Synthesis of Some New Bisindole Derivatives and Their Biological Activity

Amal S. Yanni

Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
Email: Profayanni@yahoo.com

Abstract
Substituted 1,4-diaza-1,3-butadienes with 2 equivalents of 1,4-naphthoquinone in presence of ethanol or benzene produce corresponding substituted bisindoletetrones via criss-cross cycloaddition reaction. The chemical structure was confirmed by elemental and spectral analysis. Biological activity against some micro-organisms was tested.

Keywords
Synthesis, Bisindoletetrones, Cycloaddition, Antimicrobial Activity

1. Introduction
Pyrrolidines are well known for their versatile pharmacological activities such as antimicrobial [1] [2] [3] [4], antitumor [5], anti HIV [6], anticonvulsant [7] [8], human melanocortin-4 receptor agonists [9], etc. Moreover, indole nucleus is an important element of many natural and synthetic molecules that covers some of the relevant and recent achievement in the biological, chemical and pharmaceutical activity of important indole derivatives [10]. In view of these observations, the intention is directed to synthesize some new bisindole derivatives of expected biological interest.

2. Experimental
2.1. General
All melting points are uncorrected. IR spectra were recorded (KBr) with a Perkin-Elmer 1430 spectrophotometer. 1H NMR spectra were obtained on Varian EM 399.65 MHz equipment. MS spectra were recorded with a Jeol the MS route JMS-600 H. Substituted 1,4-diaza-1,3-butadienes (1a-f) were prepared according to known procedures by condensation of glyoxal and aromatic amines.
2.2. 6,13-Disubstituted 6,6a,13,13a-Tetrahydro-(5aH,5bH,12aH, 12bH)-Bisbenzo[f]Benzo-[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3a-f): General Procedure

A mixture of substituted 1,4-diaza-1,3-butadienes (1, 1 mmole) and 1,4-naphthoquinone (2, 2 mmoles) was refluxed in absolute ethanol or benzene for 8 - 12 hrs. The solution was filtered while hot. The mother liquor was concentrated and cooled. The highly colored (brown violet) products were filtered off and crystallized from ethanol. Yield 40% - 55%.

2.2.1. 6,13-Diphenyl-6,6a,13,13a-Tetrahydro-(5aH,5bH,12aH, 12bH)-Bisbenzo[f]Benzo-[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3a)

Adduct (3a), R = -C₆H₅, is obtained from 1,4-diphenyl-1,4-diazabuta-1,3-diene (1a) and (2) in 50% yield, m.p. 184°C. Anal. calcd. for C₃₆H₂₄N₂O₄ (524.58): C, 77.85; H, 4.61; N, 5.34. Found: C, 77.58; H, 4.79; N, 5.42. IR (cm⁻¹), ν: 1669 (C=O), 1260, 1445 (C-N). MS m/z (%): [M + PhCO-O-H] 402 (0.1), common fragment ion [M + 2 C₆H₅ - 2O] 337.8 (10.7).

2.2.2. 6,13-Di-p-Tolyl-6,6a,13,13a-Tetrahydro-(5aH,5bH,12aH, 12bH)-Bisbenzo[f]Benzo-[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3b)

Adduct (3b), R = -C₆H₄-p-CH₃, is obtained from 1,4-di-p-tolyl-1,4-diaza-1,3-butadiene (1b) and (2) in 40% yield, m.p. 188°C - 190°C. Anal. calcd. for C₃₆H₂₈N₂O₄ (552.64): C, 78.24; H, 5.11; N, 5.07. Found: C, 78.37; H, 5.26; N, 5.14. IR (cm⁻¹), ν: 1670 (C=O), 1246, 1508 (C-N). ¹H NMR (CDCl₃), δ: 2.44 (s, 6H, 2-CH₃), 3.7 (2H, 2CH-N), 6.3 (2H, 2-CH-CO), 6.8 - 8.2 (m, 2H, 2-CO-CH-N, 16 H, Ar-H). MS m/z (%): [M⁺-2O-C₆] 466.6 (0.2), common fragment ion [M⁺-2 C₆H₄-p-CH₃ - 2 O] 337.79 (11.4).

