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ABSTRACT 
In this work, we present an account of our recent results on applications of rough mereology to problems of 1) know-
ledge granulation; 2) granular preprocessing in knowledge discovery by means of decision rules; 3) spatial reasoning in 
multi-agent systems in exemplary case of intelligent mobile robotics. 
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1. Introduction the Tool: Rough Mereology 
Rough Mereology (RM, for short) is a paradigm in the 
domain of Approximate Reasoning, which is an exten- 
sion of Mereology, see [1-3]. RM is occupied with a 
class of similarity relations among objects which are ex- 
pressed as rough inclusions, see [4-8]. A rough inclusion 
is a ternary predicate , , )x y rµ（ , read as: The object x is a 
part in object y to a degree of r′ . For a detailed dis- 
cussion of rough inclusions along with an extensive his- 
toric bibliography, see [8]. 

Rough inclusions can be induced from continuous t- 
norms, see [8,9] whose classical examples are  

( ) { }( )
( ) ( )
( ) { }( )

, = max 0, + 1 the Lukasiewicz -norms ;

, the product -norm ;

, min , the minimum -norm .

L x y x y t
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Rough inclusions can be obtained from residual implica-
tions T⇒  cf. [9], induced by continuous t-norms as 

( ){ }max : ,Tx y z T x z y⇒ = ≤         (1) 

Then, 

( ), ,T Tx y r x y rµ ⇔ ⇒ ≥             (2) 

is a rough inclusion. A particular case of continuous t- 
norms are Archimedean t-norms which satisfy the ine- 
quality ( ),T x x x<  for each ( )0,1x∈ . It is well- 
known, cf. [8,9], that each Archimedean t-norm T admits 
a representation 

( ) ( ) ( )( ), ,T T TT x y g f x f y= +         (3) 

where the function [ ]: 0,1Tf R→  is continuous de-
creasing with ( )1 0Tf =  and [ ]: 0,1Tg R →  is the 

pseudo-inverse to fT, i.e., T Tg f id= . There are two 
basic Archimedean t-norms: L and P. Their representa- 
tions are 

( ) ( )1L Lf x x g x= − =             (4) 

and 

( ) ( ) ( )exp ; lnP Pf x x g x x= − = −     (5) 

For an Archimedean t-norm T, we define the rough in-
clusion µT on the interval [0,1] by means of 

( ) ( ), ,T
Tx y r g x y rµ ⇔ − ≥        (6) 

Specific recipes are 

( ), , 1L x y r x y rµ ⇔ − ≤ −          (7) 

and 

( ), ,P x y r x y rµ ⇔ − ≤            (8) 

Both residual and Archimedean rough inclusions sa-
tisfy the transitivity condition, see [8] 

(Trans) if ( ) ( ), , , , ,x y r y z sµ µ  then ( )( ), , ,x z T r sµ  

An important domain where rough inclusions play a 
dominant role in our mining of knowledge is the realm of 
information/decision systems in the sense of Pawlak, cf., 
[8,10]. For a recent view on information systems in a 
broader perspective of applications, see [11]. We will 
define information rough inclusions denoted with a ge- 
neric symbol Iµ . We recall that an information system 
(a data table) is represented as a pair ( ),U A  where U is 
a finite set of objects and A is a finite set of attributes; 
each attribute a: U V→  maps the set U into the value 
set V. A decision system adds to the set A of attributes an 
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attribute called decision d not in A. For objects u, v the 
discernibility set ( ),DIS u v  is defined as 

( ) ( ) ( ){ }, :DIS u v a A a u a v= ∈ ≠        (9) 

For a rough inclusion of the form µT, we define a 
rough inclusion I

Tµ  by means of 

( )
( ),

, ,I
T T

DIS u v
u v r g r

A
µ

 
⇔ ≥  

 
      (10) 

Then, I
Tµ  is a rough inclusion with the associated in- 

gredient relation of identity and the part relation empty. 
For the Łukasiewicz t-norm, the rough inclusion I

Lµ  is 
given by means of the formula, cf. [8] 

( )
( ),

, , 1I
L

DIS u v
u v r r

A
µ ⇔ − ≥         (11) 

We introduce the set ( ) ( ), , .IND u v A DIS u v= −  With 
its help a new form of (11) is 

( )
( ),

, ,I
L

IND u v
u v r r

A
µ ⇔ ≥           (12) 

Formula (12) witnesses that reasoning based on the 
rough inclusion I

Lµ  is the probabilistic one. Rough in- 
clusions of type I

Lµ  satisfy the transitivity condition 
(Trans) and are symmetric. Formula (12) can be abstrac- 
ted for set and geometric domains. For finite sets A, B, 
we let 

( ), ,S A B
A B r r

A
µ ⇔ ≥



            (13) 

where X  denotes the cardinality of the set X. For bound- 
ed measurable sets A, B in an Euclidean space 

( ), ,G A B
A B r r

A
µ ⇔ ≥



           (14) 

defines a rough inclusion µG, where X  is the area 
(Lebesgue measure) of X. Both µS and µG are symmetric 
but not transitive. Default value is 1 in case A is empty or 
of measure 0. 

2. Granulation of Knowledge 
Granular computing goes back to Lotfi A. Zadeh and its 
idea lies in aggregating objects with respect to a chosen 
similarity measure into “granules” of satisfactorily simi- 
lar objects, see [5,6,8,12,13]. 

For a given rough inclusion μ, the granule ( ),g u rµ  
of the radius r about the center u is defined as the class of 
property ,u r

µΦ  

( ) ,, u rg u r Cls µ
µ = Φ             (15) 

where 

( ) ( ), , ,u r v v u rµ µΦ ⇔          (16) 

Hence, an object v belongs in the granule ( ),g u rµ  if 
and only if ( ), ,v u rµ . 

For the exemplary information system in Table 1 with 
attributes 1, 2, 3, 4a a a a , and objects u1 to u9, we can 
compute granules with respect to, for instance, I

Lµ . Ta- 
ble 2 shows the values of sets ( )7,IND u v  for 7v u≠ ; 
the set ( )7, 7IND u u  is omitted as it includes all attrib- 
utes. 

