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ABSTRACT 

Numerical simulation and theoretical analysis of seawater intrusion is the mathematical basis for modern environmental 
science. Its mathematical model is the nonlinear coupled system of partial differential equations with initial-boundary 
problems. For a generic case of a three-dimensional bounded region, two kinds of finite difference fractional steps pro- 
cedures are put forward. Optimal order estimates in  norm are derived for the error in the approximation solution. 
The present method has been successfully used in predicting the consequences of seawater intrusion and protection 
projects. 
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1. Introduction 

Seawater intrusion refers to the invasion of salt water 
into the groundwater in coastal areas caused by the 
changes in natural water environment and social and 
economic development. In recent years, it has occurred 
in many countries in the world such as USA, Netherlands, 
Israel and Japan. After 1970s, the northern coastal area of 
our country, especially economic zones around Bohai 
such as Shandong, Hebei and Liaoning, is getting more 
and more seriously affected by this problem with Shan- 
dong province standing out. It leads to the great decrease 
in industrial and agricultural production, making people’s 
living conditions, especially their drinking water, poorer 
and poorer. Therefore, it is urgent that seawater intrusion 
be completely tackled. 

The mathematical model consists of water head equa- 
tion and salt concentration equation. Because of the 
compressibility of porous media and that of the fluid, the 
change in fluid density with the salt concentration, and 
with the consideration of the fact that the salt is in the 
moving state in porous media, there may occur convec- 
tion-dominated diffusion. While water is moving in the 
water-bearing stratum, it carries salt. The movement of 
this solute with underground water is called solute con- 
vection. Since salt is inhomogeniously distributed in the 
whole solution, it always diffuses from places with high-
er concentration to places with lower concentration even 
if the solution does not move. 

1.1. Water Head Equation 

With Darcy’s law, Euler method and Huyakorn’s lin- 
earization method, the water head equation is obtained 
[1,2]. 
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where sS   is the specific retention, H 0p g z   is 
water head function, p stands for pressure, 0  repre- 
sents the density of reference water (fresh water), g is 
gravitational acceleration, z is the height of water con- 
taining layer,   is density and depends only on the 
concentration of salt c, Hugakorn’s linearization 

 10 sc c     is adopted. cs is the concentration 
corresponding to the maximum density, and   is the 
density difference ration  0 0s     K. K g  , 
  is viscosity of the fluid, sc   is the density 
coupling coefficient. e3 = (0,0,1)T,   is the porosity, q 
is source or sink term, and the permeability is noted by 
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1.2. Salt Concentration Equation 
  dissolved in the fluid causes The movement of 
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convection and diffusion of  in porous media. From 
Fick’s law and mass conservation law we have the fol- 
lowing concentration Equation [1,2]. 
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where c stands for the concentration of ,  is the 
salt concentration near the source well. Darcy’s velocity 
and the diffusion matrix are denoted by  
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1.3. Initial Boundary Value Conditions 

To make a complete system, appropriate initial boundary 
value conditions are necessary in addition to the above 
equations. The initial value condition is 
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There are three kinds of boundary value conditions. 
When concentration and water head are known, the first 
kind of boundary value condition can be given as 
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The second kind of boundary value condition can be 
given to non-flow boundary: 

0, , ,x y    u n n      (4b) 

where n is the unit vector in outer normal direction. A 
kind of Stefan boundary condition is for free surface 
boundary. 

The boundary condition of water heat equation: 
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The boundary condition of salt concentration equation: 
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where w is the permeated fluid flow rate in a unit area 
and c′ is the concentration of  in permeated fluid. 

In the study of seawater intrusion miscible model, for 

the miscible fluid Henry suggested an analytic solution 
under the simplified boundary condition and with the 
steady-state flow in the homogeneous medium [3]. Segol, 
Pinder, Grug, Heinrich and others studied the two- 
dimensional cut plane problem [4,5], and Huyakorn, 
Gupta and Yapa studied the solving process of the three- 
dimensional problem [5,6]. However, their calculations 
are made in specifically assumed conditions; therefore, 
they can not truly reflect seawater intrusion. 

