Practical Stabilization for Uncertain Pseudo-Linear and Pseudo-Quadratic MIMO Systems

Laura Celentano
Università degli Studi di Napoli Federico II, Dipartimento di Informatica e Sistemistica, Napoli, Italy
Email: laura.celentano@unina.it

Received December 4, 2012; revised January 6, 2013; accepted January 14, 2013

ABSTRACT
In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo-quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. By using the concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances.

Keywords: Practical Stabilization; Linear and Nonlinear Uncertain Systems; Pseudo-Quadratic MIMO Uncertain System; Lyapunov Approach

1. Introduction
The problem of practical stability and stabilization for linear and nonlinear systems subject to disturbances and parametric uncertainties together with an efficient robust control has been in the past [1-10] one of the most research topics and nowadays remains actual and significant [11-21].

Indeed there exist many controlled or not systems linear but with uncertain parameters, uncertain pseudo-linear and with bounded coefficients, uncertain pseudo-quadratic and with bounded coefficients, having a bounded additional term, for which not always there exists an equilibrium state.

Regarding this, consider:
- the mechanical systems with not viscous friction and/or with revolute joints (e.g. robots),
- the electrical and/or electro-mechanical systems with ferromagnetic devices,
- many chemical, ecological, meteorological, biological and medical systems,
with possible disturbances and reference signals which are non standard (not polynomial or cosoidal).

For the above significant systems, it is important to design a control law such that, in a finite time interval, the state evolution, for all the initial conditions belonging to a specified compact set, is bounded and such that the evolution of the output (also the error signal) converges, with assigned minimum velocity, to chosen maximum values, that are bounded and not necessarily null.

In this paper a systematic method, in a more general framework with respect to the ones proposed in literature (see e.g. [1-5,8-10,13-18]), for the analysis and for the practical stabilization of a significant class of MIMO uncertain pseudo-linear and pseudo-quadratic systems, with additional bounded nonlinearity and/or bounded disturbances, is considered. In detail, by using the concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas and efficient algorithms to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances (see also [19-21]). Finally two significant examples of application, well showing the utility and the efficiency of the proposed results, are reported.

2. Problem Formulation and Preliminary Results
Consider the following class of uncertain quadratic mul-
tivariable systems

\[y^{(i)} = \hat{F}_i y^{(i-1)} + \hat{F}_{2i} y^{(i-2)} + \cdots + \hat{F}_n y \]

(1.1)

where: \(i = 1, 2, \ldots, \nu \), \(R^n \) is the output, \(u \in R^{n'} \) is the control input,
\(\mathbf{d}(t_1, y(t), \cdots, y^{(i-1)}; \mathbf{p}) \in R^n \) models possible external signals and/or particular nonlinearities of the system, \(\mathbf{p} \in P \), with \(P \) a compact set of \(R^n \), is the vector of the uncertain parameters, \(\hat{F}_i \{y(t), \cdots, y^{(i-1)}; \mathbf{p}\} \in R^{n\times n} \) and \(\hat{F}_{k,i} \{y(t), \cdots, y^{(i-1)}; \mathbf{p}\} \in R^{n\times n} \) are bounded matrices, continuous with respect to its arguments, and denote with \(\mathbf{g} \{y(t), \cdots, y^{(i-1)}; \mathbf{p}\} \in \mathcal{Y} \), where

\[\mathcal{Y} = \{ \mathbf{g}: \mathbf{g} \in [g^+, g^-] \times R^n \} \subset R^n \]

and such that \(|\mathbf{d} - \hat{\mathbf{d}}| \leq \delta \), where \(\delta \) is a constant.

Pose: \(n = \nu \cdot m \),

\[x = \begin{bmatrix} y \\ \vdots \\ y^{(i-1)} \end{bmatrix} \in R^n, \hat{F} = \begin{bmatrix} \hat{F}_v & \hat{F}_{v-1} & \cdots & \hat{F}_1 \end{bmatrix} \in R^{n\times n}, \]

(1.2)

and denote with \(\hat{F}_{j,i} \) the matrices whose \(m \) rows are respectively the \(i \)-th rows of the \(m \) matrices \(\hat{F}_{j,i} \).