2.2.3. 6,13-Di-p-Methoxyphenyl-6,6a,13,13a-Tetrahydro-(5aH,5bH, 12aH,12bH)-Bisbenzo[f]Benzo-[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3c)

Adduct (3c), R= -C₆H₄-p-OCH₃, is obtained from 1,4-di-p-methoxyphenyl-1,4-diaza-1,3-butadiene (1c) and (2) in 42% yield, m.p. 140°C. Anal. calcd. for C₃₆H₂₈N₂O₆ (584.63): C, 73.96; H, 4.83; N, 4.79. Found: C, 73.49; H, 4.68; N, 4.90. IR (cm⁻¹), ν: 1670 (C=O), 1249, 1508 (C-N). MS m/z (%): [M⁺-Ph-C₆] 483.45 (0.2), common fragment ion [M⁺-2 C₆H₄-p-OCH₃ - 2 O] 337.9 (0.9).

2.2.4. 6,13-Di-p-Hydroxyphenyl-6,6a,13,13a-Tetrahydro-(5aH,5bH, 12aH,12bH)-Bisbenzo[f]Benzo-[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3d)

Adduct (3d), R= -C₆H₄-p-OH, is obtained from 1,4-di-p-hydroxyphenyl-1,4-diaza-1,3-butadiene (1d) and (2) in 45% yield, m.p. 240°C. Anal. calcd. for C₃₄H₂₄N₂O₆ (556.58): C, 73.37; H, 4.35; N, 5.03. Found: C, 73.19; H, 4.22; N, 4.90. IR (cm⁻¹), ν: 3300 (OH), 1671 (C=O), 1267, 1435 (C-N). ¹H NMR (CDCl₃); δ 3.7 (s, 2H, N-CH-CH-N), 6.2 (s, 2H, 2-CH-CO), 6.88 - 8.2 (m, 2H, 2-CO-CH-N, 16H, Ar-H), 8.6 (s, 2H, 2-OH). MS m/z (%): [M⁺-2C₆H₄-OH-2O] 338.2 (3.8), common fragment ion [M⁺-2 C₆H₄OH - 2 O] 337.92 (6.5).
2.2.5. 6,13-Di-p-Chlorophenyl-6,6a,13,13a-Tetrahydro-(5aH,5bH, 12aH,12bH)-Bisbenzo-[f]Benzo[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3e)

Adduct (3e), R= -C₆H₄-p-Cl, is obtained from 1,4-di-p-chlorophenyl-1,4-diaza-1,3-butadiene (1e) and (2) in 50% yield, m.p. 205°C. Anal. calcd. for C₁₄H₁₀N₂Cl (593.47): C, 68.81; H, 3.74; Cl, 11.95; N, 4.72. Found: C, 68.69; H, 3.61; Cl, 11.68; N, 4.91. IR (cm⁻¹), ν: 1670 (C=O), 1299, 1406 (C-N). MS m/z (%): [M+ - PhCO-H] 487 (1.3), common fragment ion [M+ - C₆H₄-p-Cl - 2 O] 337.9 (100).

2.2.6. 6,13-Di-α-Naphthyl-6,6a,13,13a-Tetrahydro-(5aH,5bH,12aH, 12bH)-Bisbenzo-[f]Benzo[5,6]Indolo[3,2-b]Indole-5,7,12,14-Tetrone (3f)

Adduct (3f), R= -C₁₀H₇, is obtained from 1,4-di-α-naphthyl-1,4-diaza-1,3-butadiene (1f) and (2) in 38% yield, m.p. 215°C. Anal. calcd. for C₄₂H₂₈N₂O₄ (624.7): C, 80.75; H, 4.52; N, 4.48. Found: C, 80.29; H, 4.79; N, 4.61. IR (cm⁻¹), ν: 1670 (C=O), 1269, 1455 (C-N). MS m/z (%): [M' -2C₁₀H₇-C₂H₂-2H] 342 (0.1), common fragment ion [M' - 2 C₁₀H₇ - 2 O] 337.9 (20.9).