For plane incompressible two-phase displacement 
which is assumed to be  -periodic, Jim Douglas, 
Ewing, Russell, and others have published famous papers 
on the characteristic finite difference method and finite 
element method to solve the convection-dominated dif- 
fusion problems with finite difference method, and to 
overcome oscillation and faults likely to occur in the 
traditional methods [7-12]. For compressible two-phase 
displacement problem, Douglas and others have con- 
tributed much to the mathematical model of “infinitesi- 
mal compressibility”, numerical method and analysis 
[13-16]. Douglas and Yuan discarded periodic conditions, 
put forward a new modified characteristic finite dif- 
ference method and finite element method, and obtained 
optimal order estimation in  norm [17-20]. Special 
treatment is needed for characteristic lines because the 
method of characteristics asks for interpolation and they 
may go through the boundaries near the solution regions. 
It is necessary to find out the intersection point of cha- 
racteristic lines and mesh boundaries and calculate their 
corresponding functional values. While such calculation 
is designed, we must determine whether characteristic 
lines really go through the boundaries in order to decide 
whether time steps lengths should be changed. In a word, 
the practical calculation is quite complicated [19,20]. 

For the convection-dominated diffusion problems, 
Axelsson, Ewing, Lazarov and others proposed upwind 
finite difference method [21-23] to overcome oscillation 
and to avoid computation complexity of the characteristic 
differential method near boundary meshes. Douglas and 
Peaceman applied the alternating-direction method to 
numerical reservoir simulation [24,25]. By using Fourier 
analysis, they succeeded in proving the stability and con- 
vergence according to the constant coefficient [26,27]. 
This paper, starting from the actual case, puts forward the 
modified method of upwind with finite difference frac- 
tional steps procedure for seawater intrusion. It can over- 
come oscillation and diffusion and computative comp- 
lexity. At the same time it can convert a three-dimen- 
sional problem into three successive one-dimensional 
problems, reducing computation complexity and making 
computation practical. Moreover, it increases the space 
calculation accuracy to the second order. Some tech- 
niques, such as calculus of variations, energy method, 
operator-splitting, upwind method, commutative law of 
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2. The Upwind Finite Difference Fractional 
Steps Procedure 

multiplication of difference operators, decomposition of 
high order difference operators, the theory of prior 
estimates and techniques are adopted. Optimal order 
estimates in  norm are derived to determine the error 
in the approximate solution. Thus the difficult problem 
has been solved [16,28]. 

For brevity we consider only the first kind of boundary 
value problem and the diffusion matrix  , ,D x y z



 of 
diagonal form. In order to get the solution by using finite 
difference method we use mesh region h  instead of 
region 

Generally, this is a positive definite problem: 
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 . On space (x, y, z), let step lengths be h3, xi = 
ih1, yj = jh2, zk = kh3, 

where *K , *K , ,  are constants. *

Our assumptions on the regularity of the solution of 
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2.1. The Second Order Upwind Finite Difference 
Fractional Steps Scheme 

Let  the finite difference solu-
tions of  nt

n n
h

,ijkc XH X t  and  , respectively. If 
the finite difference solutions h  and C H  are known, 
we find the finite difference solutions C , 

First, compute the approximate Darcy’s velocity 
 as follows: 
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For salt concentration Equation (2), the modified method of upwind with finite difference fractional steps 
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scheme is given by 
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Next, for fluid Equation (1) the fractional steps sinite 
difference scheme is given by  
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The initial approximation reads 
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The algorithm for a time step is as follows: Assuming 
the Approximate solution  , ,h ijk h ijk  at time  is 
known, it is needed to find out the approximate solutions 
at the next time level. First, compute Darcy’s velocity 

nU , from schemes (8a), (8b), and method of speedup is 
used to get the solution of transition sheaf  1/3nC 

 2/3nC 

,h ijk  
along x direction. Secondly, from schemes (9a), (9b) we 
obtain the solution of transition sheaf ,h ijk . Thirdly, 
from schemes (10a), (10b) we obtain solution  1nC 

1/3nH 

,h ijk . 
Next, from (11a), (11b), by using method of speedup, we 
get the solution of transition sheaf  ,h ijk  along x 
direction; from (12a), (12b) we obtain the solution of 
transition sheaf  2/3nH 

,h ijk . Finally, from schemes (13a), 
(13b) we obtain solution  1

,
n
h ijkH  . So a complete time 
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step can be taken. At last, it is because of the positive 
condition that this finite difference solution exists, being 
the sole one. 

2.2. The First Order Weighted Upwind Finite 
Difference Fractional Steps Scheme 

For salt concentration Equation (2), the first order up- 
wind finite difference fractional steps scheme is given by  
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The algorithm is similar to that of Scheme (8)-(13). 