Then, by controlling the system (1.1) with the following state feedback control law with a partial compensa-

\[u = -G^T \left[K_v \ K_{v-1} \cdots K_1 \right] x + \hat{F}_x + \left[x^T \hat{F}_{i} \right] x + \hat{d}, \]

(1.3)

it is easy to verify that the closed-loop system turns out to be

\[x = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix} \in R^n, \]

(1.4)

To develop a practical stabilization method for the system (1.4), in a more systematic and general framework, which allows to calculate in a simple manner a control law that guarantees a specified convergence velocity, the following notations, definitions and preliminary results are provided.

\[\| x \|_p = \sqrt{x^T P x}, V = \| x \| = \sqrt{x^T x}, \]

\[S_{P,\rho} = \{ x: \| x \|_p \leq \rho \}, C_{P,\rho} = \{ x: \| x \|_p = \rho \}, \]

where \(P \in R^{n\times n} \) is a symmetric and positive definite \((p.d.) \) matrix and \(C_{P,\rho} \) is a compact set.

Definition 1. Give the system (1.4) and a \(p.d. \) symmetric matrix \(P \in R^{n\times n} \), a first-order positive system

\[\hat{\rho} = f(\rho, \delta) = \eta(\rho), \]

where \(\rho(t) = |x(t)| \) and \(\delta \geq \| \mathbf{d} \| \), such that \(\mathcal{V}(t) \geq V(t) \) is said to be majorant system of the system (1.4).

Theorem 1. Consider the quadratic system

\[\hat{\rho} = \alpha_1 \rho + \alpha_2 \rho^2 + \beta \delta = \alpha_2 \rho^2 + \alpha_1 \rho + \alpha_0, \]

\[\alpha_0 < 0, \alpha_1, \beta \geq 0, \rho(0) = \rho_0 \geq 0, \delta \geq 0. \]

If \(\delta < \alpha_2^2/4 \alpha_1 \beta \), it is (see Figure 1).
\[
\lim_{t \to \infty} \rho(t) \leq \rho_1, \forall \rho_0 < \rho_2,
\]
where \(\rho_1, \rho_2, \rho_3 < \rho_2\), are the roots of the algebraic equation \(\alpha_0 \rho^2 + a_0 \rho + a_0 = 0\). Moreover for \(\delta = 0\) the practical convergence time \(t_{c_{\delta}}\) is given by (see Figure 2)

\[
t_{c_{\delta}} = \gamma \tau_t, \quad \tau_t = -1/\alpha_1, \quad \gamma = \ln \frac{20 - \rho_0/\rho_{20}}{1 - \rho_0/\rho_{20}},
\]
\[
\rho_{20} = -\alpha_1/\alpha_2,
\]
in which \(\tau_t\) is the time constant of the linearized of the system (1.6) and \(\rho_{20}\) is the upper bound of the convergence interval of \(\rho(t)\) for \(\delta = 0\), i.e. of the system (1.6) in free evolution.

Proof. The proof of (1.7) easily follows from Figure 1. Instead (1.8) easily derives by noting that the solution of (1.6) for \(d = 0\) is

\[
\rho(t) = \frac{\rho_{20}}{\rho_0} \left(1 + \rho_{20}/\rho_0 - 1\right)^{1/(\gamma \tau_t)}.
\]

In Figure 2 the evolution of \(\gamma\) as a function of \(\rho_{20}/\rho_0\) is reported. By analyzing Figure 2, note that for \(\rho_{20}/\rho_0 \leq 0.27\) it is \(\gamma \in [3, 3.3]\), i.e. \(t_{c_{\delta}} = 3 \tau_t\).

