
  

. 

Hence we obtain 

 
1 2

1 2
,

2 max ,
x R x R

T A x x
 

1. 

7. Acknowledgements 

This article was supported by the Russian Foundation for 
Basic Research (Projects No. 11-07-00098 and 13-07- 
00077). 

REFERENCES 
[1] M. A. Krasnosel’skij, “The Shift Operator along Trajec-

tories of Differential Equations (in Russian),” Nauka, 
Moscow, 1966. 

[2] V. A. Pliss, “Nonlocal Problems of Oscillation Theory (in 
Russian),” Nauka, Moscow, 1964, pp. 107-110,113. 

[3] B. P. Demidovich, “Lectures on the Mathematical Stabil-
ity Theory (in Russian),” Nauka, Moscow, 1967. 

[4] I. S. Gradshtejn and I. M. Ryzhik, “Tables of Integrals, 
Sums, Series and Multiplications (in Russian),” Fizmatlit, 
Moscow, 1963, p. 39. 

 

 