3. Convergence Analysis 

For brevity we assume  1 ,h N
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H1(Ω) [19,20,29]. First consider the second order scheme. 
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From Equation (2) ( t t ) and (16) we have the concentration error equations. 
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z hz ijk

ijk ijk

n n n n n n
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u D U D D C
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h h
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x yx y

ijk
ijk

h h
U D D C U D D d C

h h
u D D c U D D d C

    

    

 
 

 
   

 
      

                      

                      


 

ijk

n
t h
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1 13 1 1 1 1

1 1 2 21 2

1 1
1 11

3 3 13 1

1
11

1 22

{ 1 ( ( 1 (
2 2

1 1
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1 | |
2

n n n
x yx y

ijk

n n n
z tz x

ijk
ijk

n n
x h

h h
t u D D c u D D

h h
u D D d c U D

h
D C U D

     

  

  

 
    

 
 





    

1 1nc 



         
   

            

   
 

 

 

 

1
11

2 33

1
3 1,

1 | |
2

,1 , , 1,

n n
y hy

n n
z t h ijkz

ijk

h
D C U D

D d C i j k N

 

  






        


   


       (17a) 

1 0, ,n
ijk ijk hX   

            (17b) 

where  1 2 .1,
n
ijk M t h    

1/3n
hH  2/3n

hH 

Next, consider the fluid equation. For Equations 

(11)-(13), dispel  and , and we get the 

following equivalent form:  
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1
, , 1 1

, 1 2

1
,, ,

3
0

2 1
1 2

1
1 3

n n
h ijk h ijk n n n n

s ijk h x h h y hx yijk ijk

nn n
h ijkh ijk h ijk n n n

ijk ijk h hz ijk

n n n
h x s h y t hx y

ijk

n n
h x s h z t hx z

H H
S K C H K C H

t

CC C
q K C C

t

t K C S K C d H

K C S K C d H

    


 



   

   


 








 




   



  


    

1
3

n n
h z hz ijk

K C H 

   
 

  
         

1
2 3

3 1 1
1 2 3 ,1

n n
h y s hy z

ijk

n n n n
h x s h y s h z t hx y z

ijk

K C S K C

t K C S K C S K C d H

  

     



 



     
, , 1,

n n
z t h

ijk
d H

i j k N

 



 

1 1, .n n
ijk hH h X  

1n

       (18a) 

,h ijk ijk                                              (18b) 

From Equation (1) ( t t ) and (18) we have the fluid error equations. 

         
        

     

11
,1 1 1

0 0

1 1
3 3

n nn n
ijk h ijkijk ijkn n n n

h h h ijk ijk
ijk

n n n n
h hz zijk ijk

c C
K c K C H q

t

K c c K C C

  


 

  


  

 


         

    

  

1
1 1 1

, 1 2 3

π π
π π π

n n
ijk ijk n n n n n n

s ijk h x h y h zx y zijk ijk ijk

n
ijk

S K C K C K C
t

q

     


  
  



 
 
  

      

             
             

   

2 1 1 1
1 2

1 1
1 2 1

1 1
1 3 2

1
2 3

n n n
x s y tx y

ijk

n n n n
h x s h y t h x sx y x z

ijk

n n n n
h x s h z t h y sx z y z

ijk

n n
h y s h zy z

t K c S K c d H

K C S K C d H K c S K c

K C S K C d H K c S K c

K C S K C

   

      

      

   

  

 

 






    

    

    

 

1 1
3

1 1
3

n n
z t

ijk

n n
z t

ijk

d H

d H





 

 

         
         

3 1 1 1 1 1
1 2 3

1 1
1 2 3 2 ,

1 , , 1,

n
t h

ijk

n n n n
x s y s z tx y z

ijk

n n n n n
h x s h y s h z t h ijkx y z

ijk

d H

t K c S K c S K c d H

K C S K C S K C d H

i j k N

     

      

    

 




       

      

  

1
,


1π 0, ,n
ijk ijk hX  

         (19a) 

 
             (19b) 

where  1 2
2, .n

ijk M t h      

We shall introduce the induction hypothesis: 

   
1, 1,

, 0, , 0,n n h t
 

  
0
sup max π

n L 
  (20) 

where 
2 2 2

1, 0, 0,
π π π , .n n n

h  
   

1 1π π πn n n
t ijk ijk ijk   

 

We consider fluid error Equation (19). Test error Equa- 
tion (19) against  and summing it up 

y parts, we have b  
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1 1 1 1
1 2