Theorem 2. The solution of the equation (1.6) with \(\alpha_1^2 - 4a_0 \alpha_2 > 0\)

\[
\rho = \frac{\rho_0 - \rho_1 f}{1 - f}, \quad f = \frac{\rho_0 - \rho_1 e^{\Delta \rho_{\gamma_2}}}{\rho_0 - \rho_2},
\]

where \(\rho_1, \rho_2, \rho_3 < \rho_2\), are the roots of the equation

\[
a_2 \rho^2 + a_0 \rho + a_0 = 0.
\]

Proof. From (1.6) it derives

\[
\frac{d\rho}{\rho^2 + a_0 \rho + a_0} = \frac{1}{\rho_1 - \rho_2} \left(\frac{1}{\rho - \rho_1} - \frac{1}{\rho - \rho_2}\right) d\rho
\]

\[
= a_2 dt,
\]

from which (1.10) easily follows.

Lemma 1. If \(P \in \mathbb{R}^{n \times n}\) is a symmetric and p.d. matrix, \(Q(x) \in \mathbb{R}^{n \times n}\) is a symmetric matrix, continuous with respect to \(x \in \mathbb{R}^n\), and \(g(x) \in \mathbb{R}^n\) is continuous with respect to \(x\), then \(\forall \rho \geq 0\) it is:

\[
\min_{x \in \mathcal{C}_P, P} x^T Q(x) x \geq \min_{x \in \mathcal{C}_P, P} \lambda_{\min}(Q(x) P^{-1}) \rho^2
\]

\[
\geq \min_{x \in \mathcal{C}_P, P} \lambda_{\min}(Q(x) P^{-1}) \rho^2
\]

\[
\max_{x \in \mathcal{C}_P, P} x^T g(x) \leq \max_{x \in \mathcal{C}_P, P} \sqrt{g(x)^T P^{-1} g(x)} \rho
\]

\[
\leq \max_{x \in \mathcal{C}_P, P} \sqrt{g(x)^T P^{-1} g(x)} \rho.
\]

Moreover, if \(Q(x)\) is linear with respect to \(x\) it is

\[
\min_{x \in \mathcal{C}_P, P} x^T Q(x) x \geq \min_{x \in \mathcal{C}_P, P} \lambda_{\min}(Q(x) P^{-1}) \rho^3
\]

\[
\geq \min_{x \in \mathcal{C}_P, P} \lambda_{\min}(Q(x) P^{-1}) \rho^3.
\]

More in general, if \(Q(x)\) is pseudo-linear with respect to \(x\) with bounded coefficients, i.e. if \(Q(x) = \sum_{i=1}^n Q_i(x) x_i\), where \(Q_i(x)\) are bounded, then

\[
\min_{x \in \mathcal{C}_P, P} x^T \left(\sum_{i=1}^n Q_i(x) x_i\right) x
\]

\[
\geq \min_{x \in \mathcal{C}_P, P, x \in \mathcal{C}_E} \lambda_{\min}(\sum_{i=1}^n Q_i(z) x_i P^{-1}) \rho^3
\]

\[
\geq \min_{x \in \mathcal{C}_P, P, x \in \mathcal{C}_E} \lambda_{\min}(\sum_{i=1}^n Q_i(z) x_i P^{-1}) \rho^3.
\]

Proof. Note that, if \(f(x) \in \mathbb{R}\) is a continuous function with respect to \(x \in \mathbb{R}^n\) and \(X \subset X_2\) are compact subsets of \(\mathbb{R}^n\), it is \(\min\ f(x) \geq \min\ f(x)\),

\[
\max\ f(x) \leq \max\ f(x).
\]