Clearly, granules of all radii between 0 and 1 about all 
objects in a given universe U, provide a quasi-metric 
topology on U. 

3. Mereogeometry 
Quasi-metric topology mentioned above may be applied 
in the build-up of mereogeometry, cf. [8,14,15]. Elemen- 
tary geometry was defined by Tarski as a part of Euclid- 
ean geometry which can be described by means of 1st 
order logic. There are two main aspects in formalization 
of geometry: one is metric aspect dealing with the dis- 
tance underlying the space of points which carries ge- 
ometry and the other is affine aspect taking into account 
linear relations. In the Tarski axiomatization for 2- and 
3-dimensional elementary geometry, recalled in [8], the 
metric aspect is expressed as a relation of equidistance (a 
congruence) and the affine aspect is expressed by means 
 

Table 1. An information system A. 

 a1 a2 a3 a4 

u1 1 0 0 0 

u2 0 1 1 0 

u3 1 1 0 0 

u4 1 1 1 0 

u5 0 0 0 1 

u6 0 1 1 1 

u7 1 1 0 1 

u8 0 1 0 1 

u9 1 1 1 1 

 
Table 2. Sets ( ),u vIND 7  for the system A. 

u1 1, 3, 4a a a  

u2 2a  

u3 1, 2, 3a a a  

u4 1, 2a a  

u5 3, 4a a  

u6 2, 4a a  

u8 2, 3, 4a a a  

u9 1, 2, 4a a a  
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of the betweenness relation. The only logical predicate 
required is the identity “=”. Equidistance relation de- 
noted ( ), , ,Eq x y u z  (or, as a congruence: xy uz∼ ) 
means that the distance from x to y is equal to the dis-
tance from u to z (pairs x, y and u, z are equidistant). 
Betweenness relation is denoted ( ), ,B x y z  (x is be- 
tween y and z). Van Benthem [16] took up the subject 
proposing a version of betweenness predicate based on 
the nearness predicate and suited, hypothetically, for Eu- 
clidean spaces. We are interested in introducing into the 
mereological world defined by µ  of a geometry in 
whose terms it will be possible to express spatial rela-
tions among objects. We first introduce a notion of a dis-
tance κ , induced by a rough inclusion µ , 

( ) ( ){ } ( ){ }{ }, min max , , ,max , ,r sX Y X Y r Y X sκ µ µ= (17) 

Observe that the mereological distance differs essen- 
tially from the standard distance: the closer are objects, 
the greater is the value of ( ): , 1X Yκ κ =  means X = Y 
whereas ( ), 0X Yκ =  means that X,Y are either exter- 
nally connected or disjoint, no matter what is the Euclid- 
ean distance between them. We use κ  to define in our 
context the relation N of nearness proposed in [16]: 

( ) ( ) ( ), , , ,N X U V X U V Uκ κ⇔ >      (18) 

Here, ( ), ,N X U V  means that X is closer to U than V 
is to U. We introduce a betweenness relation in the sense 
of Van Benthem TB modeled on betweenness proposed in 
[16]: 

( )
( ) ( )

, ,

, , , ,
BT Z U V

W Z W N Z U W N Z V W⇔∀ ⋅ = ∨ ∨  
  (19) 

The principal example bearing, e.g., on our approach 
to robot control deals with rectangles in 2D space regu- 
larly positioned, i.e., having edges parallel to coordinate 
axes. We model robots (which are represented in the 
plane as discs of the same radii in 2D space) by means of 
their safety regions about robots; those regions are mod- 
eled as squares circumscribed on robots. One of advan- 
tages of this representation is that safety regions can be 
always implemented as regularly positioned rectangles. 
Given two robots a, b as discs of the same radii, and their 
safety regions as circumscribed regularly positioned rec- 
tangles A, B, we search for a proper choice of a region X 
containing A and B with the property that a robot C con- 
tained in X can be said to be between A and B. In this 
search we avail ourselves with the notion of betweenness 
relation TB. 

Taking the rough inclusion Gµ  defined in (14), for 
two disjoint rectangles A,B, we define the extent, 

( )ext ,A B , of A and B, as the smallest rectangle (the 
convex hull) containing the union A B . Then we have 
the claim: the only object between C and D in the sense of 

the predicate TB is the extent ( )ext ,C D  of C and D. 
For a proof, as linear stretching or contracting along an 

axis does not change the area relations, it is sufficient to 
consider two unit squares A, B of which A has ( )0,0  as 
one of vertices whereas B has ( ),a b  with , 1a b >  as 
the lower left vertex (both squares are regularly posi- 
tioned). 

Then the distance κ between the extent ( )ext ,A B  
and either of A, B is ( )( )1 1 1a b+ + . For a rectangle 

[ ] [ ]: 0, 0,R x y×  with x in ( ), 1a a + , y in ( ), 1b b + , we 
have that 

( ) ( )( ) ( ), ,R A x a y b xy R Bκ κ= − − =   (20) 

For ( ) ( )( ),x y x a y b xyΦ = − − , we find that 

( ) ( )2 1 0x a x b y∂Φ ∂ = • − >          (21) 

and, similarly, 0y∂Φ ∂ > , i.e., Ф is increasing in x, y 
reaching the maximum when R becomes the extent of A, 
B. 

We return to this result when we discuss planning and 
navigation problems in behavioral robotics for teams of 
autonomous mobile robots. 

4. Rough Mereology in Behavioral Robotics 
Planning is concerned with setting a trajectory for a robot 
endowed with some sensing devices which allow it to 
perceive the environment in order to reach by the robot a 
goal in the environment at the same time bypassing ob- 
stacles. 