1 1
3 1 2

1 1

1

1

0 0

1
π , π π , π π , π

2

( ) π , π π , π π ,

, π , π

, π

n n n n n n n n
s t t h x x h y y

n n n n n n n n n
h z z h x x h y y h

n n n n n n
h h h t t t

n n
hn n n

t

S d d t K C K C

K C K C K C K C

K c K C H d t d d t

c C
q q d t

   

     

  

 

 



   

 

 




  

 

        

  



3π π , πn n n
z z   

     

        
       

           
        

1 1
3 3

2 1 1 1
1 2

1
1 2

3 1 1 1 1 1
1 2 3

1 1
1 2 3

, π

)

, π

n n n n n
h h tz z

n n n
x s y tx y

n n n n
h x s h y t h tx y

n n n n
x s y s z tx y z

n n n n
h x s h y s h z t hx y z

K c c K C C d t

t K c S K c d H

K C S K C d H d t

t K c S K c S K c d H

K C S K C S K C d H

 

   

   

     

     

 

  



    

 

 

 

   

    
 

   
 



 1
2, π ,n n

td t    π .n
td t

    

     (21) 

 

   Now we estimate the terms on the right-hand side of 
(21). 

  
1 1

2 2

, π

π ,

n n n n
h t

n n
2

h h

h t

K c K C

M t t 

 

     

H d t

d t

       


  (22a) 

2 2

, π

π ,

n n
t t

n n
t t

d d t

M d t  d t

  

 

 

 
          (22b) 

  

1

1

0 0

2 22

, π

π ,

n n
hn n n

t

n n
t

c C
q q d t

M t t d t

 

 

 


   

      (22c) 

     

     
  

1 1
3 3

2 2 22

, π

π ,

n n n n n
h h tz z

n n n
h t

K c c K C C d t

M t t d t

  

  

   

       
 (22d) 

For the fifth term on the right-hand side of (21). 
 

           

         
        

        
 

3 1 1 1 1 1
1 2 3

1 1
1 2 3

3 1
1 2

1 1
1 2 2

1 1

, π

π , π

, π

n n n n
x s y s z tx y z

n n n n n
h x s h y s h z t h tx y z

n n n n
h x s h y t tx y

n n n n n
s h y t tx y

x

t K c S K c S K c d H

K

1

h x

n

C S K C S K C d H d t

t K C S K C d d

S K c K C d H d

K c K C

     

     

   

 



    

 



 

     
 

    
 

  

   

   

K C 

     

                 (23) 

1 1
2 , π .n n n n

h x s y t ty
S K c d H d    

 
 

For the first term on the right-hand side of (23), though 
the operators   K    are self-co

 

,x yx y
K  njugate, 

positive definite and bounded, space region is cubic. 
However, their products are generally incommutative. 

Noting that 

, , , ,x y y x x x y yy y x x x y y x
                    

we have       
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3
t K  1

1 2

23 1 1
1 2 , 2 , 11/2, , 1/2, , 1/2, 1/2,

, , 1

1
, 1 21/2, , 1/2,

π π

π ( ) π

π

n n n n
h x s h y t tx y

N
n n n n n n
h h s ijk x y t ijk h y s ijk h x t ijki jk i j k i j k i jk

i j k

n n
s ijk h x h y t iji jk i j k

C S K C d d

t K C K C S d K C S K C d

S K C K C d

   

   

 



 

   




 

       

  



   

      

   

1
2 1 ,, 1/2, 1/2,

1
2 , 1 2, 1/2, 1/2, , 1/2,

1 3
, 1 1/2,

π

π π .

n n n n
k h h x s ijk x y t ijki j k i jk

n n n
x h y s ijk h hi j k i jk i j k

n n n
y x s ijk h x t ijk y t ijki jk

K C K C S d

K C S K C K C

S K C d d h

  

 

   



 



  





  
   

 

   (24) 

From induction hypothesis (20) we learn that 

 nK C 

,

1 h ,  2 ,hK C  n     1
1 1

n n
s hS K C   are 

pression  

(24), the positive definite property of 1
1 2, ,

,x h yK C 

bounded. To the first and second terms of ex

sK K S   should 
be applied, and high-order difference term πn

x y t ijkd   
should be separated. By using Cauchy inequality to 

 get 
 

    

   

, 1 , 1 21/2, , 1/2,

2 1 ,, 1/2, 1/2,

π π

N

t

n n n
y s ijk h h x h y t ijki jk i j k

n n
h h x s ii j k i jk

S K C S K C K C d

K C K C S

 



  

 

 

  

eliminate the terms concerned, we can

 2

2 , 1/2,
πn n

ijk h i j k
K C


       3 1

1 2 ,1/2, , 1/2,
, , 1

{ n n
h h s ijk x yi jk i j k

i j k

t K C K C S d 

 


  

  1/2, x ti jk
d 1 1n n

ijk s ijk
  

   

       

1 231 3 2 * 3
*

, , 1

2 21

1
π π

2

π .