Moreover, since \(P\) is p.d., there exists a symmetric nonsingular matrix \(S\) such that \(P = S^2\). Hence, by posing \(z = S y\), it is
\[
\begin{align*}
\min_{x \in C_{\rho, p}} & \ x^T Q(x) x \\
\geq & \ \min_{y \in C_{\rho, p}, z \in C_{\rho, p}} y^T Q(x) y \\
= & \ \min_{z \in C_{\rho, p}, \lambda \in C_{\rho, \rho}} \lambda S^{-1} Q(x) S^{-1} z \\
= & \ \min_{z \in C_{\rho, p}, \lambda \in C_{\rho, \rho}} \lambda \min \left(S^{-1} Q(x) S^{-1} z \right) \\
= & \ \min_{z \in C_{\rho, p}, \lambda \in C_{\rho, \rho}} \lambda \min \left(Q(x) P^{-1} \right) \rho^2 \\
\geq & \ \min_{z \in C_{\rho, p}} \lambda \min \left(Q(x) P^{-1} \right) \rho^2,
\end{align*}
\]
and so (1.12) holds. Similarly
\[
\begin{align*}
\max_{x \in C_{\rho, p}} & \ x^T g(x) \\
\leq & \ \max_{y \in C_{\rho, p}, z \in C_{\rho, p}} y^T g(x) \\
= & \ \max_{z \in C_{\rho, p}, \lambda \in C_{\rho, \rho}} z^T S^{-1} g(x) \\
\leq & \ \max_{z \in C_{\rho, p}, \lambda \in C_{\rho, \rho}} \|z\| S^{-1} g(x) \\
= & \ \max_{z \in C_{\rho, p}} \sqrt{g(x)^T P^{-1} g(x)} \rho \\
\leq & \ \max_{z \in C_{\rho, p}} \sqrt{g(x)^T P^{-1} g(x)} \rho,
\end{align*}
\]
and hence (1.13). The inequalities (1.14) easily follow from the fact that, if \(Q(x) \) is linear with respect to \(x \), \(\|Q(x)\|_{\infty, p} = \|Q(x)\|_{\infty, \rho} \). The inequalities (1.15) analogously follow.

Remark 1. Clearly, if \(Q(x) \) and \(g(x) \) are independent of \(x \), (1.12) and (1.13) are valid with the equal sign. If \(Q(x) \) depends on \(x \), \(\min_{x \in C_{\rho, p}} x^T Q(x) x \) is quite difficult to compute because \(x^T Q(x) x \) has in general different points of relative maximum, of relative minimum and of “inflection”; moreover, the second and the third member of (1.12) (of (1.14) or of (1.15)) allow an easier computation of a lower bound on \(x^T Q(x) x \) proportional to \(\rho^2 \), as it will be shown later on. A similar talking is valid if \(g(x) \) depends on \(x \).

Lemma 2. Consider a p.d. matrix \(P \in R^{n \times n} \) and a matrix \(C \in R^{n \times m} \) with rank \(m \). If \(\|y\|_p \leq \rho \) then the smallest \(\alpha \) such that \(\|y\|_p \leq \alpha \|y\|_v \), where \(v = Cx \), is equal to \(\alpha = \sqrt{\lambda_{\max} \left(CP^{-1} C^T \right)} \).

Proof. Since \(P \) is p.d., by posing \(z = Sx \), where \(S \) is a symmetric nonsingular matrix such that \(P = S^2 \), then, in an equivalent way, the smallest \(\alpha \) such that \(\|y\|_p \leq \alpha \|y\|_v \), where \(v = Cx \), is equal to \(\alpha = \sqrt{\lambda_{\max} \left(CP^{-1} C^T \right)} \).
\[
\min_{i, c \in \mathbb{R}^{n_i \times n_i'}} \lambda_{\text{min}} \left((Q_0 + \pi_i Q_i) P^{-1} \right) = \min_{i, c \in \mathbb{R}^{n_i \times n_i'}} \left(\hat{x}^T Q_0 \hat{x} + \alpha_j \lambda_i \hat{x}^T Q_0 \hat{x} \right) = \min_{i, c \in \mathbb{R}^{n_i \times n_i'}} \left(\hat{c}_0 + \pi_i \hat{c}_1 \right) = \min \left(\hat{c}_0 + \pi_i \hat{c}_1, \hat{c}_0 + \pi_i \hat{c}_1 \right).
\]

From (1.20) the proof easily follows.