A method of potential field, see [17] consists in con- 
structing a potential field composed of attractive poten- 
tials for goals and repulsive potentials for obstacles. In 
[14,15,18] a mereological potential field planning meth- 
od was proposed. Classical methodology of potential 
fields works with integrable force field given by formu- 
las of Coulomb or Newton which prescribe force at a 
given point as inversely proportional to the squared dis- 
tance from the target; in consequence, the potential is 
inversely proportional to the distance from the target. 

The basic property of the potential is that its density 
(=force) increases in the direction toward the target. We 
observe this property in our construction. We apply the 
geometric rough inclusion 

( ), ,G x y r x y x rµ ⇔  ≧        (22) 

where x  is the area of the region x. In our construc- 
tion of the potential field, region will be squares: robots 
are represented by squares circumscribed on them (sim- 
ulations were performed with disk-shaped Roomba ro- 
bots, the intellectual property of iRobot.Inc.). 

Geometry induced by means of a rough inclusion can 
be used to define a generalized potential field: the force 
field in this construction can be interpreted as the density 
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of squares that fill the workspace and the potential is the 
integral of the density. We present now the details of this 
construction. 

We construct the potential field by a discrete construc- 
tion. The idea is to fill the free workspace of a robot with 
squares of fixed size in such a way that the density of the 
square field (measured, e.g., as the number of squares 
intersecting the disc of a given radius r centered at the 
target) increases toward the target. To ensure this prop- 
erty, we fix a real number, the field growth step in the 
interval (0, square edge length); in our exemplary case 
the parameter field growth step is set to 0.01. The collec- 
tion of squares grows recursively with the distance from 
the target by adding to a given square in the ( )1k + -th 
step all squares obtained from it by translating it by k• 
field growth step (with respect to Euclidean distance) in 
basic eight directions: N, S, W, E, NE, NW, SE, SW (in 
the implementation of this idea, the floodfill algorithm 
with a queue has been used, see [18]. Once the square 
field is constructed, the path for a robot from a given 
starting point toward the target is searched for. The idea 
of this search consists in finding a sequence of way- 
points which delineate the path to the target. Way-points 
are found recursively as centroids of unions of squares 
mereologically closest to the square of the recently found 
way-point. In order to define the potential of the rough 
mereological field, let us consider how many generations 
of squares will be centered within the distance r from the 
target. Clearly, we have 

2d d kd r+ + + ≤            (23) 
where d is the field growth step, k is the number of gen- 
erations. Hence, 

( )2 1 2k d k k d r≤ + ≤          (24) 

and thus 

( )1 2  k r d≤                   (25) 

The potential ( )V r  can be taken as 1 2r . The force 
field ( )F r  is the negative gradient of ( )V r , 

( ) d 1
d
VF r r
r

= ∼             (26) 

Hence, the force decreases with the distance r from the 
target slower than traditional Coulomb force. It has ad- 
vantages of slowing the robot down when it is closing on 
the target. Parameters of this procedure are: the field 
growth step set to 0.01, and the size of squares which in 
our case is 1.5 times the diameter of the Roomba robot. 

A view of mereological potential field is given in Fig- 
ure 1. 

A robot should follow the path proposed by planner 
shown in Figure 2. 

 
Figure 1. Mereological potential field. 

 

 
Figure 2. Paths planned for robots to the goal. 

Rough Mereological Approach to Robot  
Formations 
We recall that on the basis of the rough inclusion μ, and 
mereological distance κ, geometric predicates of nearness 
and betweenness, are redefined in mereological terms. 
Given two robots a, b as discs of same radii, and their 
safety regions as circumscribed regularly positioned rec- 
tangles A, B, we search for a proper choice of a region X 
containing A and B with the property that a robot C con- 
tained in X can be said to be between A and B. We recall 
that the only object X with these property is the extent 

( )ext ,A B , i.e., the minimal rectangle containing the 
union A B , i.e., the convex hull of the union A B . 
For details of the exposition which we give now, please 
consult [19,20]. For robots a, b, c, we say that the robot b 
is between robots a and c, in symbols 

( )between bac                  (27) 

in case the rectangle ( )ext b  is contained in the extent 
of ( ) ( )ext ,exta c , i.e., 

( ) ( ) ( )( )ext ext ext ,extb a c⊆       (28) 

This allows as well for a generalization of the notion 
of betweenness to the notion of partial betweenness 
which models in a more realistic manner spatial relations 
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among a, b, c; we say in this case that the robot b is 
between robots a and c to a degree of at least r, in 
symbols, 

( )between degr bac ,               (29) 

i.e., 

( ) ( ) ( )( )( )ext ,ext ext ,extG b a c rµ ≧    (30) 

For a team of robots, 
( ) { }1, 2, , 1, 2, ,T T r r rn r r rn= =  , an ideal formation 

IF on T is a betweenness relation (between...) on the set T 
of robots. In implementations, ideal formations are rep- 
resented as lists of expressions of the form 

( )between 0 1 2r r r                (31) 

indicating that the object r0 is between r1, r2, along with 
a list of expressions of the form 

( )not between 0 1 2r r r            (32) 

indicating triples which are not in the given betweenness 
relation. To account for dynamic nature of the real world, 
in which due to sensory perception inadequacies, dy- 
namic nature of the environment, etc., we allow for some 
deviations from ideal formations by allowing that the 
robot which is between two neighbors can be between 
them to a degree in the sense of (29). This leads to the 
notion of a real formation. For a team of robots, 

( ) { }1, 2, , 1, 2, ,T T r r rn r r rn= =  , a real formation 
RF on T is a betweenness to degree relation (between- 
deg...) on the set T of robots. In practice, real formations 
will be given as a list of expressions of the form, 

( )between deg 0 1 2r r rδ         (33) 

indicating that the object r0 is to degree of δ in the extent 
of r1, r2, for all triples in the relation (between—deg...), 
along with a list of expressions of the form, 

( )not between 0 1 2r r r          (34) 

indicating triples which are not in the given betweenness 
relation. 