N
n n

jk x y t ijk s x y t ijk
i j k

n n
h

d h K S t d h

12 2 233 2 * 3
*

, , 1

1
π π ( ) π π

2

N
n n n

x t y t s x y t ijk h
i j k

M d d t K S t d h M   
 



         

For the third term of (24), we have 

t

   




      

  


   (25a) 

       

   


 

1
2 , 1 2, 1/2, 1/2, , 1/2,

1 3
, 1 1/2,

2 21

π π

π π .

N
n n n
h y s ijk h hi j k i jk i j k

n n n
y x s ijk h x t ijk y t ijki jk

n n
h h

C S K C K C

S K C d d h

M t



   



  







 

  

    

                   (25b) 

Sim

3

, , 1
x

i j k

t K


  

ilarly, for the other terms, we can obtain 

              
          

1
1 2

2 2 2 21 1 1 1
2 2

, π

, π π .

n n n n n
y t h x s h y t h tx y

n n n n n n
y s z t h hy z

d H K C S K C d H d

K c S K c d H M t t

   

    



   

 

        




    (26) 

Now, we consider the sixth term of the right-hand side of (21). 

3 1 1 1
1 2

n n
x sx y

t K c S K c      

           
         
      

1
3

1 1
1 2 3

2 2 2 2 24 23 * 3 1
*

, π

1
π π π .

2

n n
z t

n n n n n
h x s h y s h z t h tx y z

N
n n n n

s x y z t ijk h h

c d H

K C S K C S K C d H d

4 1 1 1 1
1 2

n n
x s y sx y z

t K c S K c S K

, , 1i j k

K S t d h M t t



     

   



 

 




   
 

            

          (27) 
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For the last term on the right-hand side of (21). 

  2 2
.n t t                      

From (21)-(28) we can obtain 

2 21 1
2 , π π πn n n n

t h hd t M                  (28) 

    
  

2* 1 1

2 2 2 2 2 21 4

1
π π , π π , π

2
π π π .

n n n n n n n
h h h h

n n n n n n
h h h h

S d t K C K C
2s t h h

M td h t t d t   

 



      

             
          (29) 

on error equation. Test 
err 1 1 n

ijk ijk

Next, consider the concentrati
or Equation (17) against n n

t ijk       and sum- 
ing it up by parts, we have 

   

   

1 1 2

1
11 1 1

1 11

1 1
1 11 1 1

1
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2
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n n n n n n n
h t t x x

n n
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h t hU x U x U y

h
C d d t D u D

D
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1 1 1

2 2 3 12 3, 1 , 1
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n n n n n n
y y z z

h h
D u D u D       

  



          
    

   
 

 

  

                
       

 

 

2 3 3

1 1
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1 11 1

1 1 11 1

1 1
1 11 1

1 1 12 2

11
13
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1 1 ,
2 2

1 1 ,
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1
2
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n n n n n

t h tU y U z U z
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n n n n
y y h t

n

c d C c d t

h h
u D u D D C d

h h
u D u D D C d

h
u D
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1 13
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1 1 3 11 3

4

1
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,
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1
2

n n n
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n n n n n n n
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n n n n n
x x h z z t t

n

h
u D D C d t

q C C q C C d t

h h
t u D D C u D D d d

h
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1
1

1

1 1
1 11 1

1 3 2 3 33 3

1
1

1 1 ,
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,

n n n n n
x x h y y h z z t

n n
t

D

h h
D C u D D C u D D d
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         (30) 

First, we estimate the second term on the left-hand side of (30). 