3. Main Result

Now the first main result, concerning the analysis of stability, can be stated.

Theorem 4. Give a symmetric p.d. matrix \(P \in \mathbb{R}^{n \times n} \). Then a majorant system of the system (1.4) is

\[
\dot{\rho} = \alpha_1 \rho + \alpha_2 \rho^2 + \beta \delta, \quad \nu = c \rho, \quad (1.21)
\]

in which:

\[
\alpha_1 = -\frac{1}{P_{12}} \min_{\scriptstyle \alpha, \rho, P_{12} \geq 0} \lambda_{\text{min}} \left(Q_1 P_{1}^{-1} \right),
\]

\[
\alpha_2 = -\frac{1}{P_{12}} \min_{\scriptstyle \alpha, \rho, P_{12} \geq 0} \lambda_{\text{min}} \left(\sum_{i=1}^{n} Q_2 x P_{i}^{-1} \right),
\]

\[
\beta = \sqrt{\lambda_{\text{min}} \left(B^T P B \right)},
\]

\[
c = \sqrt{\lambda_{\text{min}} \left(C P^{-1} C^T \right)},
\]

\[
\delta \geq \|\nu\|,
\]

where \(V_p \) and \(V_q \) are the sets of vertices of the hyper-rectangle \(\phi \) and of the hyper-rectangle \(\gamma \) respectively, and \(V_p^0 \) is the set of vertices of the hyper-rectangle of \(\mathbb{R}^n \) externally tangent to the hyper-ellipse \(\{ x \in \mathbb{R}^n : x^T P x = 1 \} \).

Proof. By choosing as “Lyapunov function” the quadratic form \(V = x^T P x = \|x\|^2 = \rho^2 \), for \(x \) belonging to a generic hyper-circumference \(C_{p,q} = \{ x : x^T P x = \rho^2 \} \), it is

\[
2 \rho \dot{\rho} \leq \max_{\scriptstyle \alpha, \rho, P_{12} \geq 0, x \in \mathbb{R}^n} \left(-x^T Q_1 x - x^T \left(\sum_{i=1}^{n} Q_2 x P_{i}^{-1} \right) x + 2 \rho^2 x^T P x \right).
\]

The proof easily follows from (1.23), Lemmas 1, 2 and Theorem 3.

The second main result, concerning the synthesis of the stabilizing control law, follows from Theorem 4.

Theorem 5.

Let \(p_a (\lambda) = \beta_0 \lambda^0 + \beta_1 \lambda^1 + \cdots + \beta_m \lambda^m \) be the characteristic polynomial of the low-pass Butterworth filter of order \(\nu \) with cutoff frequency \(\omega_0 = a \).

If in (1.3) it is posed

\[
[K_v K_{v-1} \ldots K_1] = [\beta, a^v I \beta(a^{-v-1} I \cdots \beta(a I)],
\]

in which \(I \) is the identity matrix of order \(m \), then a majorant system of the system (1.4) with respect to the norm \(\|\cdot\| \), with \(P = T_1 P \), where

\[
P_2 = (V^T V)^{-1},
\]

\[
V = \left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_1 & \lambda_2 & \ldots & \lambda_m \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_1^{v-1} & \lambda_2^{v-1} & \ldots & \lambda_m^{v-1}
\end{array} \right] = \frac{1}{\sqrt{v}} \lambda_{\text{max}}^{1/2},
\]

\[
T_0 = \left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & a^{v-1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array} \right] = \text{diag} \{ a^{v-1} I \},
\]

being \(\lambda_k = e^{\frac{\pi}{2} (1+2k-1)} \), \(k = 1, 2, \cdots, v \), the \(k \)-th root of \(p_a (\lambda) \) for \(a = 1 \), is