Description of formations, as proposed above, can be a 
list of relation instances of large cardinality, cf., exam- 
ples below. The problem can be posed of finding a mi- 
nimal set of instances sufficient for describing a given 
formation, i.e., implying the full list of instances of the 
relation ( )between . This problem turns out to be NP- 
hard, see [20]. To describe formations we have pro- 
posed a language derived from LISP-like s-expressions: 
a formation is a list in LISP meaning with some restrict- 
tions that delimit our language. We will call elements of 
the list objects. Typically, LISP lists are hierarchical 
structures that can be traversed using recursive algo- 
rithms. We assume that top-level list (a root of whole 
structure) contains only two elements where the first 

element is always a formation identifier (a name). For 
instance, 

(formation1(some—predicate param1... paramN)) 
For each object on a list (and for a formation as a 

whole) an extent can be derived and in facts, in most 
cases only extents of those objects are considered. We 
have defined two possible types of objects: 1) Identifier: 
robot or formation name (where formation name can 
only occur at top-level list as the first element); 2) 
Predicate: a list in LISP meaning where first element is 
the name of given predicate and other elements are 
parameters; number and types of parameters depend on 
given predicate. Minimal formation should contain at 
least one robot. For example, 

(formation2 roomba0) 
To help understand how predicates are evaluated, we 

need to explain how extents are used for computing rela- 
tions between objects. Suppose we have three robots 
(roomba0, roomba1, roomba2) with roomba0 between 
roomba1 and roomba2 (so the ( )between  predicate 
is satisfied). We can draw an extent of this situation as 
the smallest rectangle containing the union 
roomba1 roomba2  oriented as a regular rectangle, i.e., 
with edges parallel to coordinate axes. This extent can be 
embedded into bigger structure: it can be treated as an 
object that can be given as a parameter to predicate of 
higher level in the list hierarchy. For example, cf. Figure 
3, 
(formation3 (between (between roomba0 roomba1 room- 
ba2) roomba3 roomba4)) 

We can easily find more than one situation of robots 
that fulfill this example description. That is one of the 
features of our approach: one s-expression can describe 
many situations. This however makes very hard to find 
minimal s-expression that would describe already given 
arrangement of robots formation (as stated earlier in this 
chapter, the problem is NP-hard). Typical formation des- 
cription may look like below, see [19], 
 

 
Figure 3. Extents of roombaTM robots. 
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(cross 
(set 

(max—dist 0.25 roomba0 (between roomba0 room- 
ba1 roomba2)) 
(max—dist 0.25 roomba0 (between roomba0 room- 
ba3 roomba4)) 

(not—between roomba1 roomba3 roomba4) 
(not—between roomba2 roomba3 roomba4) 
(not—between roomba3 roomba1 roomba2) 
(not—between roomba4 roomba1 roomba2) 
) 
) 
This is a description of a formation of five Roomba 

robots arranged in a cross shape. The max-dist relation is 
used to bound formation in space by keeping all robots 
close one to another. We show a screen-shot of robots 
(submittted by Dr Paul Osmialowski) in the initial for- 
mation of cross-shape in a crowded environment, see 
Figures 4 and 5. These behaviors witness the flexibility 
of our definition of a robot formation: first, robots can 
change formation, next, as the definition of a formation is 
 

 
Figure 4. Trails of robots in the line formation through the 
passage. 
 

 
Figure 5. Trails of robots in the restored cross formation 
after passing through the passage. 

relational, without metric constraints on robots, the for- 
mation can manage an obstacle without losing the pre- 
scribed formation (though, this feature is not illustrated 
in figures in this chapter). 

5. Granular Classifiers 
We recall that for a decision system ( ), ,U A d  with the 
decision d, a decision rule is an implication 

( ) ( ): a B ar a v d v∈∧ = ⇒ =        (35) 

where B A  is a set of attributes, va is a value of the 
attribute a; the formula ( )a v=  is the descriptor whose 
meaning is the set ( ){ }:uU a u v= ; these elementary 
meanings define the meaning of the formula r by inter- 
preting the disjunction ∨  of descriptors as the union   
of meanings, the conjunction ∧  of descriptors as the in- 
tersection   of meanings. Coefficients of accuracy and 
coverage are defined for a decision algorithm D, trained 
on a training set Tr and tested on a test set Tst, as, res- 
pectively, quotients 

( ) ncorraccuracy
ncaught

D =  

where ncorr is the number of test objects correctly classi- 
fied by D and ncaught is the number of test objects clas- 
sified, and, 

( ) ncaughtcoverage
ntest

D =  

where ntest is the number of test objects. Thus, the prod- 
uct 

( ) ( )accuracy coverageD D•  

gives the measure of the fraction of test objects correctly 
classified by D. We have already mentioned that accu- 
racy and coverage are often advised to be combined in 
order to better express the trade-off between the two: one 
may have a high accuracy on a relatively small set of caught 
objects, or a lesser accuracy on a larger set of caught by 
the classifier objects. Michalski [21] proposes a combi- 
nation rule of the form 

21 1 1 1
2 4 2 4

MI A A C AC= + + −        (36) 

where A stands for accuracy and C for coverage. With 
the symbol MI, we denote the Michalski index as defined 
in (36). 

5.1. The Idea of Granular Rough Mereo-Logical  
Classifiers 

Our idea of augmenting existing strategies for rule indu- 
ction consists in using granules of knowledge. The prin- 
cipal assumption we can make is that the nature acts in a 
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continuous way: if objects are similar with respect to 
judiciously and correctly chosen attributes, then deci- 
sions on them should also be similar. A granule collect- 
ing similar objects should then expose the most typical 
decision value for objects in it while suppressing outly- 
ing values of decision, reducing noise in data, hence, 
leading to a better classifier. The idea of a rough mereo- 
logical granular classifier was proposed and refined in 
[22,23]. We give a resume of the most important ideas 
and results in this area. We assume that we are given a 
decision system ( ), ,U A d  from which a classifier is to 
be constructed; for a discussion on the subject of data 
classification, cf., e.g. [24]; we assume that on the uni- 
verse U, a rough inclusion μ is given, and a radius r in 
[0,1] is chosen, consult [8] for detailed discussion. We 
can find granules ( ),g u rµ  for all u in U, and make 
them into the set ( ),G rµ . From this set, a covering 