 
1 1

1 11 1 1 1 1 1
1 1 1 1

1
, 1 , 1

2
n n n n n n n

x

h h
D u D D u D        
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1 1

1
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1 11

2 2

, 1 .
2

x x x

n n n n n
x x h t

h
D u D M t d t      
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Similarly, 

 
1

11 1 1
2 22

1 1
1 11 1 1 1 1

2 2 2 22 2

, 1
2

1
, 1 , 1

2 2 2

n n n n
y y

n n n n n n n
y y y y

h
D u D

h h
D u D D u D M

    

        


  

 
     

     
   

              
     

  (31b) 
2 2
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h tt d t   

 
1

11 1 1
3 33
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2

1
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2 2 2
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n n n n n n n
z z z z

h
D u D

h h
D u D D u D M

    

        


  

 
     

     
   

              
     

  (31c) 
2 2

.n
h tt d t   

Now, we estimate the terms on the right-hand side of (30). In induction hy hesis (20) nU  is bounded, so we have  pot

  1
1 1

2 2 21
1 1, ,n n

n n n n n n
h t hU x u x

C c d t M U u t   
 2

, .n
tt d t         

ilarly, 

             (32a) 

Sim

 
  

1 1
2 2 3 3

1 1

, , , ,
, ,n n n n

n n n n n n
h t h tU y u y U z u z

C c d C c d t

2 2 2 22

2 2 3 3 .n n n n n n
h tM U u U u t t d t            

      
    

                        (32b) 

For the second term on the right-hand side of (30), we have 

 

    

1 1
1 11 1

1 1 11 1

1 1
1 1 21 1

3 3 33 3

1 1 ,
2 2

1 1 ,
2 2

n n n n
x x h t

n n n n n n
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h h
u D U D D C d

h h
u D U D D C d t M u U t

  

  

 
  

 
  

              
      

                 
       



      (33) 
2 2

.n
tt d t   

For the third term, we have 

     2 2
) .n

t tt d t                   (34) 

We consider the fourth term, and we have 
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1 1
1 13
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2
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1 13 1

1, 1/2, 2, , 1/2, 1, 2,, 1, 2,
, , 1

1 ,
2

1 1
2 2

n n n n n
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1
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h h
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h h
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3.n n
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On positive definite condition:  

      *

1
1 .C 


  

In induction hy hesis (20) nU  is bounde

*
1* * *

* * *,0 ,0iD D D C     
       

pot d, so we have   11

01 2 nh U D b


  0, 1, 2,3,   

     

         

1 1
1 13 1

1 1 21 2

3
1 2 22 3* 2

* * 0

{ 1 1
2 2

.

2

2

,n n n n n
x h y t tx y

n n n
x y t h t t

h h
t U D D C U D D d d

t
D b d M t d d

      

2
      

 
 



                    


     

 

Thus, for the fourth term we can obtain 

     

   

2 2

1 1 1
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1 1 1 2 21 1 2

,

1 1 1
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n n n n n
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x y tx y

h h
D D d d
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3

1 2 2 2 2 22 * 2 1 1
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,

.
2

n
t

n n n n n
x y t h h

d

t
D b d M t



        
  

  


        

    (35a) 

Similarly, for the fifth and sixth terms we have 

     

       
 

1 1
1 13 1

1 1 3 31 3

3
1 2 2 22 * 2

* * 0

2 2 2 21 1

1 1
2 2

2

.

n n n
x h z tx z

n n n
x y t x z t y z t

n n n n
h h

h h
t U D D C U D D d

t
D b d d d

M t

     

          

   

 
 



 

                        


   

      

,n n
td 

 




            (35b) 

For the seventh term we have 

   

   

       

1
11

1 1 21 2

1
11

2 3 33

4
2 2 2 2 2 23 * 2 1 1

* * 0

2 2

1 ,
2

.
2

n n
x x h

n n n n
y y h z t tz

ijk

n n n n n
x y z t h h

h
C U D

h
D C U D D d d

t
D b d M t



      

         







  

          
             


        

            (36) 

For the last term 

1
14

1 1nh
t U D D 


     

  21 4, .M t h                                (37) 

For error Equation (30), from (31)-(37) we can obtain 

2

1
n n n

t td t d t       
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1 1
1 11 1
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1
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n
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2 1 1 1 1
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.
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D u D

        (38) 

2
u U t t d t

    

     




 

    
  

           

For fluid error Equation (29), summing over 0 n L

M

  and noting that 0π 0 , we have  

   

     

0 0 0

0

2 2 2 2 2 21 1 1
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n
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n n n n n n n n n n
h h h h h h

n n

d t K C K C
2 1 1

L
n L L L
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  (39) 

For the first term on the right-hand side of (39) we have 
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1

π π .
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n
h

n

1 1
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,n n n n n
h h h h t

n n
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        t


                 (40) 

By 

 2 2 2 4 ,n
h h                                  (41) 

w

n n nu U M 

e have 
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       (42) 

