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ABSTRACT 

In the present paper, we prove some fixed point theorems of Hegedus contraction in some types of distance spaces, dis-
located metric space, left dislocated metric space, right dislocated metric space and dislocated quasi-metric metric space 
which are generalized metrics spaces where self-distances are not necessarily zero. 
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1. Introduction 

Fixed point theorems on metric spaces and generalized 
types of metric spaces have applications in the area of 
logic programming semantics (see, e.g., [1-3]). Dislo-
cated metrics are also known as metric domains in the 
context of domain theory [4]. The slightly less general 
notation of partial metrics was also studied in [5]. 

The definition of a distance space was introduced by P. 
Waszkiewick [6,7]. 

Definition 1.1 [6,7]. Let X be a set. A distance on X is 
a map d:X × X → [0, ∞). A pair (X, d) is called a dis-
tance space. 

Definition 1.2. Let (X, d) be a distance space. Con-
sider the following conditions: 

Following Waszkiewick [4], let X be a set. A distance 
on X is a map d:X × X → [0, ∞). A pair (X, d) is called a 
distance space. If d satisfies the following conditions: 

        1 , = 0DM d x x x X 

          2 , = , = 0 =DM d x y d y x x y

      3 ( , ) = ( , )DM d x y d y x

           4 , ,DM d x y d x z d z y  ,

           5 = if , = , = ,DM x y f d x x d x y d y y  

         6 , ,DM d x x d x y 

,             7 , , ,DM d x z d x y d y z d y y  

for all , ,x y z X . If d satisfies (DM1) – (DM4), then it is 
called a metric on X. If it satisfies conditions (DM2) – 

(DM4) it is called a dislocated metric [1,2] (or simply 
d-metric) on X. If it satisfies conditions (DM1), (DM2), 
and (DM4), It is called a quasi-metric (or simply 
q-metric) on X [8]. If it satisfies conditions (DM2)) and 
(DM4), It is called a dislocated quasi-metric (or simply 
dq-metric) on X [1,2]. If it satisfies conditions (DM3), 
(DM5), (DM6) and (DM7), It is called a partial metric on 
X [5]. 

It is clear that any partial metric is a d-metric and any 
d-metric is dq-metric. 

Hitzler and Seda gave an alternative proof of Mat-
thews’s Theorem [4] as follows. 

Theorem 1.1 [1]. Let (X, d) be a complete d-metric 
space and let f:X → X be a Banach contraction function. 
Then f has a unique fixed point. 

The plan of this paper is as follows. In Section 2, we 
introduce some definitions in distance spaces. In Section 
3, we establish some fixed point theorems in some types 
of distance space. In Section 4, we establish some fixed 
point theorems in some types of dislocated metric space. 

2. Some Basic Concepts and Results in  
Distance Spaces 

In the following we proceed with definitions which are 
needed for our results in a distance space. As it turns out, 
these notions can be carried over directly from conven-
tional metrics. 

Definition 2.1. A sequence (xn) in a distance space (X, 
d) ld-converges (resp. rd-converges, d-converges) to 
x X  if limn → ∞d(xn, x) = 0 (resp. limn → ∞d(xn, x) = 0, 
limn → ∞d(xn, x) = limn → ∞d(x, xn) = 0). In this case, x is 
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called the ld-limit (resp. rd-limit, d-limit) of the se-
quence (xn). 

Is is obvious that a d-limit of a sequence (xn) is ld- 
limit and rd-limit but the converse may not be true. 

Definition 2.2. A sequence (xn) in a distance space (X, 
d) is called Cauchy if .  , , =limm n m nd x x 0

Definition 2.3. A distance space (X, d) is called ld- 
complete (resp. rd-complete, d-complete) if every Cau- 
chy sequence in it is ld-convergent (resp. rd-convergent, 
d-convergent). 

Definition 2.4. Let (X, d1) and (Y, d2) be distance 
spaces. Then f:X → Y is sequentially l-continuous if 

0x X  , 0  ,  such that   > 0 

        1 0 2 0, < , <d x x d f x f x    . 

Definition 2.5. Let (X, d1) and (Y, d2) be distance 
spaces. Then f:X → Y is sequentially r-continuous if 

0x X  , 0  ,  such that    > 0 

        1 0 2 0, < , <d x x d f x f x   . 

We state the following lemmas without proof. 
Lemma 2.1. Let (X, d1) and (Y, d2) be distance spaces. 