( ) Cov ,rµ of the universe U can be selected by means of 
a chosen strategy G , i.e., 

( ) ( )( )Cov , ,r G G rµ µ=          (37) 

We intend that ( )Cov , rµ  becomes a new universe 
of the decision system whose name will be the granular 
reflection of the original decision system. It remains to 
define new attributes for this decision system. Each gra-
nule g in ( )Cov , rµ  is a collection of objects; attrib- 
utes in the set { }A d  can be factored through the gra-
nule g by means of a chosen strategy S , i.e., for each 
attribute q in { }A d , the new factored attribute 

( ) ( ) ( ){ }( ): ,q g a v v g u rµ= ∈S       (38) 

is defined. In effect, a new decision system 

( ) { }( )Cov , , : ,r a a A dµ ∈           (39) 

is defined. The object vg with values ( )a g  is called the 
granular reflection of the granule g. Granular reflections 
of granules need not be objects found in data set; yet, the 
results show that they mediate very well between the 
training and test sets. We include in Table 3 the granular 
reflection of the system A , shown in Table 1, for the 
radius r = 0.75. We select the covering ( )Cov ,0.75I

Lµ  
sequentially: assuming that elements 1, ,g gm  of this 
covering are selected already, the element ( )1g m +  is 
selected as the granule of the least cardinality such that it 
does intersect the set ( )1U g gm  on the set of 
the largest cardinality, with random tie resolution. A look 
at Table 4 convinces us that the set 

( ) ( ){
( )}

1 7,0.75 , 2 2,0.75 ,

       3 5,0.75

I I
L L

I
L

G g g u g g u

g g u

µ µ

µ

= = =

=
 

can be taken as the covering. As the strategy S we adopt 
the majority voting. On the basis, again, of Table 4, and 

of the strategy S , we find the granular reflection  
( ) ( ), 1, 2, 3, 4g A G a a a a=  shown in Table 3. 
In order to demonstrate results of this approach on real 

data, we consider a standard data set the Australian Cre-
dit Data Set from University of California at Irvine Ma-
chine Learning Repository and we collect the best results 
for this data set by various rough set based methods in 
Table 5; they come from works by Bazan [25], Sinh Hoa 
Nguyen [26], and Wroblewski [27]. For a comparison we 
include in Table 6 results obtained by some other me-
thods, as given in Statlog. In Table 7, we give a compar-
ison of performance of rough set classifiers: exhaustive, 
covering and LEM, cf. [24], implemented in the Rough 
Set Exploratory System (RSES) due to Skow- ron et al. 
[28]. We begin in the next section with granular classifi-
ers in which granules are induced from the train- ing set, 
cf. [29-32]. 
 

Table 3. Granular reflection g(A). 

 1a  2a  3a  4a  

g1 1 1 0 1 

g2 0 1 1 0 

g3 0 0 0 1 

 
Table 4. Granules ( ),I

Lμ
g x 3 4  for the system A. 

u1 1, 5, 7a a a  

u2 2, 4, 6a a a  

u3 3, 4, 7a a a  

u4 2, 3, 4, 9a a a a  

u5 1, 5, 8a a a  

u6 2, 6, 8, 9a a a a  

u7 1, 3, 7 ,8, 9a a a a a  

u8 5, 6, 7 ,8a a a a  

u9 4, 6, 7a a a  

 
Table 5. Best results for Australian credit by some rough set 
based algorithms. 

Source Method Accuracy Coverage MI 

Bazan SNAPM 0.870 - - 

Nguyen SH Simple  
templates 0.929 0.623 0.847 

Nguyen SH General 
templates 0.886 0.905 0.891 

Nguyen SH Tolerance 
templates 0.875 1.0 0.891 

Wroblewski Adaptive 
classifier 0.863 - - 
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Table 6. A comparison of errors in classification by rough 
set and other paradigms. 

Paradigm Method Error 

Statistical Logdisc 0.141 

Statistical SMART 0.158 

Neural Backpropagation2 0.154 

Neural RBF 0.145 

Decision trees CART 0.145 

Decision trees C4.5 0.155 

Decision trees ITrule 0.137 

Decision rules CN2 0.204 

 
Table 7. Train and test (trn = 345 objects, tst = 345 objects); 
Australian credit; comparison of RSES implemented algo-
rithms: exhaustive, covering and LEM. 

Algorytm Accuracy Coverage Rule number Mimi 

Covering 
( )0.1p =  0.670 0.783 589 0.707 

Covering 
( )0.5p =  0.670 0.783 589 0.707 

Covering 
( )1.0p =  0.670 0.783 589 0.707 

LEM2 
( )0.1p =  0.810 0.061 6 0.587 

LEM2 
( )0.5p =  0.906 0.368 39 0.759 

LEM2 
( )1.0p =  0.869 0.643 126 0.804 

5.2. Classification by Granules of Training  
Objects 

We begin with a classifier in which granules computed 
by means of the rough inclusion μL form a granular re- 
flection of the data set and then to this new data set the 
exhaustive classifier available in RSES is applied. 

Procedure of the Test 
1) The data set ( ), ,U A d  is input; 
2) The training set is chosen at random. On the train- 

ing set, decision rules are induced by means of exhaus-
tive, covering and LEM algorithms implemented in the 
RSES system; 

3) Classification is performed on the test set by means 
of classifiers of pt. 2; 

4) For consecutive granulation radii r, granule sets 
( ) ,G rµ  are found; 
5) Coverings ( )Cov , rµ  are found by a random ir-

reducible choice; 
6) For granules in ( )Cov , rµ , for each r, we deter-

mine the granular reflection by factoring attributes on 
granules by means of majority voting with random reso-
lution of ties; 

7) For found granular reflections, classifiers are in- 
duced by means of algorithms in pt. 2; 

8) Classifiers found in pt. 7, are applied to the test set; 
9) Quality measures: accuracy and coverage for clas- 

sifiers are applied in order to compare results obtained, 
respectively, in pts. 3 and 8. 