For concentration error Equation (38), summing over 0 n L
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Then, 
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Combining (42) with (43) it yields 

 2 4 .t h t
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       (44) 

Applying discrete Gronwall inequality, we have 

     

  2 4 .M t h                       (45)

It remains to check induction hypothesis (20). First, 
for 0 0π 0  , (20) is correct. If  
1 olds. From (45) we have  
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  , then induction hypothesis 

r 1.n L   
For the first order weighted upwind finite difference 

fractional steps scheme, we have the following theorem. 
Theorem II. Suppose that exact solutions of problem 

(1)-(5) satisfy condition:  

4, , 

 

holds fo

  1, 1,,H c W W L W   

   2,4, 2 2 2, ,H t c t L W H t c         t L L   . 

Adopt the first order weighted upwind procedures 
(8 mates 
hold: 

)′-(10)′, (11)-(13). Then the following error esti
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**
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.

h h t h

2 2( ; )

L J h L J h L J l
H H c C d H H

d c C M t h

     

    
 (46) 

4. Numerical Simulation Results and 
Analysis 

heying area of Longkou city as the model area which has 
3-dimensional observation grid. This area is on the left 
bank of Huangshui River neighboring with Bohai in the 
north and Huangshui River in the ea
meters and the width is 700 meters. Its average thickness 
is about 17 or 18 meters. In the upper part of the wa-
ter-containing layer there is relatively fine sand, and in 
the lower part—coarse sand with gravel which contains 
one, two or three layers of mild clay and sludge of dif-
ferent thickness. We decompose this area into three parts 
according to the permeability. The section graph and 
plane graph are listed in Figures 1 and 2,
The geological parameters are listed in Table 1, where 
No., CP, RWS, SY, DD and ICP denote zone number, 
coefficients of permeability, rate of water, specific yield, 
dispersion degree and infiltration coefficient of precipita-
tion. 

Let 20 m, 30 m, 1m.x y zh h h

t h L J l

Considering t p

st. Its length is 3000 

 respectively. 



he com lexity of problem, we select Huang- 

      We compare our 
results, real values and the results of others. A represents 

ults. The comparison of graphs of water head and 
concentration are listed in Figures 3 and 4, respectively. 
The section graphs for water and concentration are
in Figures 5 and 6. 

 
olog

) SY DD (m) 

the results of Nanjing University [30], and B represents 
our res

 listed 

Table 1. The ge ical parameters. 

CP (m/d) RWS (m−1

No. ICP 
Kxx yyK  zzK  sS  yS  L  T  

A 17 15 8.0  10–5 0.075 8.3 0.001 0.3 

B 103 22 1.2 0–4 0.13 8.3 0.001 0.3 

C 7 7 5.0  –5 0.04 0.08 0.0004 0.3 

0.11 0.08 0.0004 0.3 

 1

 10

D 63 17 1.0  10–4      
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Figure 1. The  graph. 
 
 section

 

 

Figure 2. The plane graph. 
 

 

 

Figure 3. Curves of water level comparison. 
 

 

 

Figure 4. Curves of concentration comparison. 
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Figure 5. S ptember. ection graph of water evel computation in Se l
 

 

 

Figur ber. 
 

From the above we can see that the computation re-
sults are exact, and the algorithm given in this paper is 
stable and can be used as the algorithm for the simulation 
of large-scaled problems. 

5. Consequences of Protection Projects and 
Applied Modular Form of Project 
Adjustment 

5.1. Consequences of Projection Projects 

The main water conservanc
trusion include projects for water saving, Yellow River 
regulation, water retaining and artificial precipitation. 
Their ultimate goals are to increase water supplies and to 
decrease the extraction of underground water the produc-
tion of human and animal needed, so that the descent of 
underground water level will be slowed down and even 
underground water be increased. All this is very effective. 
Up to now, the protection project results are mainly em- 
pirical and qualitative. We have not seen publications 
both in China and abroad about the real salt water and 
fresh water movement changes after the projects are si-
mulated with computers. There 
uantitative and comprehensive predictions of vari- ous 

pr

cts of water-saving project on 
seawater intrusion. Take the average precipitation amount 

in many years (Refer to “Comprehensive Control Plan 
Against Seawater Intrusion in Laizhou Bay Area of 
Shandong Province”). Simulate water levels and changes 
of salt concentration two months after the peak period 
(July-August) in the following four conditions: the pre-
sent pumping out, saving water 10%, saving water 20% 
and saving water 30%. Water heads and concentrations 
of some wells at initial time are listed in Table 2. The 
calculation and comparison results are listed in Tables 3 
and 4. The predictive sections  saving 20% are 

From the above we can see the consequences of water 
saving projects are remarkable. During raining seasons 
the underground water level rises again quickly. In dry 
seasons, its descent is slowed down. So the projects slow 
down the migration of salt concentration to fresh water 

 
Table 2. The initial values of water head and concentration. 