\[
\hat{\rho} = -a \gamma_{a1} \rho + \gamma_{a2} \rho^2 + \beta \delta, \nu = \frac{1}{\alpha} \rho,
\]

in which:

\[
\gamma_{a1} = \min_{\alpha, \rho, \beta \geq 0} \lambda_{\text{min}} \left(Q_{a1} P_{1}^{-1} \right), \quad \gamma_{a2} = -\min_{\alpha, \rho, \beta \geq 0} \lambda_{\text{min}} \left(\sum_{i=1}^{n} Q_{a2} x P_{i}^{-1} \right),
\]

\[
A_{a1} = \left[\begin{array}{cccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array} \right],
\]

\[
A_{a2} = \left[\begin{array}{cccc}
F_{1,1} & F_{1,2} & F_{1,3} & \ldots \\
F_{2,1} & F_{2,2} & F_{2,3} & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
F_{z,1} & F_{z,2} & F_{z,3} & \ldots \\
F_{z,1} & F_{z,2} & F_{z,3} & \ldots \\
F_{z,1} & F_{z,2} & F_{z,3} & \ldots
\end{array} \right],
\]

\[
A_{a2} = \frac{1}{a^v} \left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array} \right],
\]

\[
\beta = \sqrt{\lambda_{\text{max}} (n,n)} = 1.141, 2.236, 3.696, 6.236, \cdots, \]

\(n = 2, 3, 4, 5, \cdots \).

Copyright © 2013 SciRes.
Proof. By making the change of variable \(z = T x \), it is easy to prove that the system (1.4) becomes
\[
\dot{z} = a A_n z + \sum_{i=1}^{m} (A_{2i}) z + B d,
\]
\[
y = C_n z = [I/a^{-1} 0 \cdots 0] z. \tag{1.30}
\]
Moreover, note that the Butterworth eigenvalues \(\lambda_k \) have unitary magnitudes; hence all the main diagonal elements of the matrix \(V V^\top = P_1^{-1} \) are unitary. From this consideration, from (1.30), from Lemmas 2, 3 and Theorem 4, the proof easily follows.

Theorem 6. For \(a \to \infty \), the parameters \(\gamma_{1a} \) and \(\gamma_{2a} \) of the majorant system (1.26) turn out to be
\[
\lim_{a \to \infty} \gamma_{1a} = \hat{\gamma}_1 = \cos \frac{\nu - 1}{2\nu} \pi = \max_i (\text{Real}(\lambda_k)) = 0.7071, 0.5000, 0.3827, 0.3090, \ldots \ \text{for} \ \nu = 2, 3, 4, 5, \ldots
\]
\[
\lim_{a \to \infty} \gamma_{2a} = \hat{\gamma}_2 = -\min_{p \in \text{spec} (Q_1 P_1^{-1})} \sum_{i=1}^{m} Q_{2i} P_1^{-1}, \tag{1.31}
\]
\[
0 0 \cdots 0
\]
\[
\vdots \vdots \ddots \vdots
\]
\[
0 0 \cdots 0
\]
\[
0 0 \cdots F_{2,\nu}
\]
(1.32)

Proof. It is easy to verify that for \(a \to \infty \) the matrix \(V \) is the limit of the eigenvectors matrix of the matrix \(A_n \) (see (1.27)); hence it is that \(A_n = V \Lambda V^{-1} \),
\[
A_n^* = A_n = V^{-1} \Lambda^* V, \quad \Lambda = \text{diag} \{ \lambda_1, \cdots, \lambda_k \}, \cdots, \text{diag} \{ \lambda_\nu, \cdots, \lambda_\nu \}. \tag{1.33}
\]
\[
\lambda_{min} (Q_1 P_1^{-1})
\]
\[
= \lambda_{min} (-A_n^* - PA_n P^{-1})
\]
\[
= \lambda_{min} (-V^{-1} \Lambda V V^{-1} - V^{-1} A_n P^{-1} V V^{-1})
\]
\[
= \lambda_{min} (-V^{-1} \Lambda V V^{-1} - V^{-1} \Lambda V V^{-1}) = -\lambda_{max} (\Lambda^* + \Lambda),
\]
\[
\lim_{a \to \infty} A_{1i} = 0, i = 1, 2, \cdots, m (\nu - 1);
\]
\[
\lim_{a \to \infty} A_{2i} = 0, i = m (\nu -1) + 1, \cdots, m v. \tag{1.34}
\]