In Table 8, the results are collected obtained after the 
procedure described above is applied. 

We can compare results expressed in terms of the Mi- 
chalski index MI as a measure of the trade-off between 
accuracy and coverage; for template based methods, the 
best MI is 0.891, for covering or LEM algorithms the best 
value of MI is 0.804, for exhaustive classifier ( )r nil=  
MI is equal to 0.907 and for granular reflections, the best 
MI value is 0.915 with few other values exceeding 0.900. 
What seems worthy of a moment’s reflection is the num-
ber of rules in the classifier. Whereas for the exhaustive 
classifier ( )r nil=  in nongranular case, the number of 
rules is equal to 5597, in granular case the number of 
rules can be surprisingly small with a good MI value, e.g., 
at r = 0.5, the number of rules is 293, i.e., 5 percent of the 
exhaustive classifier size, with the best MI of all of 0.915. 
This compression of classifier seems to be the most im-
pressive feature of granular classifiers. This initial, simple 
granulation, suggests further ramifications. For instance, 
one can consider, for a chosen value of ε in [0,1], granules 
of the form. 
 
Table 8. Train and test; Australian credit; granulation for 
rdii r; RSES exhaustive classifier; r = granule radius; tst = 
test set size; trn = training set size; rulex = rule number; aex = 
accuracy; cex = coverage. 

rr tst trn rulex aex cex MI 

nil 345 345 5597 0.872 0.994 0.907 

0.0 345 1 0 0.0 0.0 0.0 

0.07142 345 1 0 0.0 0.0 0.0 

0.1428 345 2 0 0.0 0.0 0.0 

0.2142 345 3 7 0.641 1.0 0.762 

0.2857 345 4 10 0.812 1.0 0.867 

0.3571 345 8 23 0.786 1.0 0.849 

0.4285 345 20 96 0.791 1.0 0.850 

0.5 345 51 293 0.838 1.0 0.915 

0.5714 345 105 933 0.855 1.0 0.896 

0.6428 345 205 3157 0.867 1.0 0.904 

0.7142 345 309 5271 0.875 1.0 0.891 

0.7857 345 340 5563 0.870 1.0 0.890 

0.8571 345 340 5574 0.864 1.0 0.902 

0.9285 345 342 5595 0.867 1.0 0.904 
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( ) ( ) ( ){ }, , : .g u r v U a A a u a vµ ε ε= ∈ ∀ ∈ − ≤  

and repeat with these granules the procedure of creating a 
granular reflection and building from it a classifier. An- 
other yet variation consists in mimicking the perform- 
ance of the Łukasiewicz based rough inclusion and in- 
troducing a counterpart of the granulation radius in the 
form of the catch radius, catchr . The granule is then de- 
pendent on two parameters: ε and catchr  and its form is 

( )

( ) ( ){ }
catch

catch

, ,

:
:

g u r

a A a u a v
v U r

A

µ ε

ε ∈ − ≤ = ∈ ≥ 
  

   (40) 

Results of classification by granular classifier induced 
from the granular reflection obtained by means of gra- 
nules (39) are shown in Table 9. 

5.3. A Treatment of Missing Values 
A particular but important problem in data analysis is the 
treatment of missing values. In many data, some values of 
some attributes are not recorded due to many factors, like 
omissions, inability to take them, loss due to some events 
etc. Our idea is to embed the missing value into a granule: 
by averaging the attribute value over the granule in the 
way already explained, it is hoped the the average value 
would fit in a satisfactory way into the position of the 
missing value. We will use the symbol *, commonly used 
for denoting the missing value; we will use two methods 
for treating *, i.e, (1) either * is a don’t care symbol 
meaning that any value of the respective attribute can be 
substituted for *, hence, * = v for each value v of the at- 
tribute, or (2) * is a new value on its own, i.e., if * = v 
 
Table 9. Classification with granules of the form (39). ε(opt) = 
optimal value of ε; acc = accuracy; cov = coverage. Best 

.=rcatch 0 1428 , ( ) .=opt 0 35ε ; best accuracy = 0.8681, cov-
erage = 1. 

catchr  ( )optε  acc MI 

nil nil 0.845 0.8895 

0 0 0.5550 0.7260 

0.0714 0 0.8391 0.8862 

0.1428 0.35 0.8681 0.8579 

0.2142 0.5 0.8637 0.9024 

0.2857 0.52 0.8318 0.8767 

0.3571 0.93 0.8014 0.8610 

0.4285 1.0 05145 0.6946 

0.5 1.0 0.4652 0.6704 

0.5714 1.0 0.1159 0.5583 

then v can only be *; see [33] for a general discussion on 
the missing data problem. Our procedure for treating 
missing values is based on the granular structure 