A function f:X → Y is sequentially ld-continuous (resp. 
rd-continuous, d-continuous) if and only if for each se-
quence (xn) which is ld-convergent (resp. rd-convergent, 
d-convergent) to 0x X , the sequence (f(xn)) is ld- 
convergent (resp. rd-convergent, d-convergent) to 
 0f x Y . 
Lemma 2.2. Let (X, d1) and (Y, d2) be distance spaces. 

Then f:X → Y is sequentially d-continuous if f is sequen-
tially ld-continuous and sequentially rd-continuous. 

The following counterexample illustrates the reverse 
of Lemma 2.2 need not be true. 

Counterexample 2.1. Let d:N × N → [0, ∞) be de-
fined by: 

   1
,1 = 1d x x N

x
   , 

d(x, y) = 2, x N  ,  1y N  , d(1, 1) = 2. 
Let f:N × N defined by f(x) = x, , f(1) = 2. 

Since (xn) ( n ) converges to 1 but (f(xn) 
does not converges to f(1), then f is not sequentially 
l-continuous. But f is sequentially d-continuous. 

 1x N  
1 =x n n N  

Now, we give the following lemma without proof. 
Lemma 2.4. Every subsequence of ld-convergent (resp. 

rd-convergent, d-convergent) sequence to x0 is 
ld-convergent (resp. rd-convergent, d-convergent) to x0. 

It is obvious that the converse of Lemma 2.4 may not 
be true. 

Definition 2.6. Let (X, d) be a distance space. Let N 
denote the set of positive integers and  0 = 0N N  . 
For any set  the diameter of the set Y is defined 
by  and  

Y X
sup d = , : ,diamY x y x y Y

  0:kO x f x k N  

is the f-orbit of x. The point x X  is called regular 
(f-regular) if  diamO x   . 

A function f:(X, d) → (X, d) is called a Hegedus con-
traction [9] if there exists 0 ≤ λ ≤ 1 such that 

 
 

   

2 2

,

diam , , , , , ,

= diam

d fx fy

x y fx fy f x f y

O x O y







  

 , 

where x X  , x is f-regular. 
Lemma 2.2. Let (X, d) be a distance space. 

If f:(X, d) → (X, d) is a Hegedus contraction function, 
then for any n N  and ,x y X , 

     ,n n nd f x f y O x O y    . 

Proof. Since 

    1 1,k h n nf x f y O f x O f y     

where k ≥ n – 1, h ≥ n – 1, 

    2 2, diamk h n nd f x f y O f x O f y       ,  

then 

       
  

   

1 1

2 2

, diam

diam

diam .

n n n n

n n

n

d f x f y O f x O f y

O f x O f y

O x O y







 

 

   
   

   




2

 

3. Fixed Point Theorems in Distance Spaces 

In this section, we introduce some fixed point theorems 
in distance space. 

Definition 3.1. A distance space (X, d) is called an 
ld-Hausdorff (resp. rd-Hausdorff, d-Hausdorff) space 
iff the ld-limt (resp. rd-limt, d-limt) of ld-convergent 
(resp. rd-convergent, d-convergent) sequence is unique. 
Such that x X  ,   diam <O x  . 

Lemma 3.1. Let (X, d) be a distance space such that 
x X  ,   diam <O x  . If a function f:X → X is a 

Hegedus contraction, then (fn(x0) is a Cauchy sequence 
for each 0x X . 

Proof. Choose any 0x X , for any integer 
 0r N  . By lemma 2.2, 

    
    
 

0 0

0 0

0

,

diam

= diam

n n r

n r

n

d f x f x

O x O f x

O x







    . 

The last term tends to zero as n tends to infinity. Also, 
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we proceed similarly as above and obtain 

    
   

 

0 0

0 0

0

,

diam

= diam

n r n

n r

n

d f x f x

O f x O x

O x







 

 . 

The last term tends to zero as n tends to infinity. Thus, 
(fn(x0) is a Cauchy sequence. 

Theorem 3.1. Let (X, d) be a ld-Hausdorff ld-complete 
distance space and a function f:X → X be a ld-continuous 
Hegedus contraction mapping such that x X  , x is 
f-regular. Then f has a fixed point. 