2.3. Antimicrobial Activity*

Antibacterial screening of compounds (3a-f) were determined by Nutrient agar well diffusion method. The tested compounds (3a-f) were dissolved in ethylene glycol to give 2% concentration. Antibacterial activity was determined according to the method reported by Bauer et al. [11] using 3 mm filter paper discs (Watmann No. 2) loaded with 10 μL of the solution under investigation (2.0%). The discs were placed on the surface of the bacterial culture, which were incubated at 30°C. The diameter of the inhibition zone around each disc was measured (cf. Table 1).

3. Results and Discussion

Wagner [12] found that heating one mole of benzalazine with 2 moles of maleic anhydride to 100°C in dry benzene for several hours gave addition compound through simultaneous 1,3- & 2,4-addition of 2 moles of maleic anhydride to benzalazine, which was designated as criss-cross addition [13]. Moreover, aromatic 1,4-disubstituted 1,4-diazabuta-1,3-diienes with thiocyanates in glacial acetic acid via criss-cross cycloaddition produced the corresponding perhydroimidazo[4,5-d]imidazole-2,5-dithiones [14]. Similarly as continuation of my previous work [15] [16] [17] [18] [19], for the

Table 1. Bactericidal activity expressed as inhibition zone in mm.

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Organism</th>
<th>Rhodopseudomonas</th>
<th>Bacillus cereus</th>
<th>Micrococcus luteus</th>
<th>E. coli (HD 701)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3a)</td>
<td>5</td>
<td>–</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(3b)</td>
<td>12</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(3c)</td>
<td>15</td>
<td>–</td>
<td>–</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>(3d)</td>
<td>7</td>
<td>5</td>
<td>17</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(3e)</td>
<td>6</td>
<td>17</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>(3f)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

*Done by Dr. Amal W. Danial, Botany & Microbiology Department, Faculty of science, Assiut University, Assiut 71526, Egypt.
following criss-cross cycloaddition (Scheme), substituted 1,4-diaza-1,3-butadienes (1a-f) were allowed to react with 2 equivalents of 1,4-naphthoquinone (2), one pot reaction in presence of ethanol or benzene and afforded bisindoletetrone derivatives (3a-f). The structure of the synthesized compounds was assigned by elemental and spectral analysis.

Huisgen [20] suggested that criss-cross reaction can be represented by series of two [3+2] cycloaddition steps.

Compound (4) was postulated as a key intermediate. The compounds produced satisfactory results for elemental and spectral analysis.

As for their antimicrobial properties, some compounds exhibited strong activity such as (3c) (against *Rhodopsedumonas fp.* & *E. coli* [HD701]), (3d) (against *Micrococcus luteus* & *E. coli*), and (3e) (against *Bacillus cereus*). Others showed remarkable activity such as (3a) (against *E. coli* [HD701]), (3b) (against *Micrococcus luteus* & *Rhodopsedumonas fp.*) while other compounds showed week or no potency (3f).

4. Conclusion

The title compounds are synthesized successfully through simple novel route and one pot reaction from substituted 1,4-diaza-1,3-butadienes and 1,4-naphthoquinone. These compounds also exhibited strongly to remarkable bactericidal activity against some tested bacteria.

References

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

- Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
- A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
- Providing 24-hour high-quality service
- User-friendly online submission system
- Fair and swift peer-review system
- Efficient typesetting and proofreading procedure
- Display of the result of downloads and visits, as well as the number of cited articles
- Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ijoc@scirp.org