( ) { }( ), , , , : inG r G S a a Aµ ; the strategy S  is the ma- 
jority voting, i.e., for each attribute a, the value ( )a g  is 
the most frequent of values in ( ){ }:a u u g∈ . The strat- 
egy G  consists in random selection of granules for a 
covering. For an object u with the value of * at an attrib- 
ute a, and a granule ( ),g g v r=  in ( ),G rµ , the ques- 
tion whether u is included in g is resolved according to 
the adopted strategy of treating *: in case * = don’t care, 
the value of * is regarded as identical with any value of a, 
hence, ( ),IND u v  is automatically increased by 1, 
which increases the granule; in case * = *, the granule 
size is decreased. Assuming that * is sparse in data, ma- 
jority voting on g would produce values of a  distinct 
from * in most cases; nevertheless the value of * may 
appear in new objects—granular reflections g  of gran- 
ules in ( ),G rµ —and then in the process of classifica- 
tion, such value is repaired by means of the granule clos- 
est to g  with respect to the rough inclusion μL in accor- 
dance with the chosen method for treating *. In plain 
words, objects with missing values are in a sense ab- 
sorbed by close to them granules and missing values are 
replaced with most frequent values in objects collected in 
the granule; in this way the method (1) or (2) is com- 
bined with the idea of a frequent value, in a novel way. 
We have thus four possible strategies: 1) Strategy A: in 
building granules * = don’t care, in repairing values of *, 
* = don’t care; 2) Strategy B: in building granules * = 
don’t care, in repairing values of *, * = *; 3) Strategy C: 
in building granules * = *, in repairing values of *, *= 
don’t care; 4) Strategy D: in building granules * = *, in 
repairing values of *, * = *. We show how effective are 
these strategies, see [34], by perturbing the data set Pima 
Indians Diabetes from the University of California at 
Irvine Machine Learning Repository. First, in Table 10, 
we show results of granular classifier on the non-per- 
turbed (i.e., without missing values) Pima Indians Dia- 
betes data set. Then, we perturb this data set by randomly 
replacing 10 percent of attribute values in the data set 
with missing * values. Results of granular treatment in 
case of Strategies A, B, C, D in terms of accuracy are 
reported in Table 11. As algorithm for rule induction, the 
exhaustive algorithm of the RSES system has been se- 
lected. 10-fold cross validation (CV-10) has been ap- 
plied. 

Strategy A reaches the accuracy value for data with 
missing values within 94 percent of the value of accuracy 
without missing values (0.9407 to 1.0) at the radius of 
0.875. With Strategy B, accuracy is within 94 percent 
from the radius of .875 on. Strategy C is much better: 
accuracy with missing values reaches 99 percent of ac- 
curacy in no missing values case from the radius of 0.625 
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Table 10. 10-fold CV; Pima Indians diabetes; exhaustive 
RSES algorithm; MACC = mean accuracy; MCOV = mean 
coverage. 

R MACC MMCOV 

0.0 0.0 0.0 

0.125 0.0 0.0 

0.250 0.6835 0.9956 

0.375 0.7953 0.9997 

0.5 0.9265 1.0 

0.625 0.9940 1.0 

0.750 1.0 1.0 

0.875 1.0 1.0 

 
Table 11. Accuracies of strategies A, B, C, D. 10-fold CV; 
Pima Indians; exhaustive algorithm; r = radius, macc X = 
mean accuracy of strategy X for X = A, B, C, D. 

r maccA maccB maccC maccD 

0.250 0.0 0.0 0.0 0.645 

0.375 0.0 0.0 0.0 0.7779 

0.5 0.0 0.0 0.0 0.9215 

0.625 0.5211 0.5831 0.5211 0.9994 

0.750 0.7705 0.7769 0.7705 0.9904 

0.875 0.9407 0.9407 0.9407 0.9987 

 
on. Strategy D gives results slightly better than C with 
the same radii. We conclude that the essential for results 
of classification is the strategy of treating the missing 
value of * as * = * in both strategies C and D; the repair- 
ing strategy has almost no effect: C and D differ very 
slightly with respect to this strategy. 

5.4. Granular Rough Mereological Classifiers  
Using Residuals 

Rough inclusions used in Sections 5.1 - 5.3 in order to 
build classifiers do take, to a certain degree, into account 
the distribution of values of attributes among objects, by 
means of the parameters ε and catchr . The idea that met- 
rics used in classifier construction should depend locally 
on the training set is, e.g., present in classifiers based on 
the idea of nearest neighbor, see, e.g., a survey [7]. In 
order to construct a measure of similarity based on dis- 
tribution of attribute values among objects, we resort to 
residual implications-induced rough inclusions. These 
rough inclusions can be transferred to the universe $ of a 
decision system; to this end, first, for given objects u, v, 
and ε in [0,1], factors are defined 

( )
( ) ( ){ }:

dis ,
a A a u a v

u v
Aε

ε∈ − ≥
=     (41) 

and 

ind 1 disε ε= −                  (42) 

The weak variant of the rough inclusion T⇒  is de- 
fined, see [8] and [30-32], as ( ), ,T u v rµ∗  if and only if 

( ) ( )dis , ind ,Tu v u v rε ε⇒ ≥       (43) 

These similarity measures will be applied in building 
granules. Tests are done with the Australian credit data 
set; the results are validated by means of the 5-fold cross 
validation (CV-5). For each of t-norms: M, P, L, three 
cases of granulation are considered: 

1) Granules of training objects (GT); 
2) Granules of rules induced from the training set 

(GRT); 
3) Granules of granular objects induced from the train- 

ing set (GGT). 
In this approach, training objects are made into gran- 

ules for a given ε. Objects in each granule g about a test 
object u, vote for decision value at u as follows: for each 
decision class c, the value 

( )
( )trainobject in , ,

in trainset
v g c w u v

p c
c

=
∑

          (44) 

is computed where the weight ( ),w u v  is computed for 
a given t-norm T as 

( ) ( ) ( ), dis , ind ,T Tu v u v u vε εµ∗ = ⇒       (45) 

The class c* assigned to u is the one with the largest 
value of p. Weighted voting of rules in a given granule g 
for decision at test object u goes according to the formula 
( ) ( )arg maxd u p c= , where 

( )
( )rule in pointing to , support

in trainset
g c w u r r

p c
c

•
=
∑

 (46) 

and weight ( ),w u r  is computed as 

( ) ( ) ( ), dis , ind ,T Tu r u r u rε εµ∗ = ⇒        (47) 

The optimal (best) results in terms of accuracy of clas- 
sification are collected in Table 12. 

These results show that rough mereological granula- 
tion provides better or at least on par with best results by 
 
Table 12. 5-fold CV; Australian; residual metrics. Met = 
method of granulation, T = t-norm, ε(opt) = optimal ε, macc = 
mean accuracy, mean coverage = 1.0 omitted, meanMI = 
mMI. 

met T ( )optε  macc mMI 

GT M 0.04 0.848 0.8937 

GT P 0.06 0.848 0.8937 

GT L 0.05 0.846 0.8904 

GRT M 0.02 0.861 0.9006 

GRT P 0.01 0.851 0.8939 
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other methods accuracy of classification at the radically 
smaller classifier size measured as the number of deci- 
sion rules in it. 