From (1.28) and (1.34) the expression (1.32) easily follows.

Remark 2. If \(m = 1 \) it is easy to prove that
\[
\lim_{a \to \infty} \gamma_{2a} = \hat{\gamma}_2 = \max_{\nu=1}^\infty \left| F_{2,\nu} \right|.
\]
\[
\gamma_{2a} = \lambda_{max} \left(\left(P_1^{-1} \right) /2 \right)
\]
\[
= 1.207, 1.618, 2.348, 3.618, \ldots, \nu = 2, 3, 4, 5, \ldots
\]
(1.35)

From Theorems 5 and 6 the following result derives.

Theorem 7. Consider the system (1.4) with \(K_1, K_2, \cdots, K_n \) provided from (1.24). If the design parameter \(a \) is big enough, from a practical point of view, the time constant \(\tau_i \) of the linearized of the majorant system (1.26) is inverse proportional to \(a \) and it coincides with the maximum time constant of the linearized of the system (1.4). More in detail, if \(a \) is large enough it turns out to be
\[
\tau_i = \frac{1}{a \gamma_i} \geq \frac{1}{\max (\text{Real} (\lambda_k))} \geq \frac{\tau_{\triangledown}}{a}, \tag{1.36}
\]
\[
\tau_{\triangledown} = 1.414, 2.000, 2.613, 3.236, \ldots, \nu = 2, 3, 4, 5, \ldots
\]

or, more in general, it is
\[
\| y(t) \| \leq \frac{g}{a^{\nu - 1}} \delta, \tag{1.37}
\]
(1.38)

Proof. (1.36) easily follows from (1.26), (1.31) and by noting that
\[
\lim_{a \to \infty} A_{2i} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I \\
-\beta_1 I & -\beta_1 I & -\beta_1 I & \cdots & -\beta_1 I \end{bmatrix}. \tag{1.39}
\]

The inequality (1.37) follows from (1.7), from the fact that if \(a \) is sufficiently large then \(\rho_1 \geq \beta \), from the second of (1.26) and from (1.29) and (1.31).

(1.38) analogously follows by taking into account that
\[
y^{(i)} = \dot{y} = [0 \ I \ \cdots \ 0] x, y^{(v)} = [0 \ 0 \ \cdots \ I] x. \tag{1.40}
\]

4. Examples

The following examples show the utility and the efficiency of the results stated in the previous sections.

Example 1. Consider the pseudo-linear uncertain
system
\[
y(t) = p_1 y(t) - (1 + p_1 \sin y) y(t) - p_2 y(t) + u(t) + d(t), \tag{1.41}
\]
where \(p_1 = p_2 = 1\% \pm 20\% \) and \(d(t, y, \dot{y}, \dot{y}, p_1, p_2) \leq \delta. \) By posing \(g_i = \sin y, \; \dot{g}_i = \dot{y}, \; \ddot{g}_i = \ddot{y}, \) and by applying Theorem 5, the majorant system of the system (1.41) controlled with the control law
\[
u(t) = (1 - a^2) y(t) + (1 + \sin y - 2a^2) \dot{y}(t) + (1 - 2a) \ddot{y}(t)
\]
turns out to be
\[
\dot{\rho} = -a \gamma_{\alpha} \rho + 2.236 \delta, \quad v = \frac{1}{a} \rho. \tag{1.42}
\]