Proof. From Lemma 3.1, (fn(x0) is a Cauchy sequence. 
Since (X, d) is ld-complete distance space, then (fn(x0) is 
ld-convergent, say to x X . From the ld-continuity of 
the mapping f, (fn + 1(x0)) ld-converges to f(x). From Lem- 
ma 2.1, (fn + 1(x0) ld-converges to x. Since (X, d) is 
ld-Haus- dorff, then f(x) = x. 

In a similar manner of Theorem 3.1, we can prove the 
following theorems. 

Theorem 3.2. Let (X, d) be a rd-Hausdorff rd-com- 
plete distance space and a function f:X → X be a rd-con- 
tinuous Hegedus contraction mapping such that x X  , 
x is f-regular. Then f has a fixed point. 

Theorem 3.3. Let (X, d) be a d-Hausdorff d-complete 
distance space and a function f:X → X be a d-continuous 
Hegedus contraction mapping such that x X  , x is 
f-regular. Then f has a fixed point. 

4. Fixed Point Theorems in Types of  
Dislocated Metric Spaces 

In this section, we introduce the concept of left dislo-
cated metric spaces and right dislocated metric spaces. 
Also, we state and prove some fixed point theorems in 
these spaces. Furthermore, we prove fixed point theorem 
in dislocated quasi-metric spaces and in dislocated metric 
spaces. 

Definition 4.1. A left dislocated metric (simply 
ld-metric) is a distance d on a set X satisfying the fol-
lowing axioms, for all , ,x y z X , 

(LD1) if  then x = y;    , = , = 0d x y d y x

      (LD2) .     , ,d x y d z x d z y  ,



Lemma 4.1. ld-limits in ld-metric spaces are unique. 
Proof. Let x and y be ld-limits of the sequence (xn). By 

property (LD2), it follows that  

     , , ,n nd x y d x x d x y  0 n  as . 

Hence, d(x, y) = 0. In a similar way, one can deduce that 
d(y, x) = 0. So, we obtain from Property (LD1) that x = y. 

Theorem 4.1. Let (X, d) be a ld-complete ld-metric 
space and a function f:X → X be ld-continuous Hegedus 

contraction function such that x X  , x is f-regular. 
Then f has a fixed point. 

Proof. Existence. From Lema 3.1, (fn(x0)) is a Cauchy 
sequence. Since (X, d) is ld-complete ld-metric then 
(fn(x0)) ld-convergent, say to x, f is ld-continuous and so 
from Lemmas 2.1 and 4.1,  

    
 

0

1
0

= lim

= lim

=

n
n

n
n

f x f f x

f x

x




 . 

Uniqueness. Suppose that there are two fixed points x 
and y. Then f(x) = x, f(y) = y and 

      
   

 
 

        

2 2 3 3

, = ,

diam

= diam , , , , , , , ,

= diam , , , , , , , ,

= max , , , , , , , .

d x y d f x y

O x O y

x y fx fy f x f y f x f y

x y x y x y x y

d x y d y x d x x d y y







   





 

If max{d(x, y), d(y, x), d(x, x), d(y, y)} is d(x, y) or d(y, 
x) or d(x, x) or d(y, y), then one can deduce that d(x, y) = 
d(y, x) = d(x, x) = d(y, y) = 0. Hence from (LD1), x = y. 

Definition 4.2. A right dislocated metric (simply 
rd-metric) is a distance d on a set X satisfying the fol-
lowing axioms, for all , ,x y z X , 

(RD1) if    , = , = 0d x y d y x  then x = y; 

(RD2)     , ,d x y d x z d y z  , . 

In a similar proof of Lemmas 4.1, we give the follow-
ing lemmas: 

Lemma 4.2. rd-limits in rd-metric spaces are unique. 
Lemma 4.3. d-limits in dq-metric spaces are unique. 
Lemma 4.4. d-limits in d-metric spaces are unique. 
In a similar manner of Theorem 4.1, one can have the 

following theorems. 
Theorem 4.2. Let (X, d) be a rd-complete rd-metric 

space and a function f:X → X be rd-continuous Hegedus 
contraction function such that x X  , x is f-regular. 
Then f has a fixed point. 

Theorem 4.3. Let (X, d) be a d-complete dq-metric 
space and a function f:X → X be d-continuous Hegedus 
contraction function such that x X  , x is f-regular. 
Then f has a fixed point. 

Theorem 4.4. Let (X, d) be a d-complete d-metric 
space and a function f:X → X be d-continuous Hegedus 
contraction function such that x X  , x is f-regular. 
Then f has a fixed point. 
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