5.5. Granular Classifiers: Concept-Dependent  
and Layered Granulation 

In [35], two modifications to the idea of a granular clas- 
sifier were proposed, viz., the concept-dependent granu- 
lation and the layered granulation as well as the hybrid 
approach merging the two. In concept-dependent granu- 
lation, granules are computed as restricted to decision 
classes of their centers, whereas in layered granulation, 
the granulation procedure is iterated until stabilization of 
granules. The experiments with the concept-dependent gra- 
nulation, for the Australian Credit data set, see [35], Ta-
ble 3, give, e.g., for the radius r = 0.571429, the accu- 
racy of 0.8865 at the rule set of 2024.4 rules on the av- 
erage as compared to 12025.0 on the average for non- 
granular classifier and the size of the training set of gran- 
ules of 175.5 on the average of granules as compared to 
the 690 objects in the non-granular case. In the case of 
layered granulation for the same data set, for, e.g., the 
granulation radius of r = 0.642857, after four iterations, 
the accuracy was 0.890, at the number of rules 3275, and, 
training granule set of size 214. 

6. Granular Logics: Reasoning in  
Information Systems 

The idea of a granular rough mereological logic consists 
in measuring the meaning of a unary predicate in the 
model which is a universe of an information system 
against a granule defined by means of a rough inclusion. 
The result can be regarded as the degree of truth (the 
logical value) of the predicate with respect to the given 
granule. The obtained logics are intensional as they can 
be regarded as mappings from the set of granules (possi- 
ble worlds) to the set of logical values in the interval 
[0,1], the value at a given granule regarded as the exten- 
sion at that granule of the intension. For an informa- 
tion/decision system ( ), ,U A d , with a rough inclusion ν, 
e.g., Sµ , on subsets of U and for a collection of unary 
predicates Pr, interpreted in the universe U (meaning that 
for each predicate Ф in Pr the meaning [Ф] is a subset of 
U), we define the intensional logic ( )GRM ν  by as- 
signing to each predicate Ф in Pr its intension ( )I gν  
defined by its extension at each particular granule g, as 

( )( ) [ ]( ), ,I g r g rν ν∨ Φ ≥ ⇔ Φ       (48) 

With respect to the rough inclusion Sµ  the formula 
(47) becomes 

( )( )
[ ]

Lv

g
I g r r

g
∨

Φ
Φ ≥ ⇔ ≥



      (49) 

A formula Ф interpreted in the universe U of a system 
( ), ,U A d  is true at a granule g with respect to a rough 
inclusion ν if and only if 

( )( ) 1vI g∨ Φ =               (50) 

and Ф is true if and only if it is true at each granule g. A 
rough inclusion ν is regular when ( ), ,1X Yν holds if and 
only if X Y . Hence, for a regular ν, a formula Ф is 
true if and only if [ ]g Φ  for each granule g. A par- 
ticularly important case of a formula is that of decision 
rules; clearly, for a decision rule :r p q⇒  in the de- 
scriptor logic, the rule r is true at a granule g with respect 
to a regular rough inclusion ν if and only if 

[ ] [ ]g p q⊆                (51) 

Analysis of decision rules in the system ( ), ,U A d  
can be given in a more general setting of dependencies. 
For two sets { },C D A d  of attributes, one says that 
D depends functionally on C when ( ) ( )  IND C IND D , 
symbolically denoted C⥟D, where ( )IND X  is the X- 
indiscernibility relation defined as, see [10], 

( ) ( ) ( ) ( ){ }, : .IND X u v a X a u a v= ∀ ∈ =     (52) 

Functional dependence can be represented locally by 
means of functional dependency rules of the form 

{ }( ) { }( ): :C a D av a C w a DΦ ∈ ⇒Φ ∈      (53) 

where { }( ):C av a CΦ ∈ is the formula ( )a C aa v∈∧ =  
and [ ] [ ]C DΦ ⊆ Φ . We introduce a regular rough inclu- 
sion on sets 3ν  defined as ( )3 , ,X Y rν , where r = 1 if 

X Y , 1
2

r =  if X Y ≠ ∅ , otherwise r = 0. 

Then one proves that : C Dα Φ ⇒Φ  is a functional 
dependency rule if and only if α is true in the logic in- 
duced by 3ν , see [8]. A specialization of this statement 
holds for decision rules. Further applications to modali- 
ties in decision systems and the Perception Calculus in 
the sense of Zadeh can be found in [8]. 

7. Conclusion 
We have presented a survey of recent results on rough 
mereological approach to knowledge discovery. Present- 
ed have been applications to problems of data mining (in 
the form of granular classifiers), intelligent robotics, in 
the form of mereological potential field based planners, 
and, a theory of robot formations based on rough mereo-
geometry. Finally, we have outlined the intensional rough 
mereological logic for reasoning about knowledge in in- 
formation/decision systems. These results show that rough 
mereology can be a valuable tool in the arsenal of artifi-
cial intelligence. Results on classification show that gra-
nular mereological preprocessing reduces the size of clas-
sifiers at as good quality of classification as best ob- 
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tained in the past by other methods. Formations of au- 
tonomous mobile robots defined by means of mereo- 
geometry allow for flexible managing of environments, 
as shown in respective figures, due to relational character 
of that definition. Mereological potential fields also de- 
serve an attention due to simplicity of their definition and 
close geometric relation to the location of the goal and 
obstacles. We do hope that this survey will give researchers 
in the fields of Knowledge Discovery and related ones an 
insight into this new paradigm and will prompt them to 
investigate it and apply it on their own. There are many 
problems to investigate, among them, it seems, one of 
most interesting is whether it is possible to, at least ap-
proximately, predict optimal values of parameters of gra- 
nular classifiers, i.e., of the radius of granulation, the pa- 
rameter ε, and the catch radius. It this happens, the goal 
of this survey is achieved. 
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