In Figure 3 the value of \(\gamma_{\alpha} \) for \(\alpha \in [1, 20] \) is reported. It is significant to note that for \(\alpha \geq 6 \) it is \(\gamma_{\alpha} \geq 0.9517, \) i.e. \(\gamma_{\alpha} = 0.5 \) unless \(5\%, \) in accord with Theorem 7. For \(\alpha = 10 \) it is \(\gamma_{\alpha} = 0.4867; \) hence \(\tau_1 = 0.2054/10 = 0.2054s. \) Moreover, being \(\gamma_{\alpha} = 0, \) it is \(\rho_1 = 4.849/a \) and \(\rho_2 = \infty. \) Therefore, at “steady state”, \(\forall d: |d| \leq \delta, \) it is:
\[
|y| \leq 4.849 \delta/10^1 \equiv 4.472 \delta/a^1; \quad |\dot{y}| \leq 4.849 \delta/a^2 \quad \text{and} \quad |\ddot{y}| \leq 4.849 \delta/a^3.
\]

Example 2. Consider the system of Figure 4 described by the equation
\[
y(t) = \frac{1}{1000} \left[\begin{array}{c}
-p_1 & 0 \\
p_1 - p_3 & -p_3 \\
0 & -2p_5
\end{array} \right] y(t) + \frac{1}{1000} \left[\begin{array}{c}
-p_3 s g(\dot{y}_1) \\
p_5 s g(\dot{y}_1) - p_3 s g(\dot{y}_1 + \dot{y}_2) - 2p_5 s g(\dot{y}_1 + \dot{y}_2) \\
0
\end{array} \right] \dot{y}(t)
\]
\[
+ \frac{1}{1000} \left[\begin{array}{c}
0 \\
0 \\
-p_3 s g(\dot{y}_1 + \dot{y}_2)
\end{array} \right] \ddot{y}(t)
\]
\[
+ \frac{1}{1000} \left[\begin{array}{c}
1 \\
0 \\
-1 1
\end{array} \right] u(t) + \frac{1}{1000} \left[\begin{array}{c}
1 \\
0 \\
1 1
\end{array} \right] \delta(t)
\]
\[
|y| \leq 0.5177 \equiv 0.2 \times 2.326/a^2; \\
|\dot{y}| \leq 0.5177 \equiv 0.2 \times 2.326/a^3.
\tag{1.43}
\]

Figure 6 shows the values of \(\|y(t)\| \) and \(\|\dot{y}(t)\|, \)
obtained for \(p_1 = 5, \; p_2 = 1, \; p_3 = 5, \; p_4 = 1, \; p_5 = 1, \; \delta(t) \) and \(\delta(x) \) square waves of amplitude 1 and frequency 1.2 Hz, \(x_0 = [0.2 \; 0.2 \; 0 \; 0]^T, \; x_0 = [0 \; 0 \; 0.2 \; 0.2]^T. \)

This figure highlights that the proposed stabilization method is little conservative, as it can be easily verified by simulating the stabilized system for several initial conditions and numerous values of the parameters.

5. Conclusions

In this paper the problem of analysis and practical
stabilization of a significant class of MIMO nonlinear systems subject to parametric uncertainties, including linear and quadratic ones with an additional bounded nonlinearities and/or disturbances, has been approached. By using the concept of majorant system and via Lyapunov approach, new useful results, explicit formulas and efficient algorithms for designing state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, have been stated. These results have been proved that guarantee a specified convergence velocity of the linearized of the majorant system and a desired steady-state output for generic uncertainties and/or nonlinearities and/or bounded disturbances.

The utility and the efficiency of the these results have been shown with two illustrative example.

The presented results can be used to establish further new useful theorems for the tracking of trajectories for relevant MIMO systems, like e.g. the robots.

In this direction the research of the author is going on.

REFERENCES