Well No. Water head (m) Salt concentration (mg/L) 

e 6. Section graph of Cl‾ concentration in Septem

y works against seawater in- listed in Figures 7 and 8. 

are no publications on the 
q

ojects. Now we take watersaving project as an example 
to discuss the predictive result of the projects. 

Scheme: Keep the present precipitation level. Take 
into consideration the effe

at water

1-2 –1.01 3667 

2-2 –2.20 3000 

3-2 –2.77 377 

2.87 100 

4-2 –3.10 400 

5-2 –3.13 98 

6-2 –
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Table 3. The effects of water saving projects on water head. 

Well number, Water head 
Saving water 

1-2 2-2 3-2 4-2 5-2 6-2 

0 –0.45 –1.75 –2.04 –2.42 –2.32 –2.16

10% –0.34 –1.52 –1.80 –2.14 –2.07 –1.93

20% –0.23 –1.31 –1.56 –1.87 –1.81 –1.71

30% –0.12 –1.10 –1.33 –1.60 –1.55 –1.48

 
Table 4. The effects of water saving projects on salt concen-
tration. 

Well number, Water head 
Saving water 

1-2 2-2 3-2 4-2 5-2 6-2 

0 3871 3044 1521 101 98 99 

10% 3753 3088 1507 101 98 99 

20% 3725 3032 1493 101 98 99 

30% 3696 3027 1479 100 98 100 

 
 

 

Figure 7. The water head prediction at 20% water saving in 
July-August. 
 
 

 

Figure 8. The salt concentration prediction at 20% water 
saving in July-Augu
 
areas. 

5.2. Predicting the Consequences of 

Underground dams and ith the aim 
to regulation u r  water an rev sea er 
intrusion. Underground cut-off walls are built to stop 

underc nt a aw e lo d 
the dam  are l
and  are  We can a e  l 
ability of dam he p c n s 
the ing e . d s 

op undercurrent and increase water supply, playing the 

pitation supply coefficient, playing the role of retaining 
and g water. Thi s dams in 
se ad egi retain and regulate under- 
ground water, increase the he of the fresh water 
heads in upper v he se sea ter 
intrusi d th yi  im an  f r 
invaded gions in wer aches. Finally, the dam  in 
lower es (n e  p t seawat tr n. 
Tidal es u om d w art e 
art on the ground and the underground base. Our 

 both parts are very useful. The 
on-the-ground part prevents seawater coming in with 
windstorms, while the underground part prevents sea- 
water intrusion in common situations because of its small 
permeability. The advantages of tidal barrages especially 
obvious in of windy period. 

There usually are two kinds of anti-percolator, namely: 
lower reaches dam in seawater invaded region, and upper 
reaches dam in seawater invaded region. 

e sea, or in other places where both salt and 
esh water move freely. If a large amount of under- 

ground water is pumped out in coastal areas, water level 
goes down rapidly. When underground water level is 
lower than the average tidal level, seawater intrusion 
happens. This is because of the continuity between inland 
fresh water and seawater. Underground dams reduce 
greatly or completely stops the permeability of auto- 
chthonous layer. Therefore, cut-off walls can reduce the 
possibility of the seawater in lower reaches intruding 

trusion thanks to the combined actions of their own and 
ater curtain. Underground dams should be located 

far from the upstream of tides with the consideration of 
ould he built 

who  
unde m. 

st. 

Underground Dam and Tidal Barrage 
Projects 

reservoirs are built w
nderg ound d p ent wat

urre nd se ater, since water h ad is w an
s

safety
ocated 
high.

under the ground, so
say th

 the stability 
epaget the s contro

s is t  key oint. Our pra tice i dicate
follow four ffects Firstly, undergroun  dam

st
role of saving and regulating water. Secondly, they raise 
underground water level and increase artificial preci- 

 supplyin
awater inv

rdly, the upper reache
ed r ons 

ight 
reaches, relie ing t  pre nt wa

on an us pla ng an port t role or seawate
 re

 reach
 lo

ear th
 re

coast)
s

usioreven er in
barrag are us ally c pose  of t o p s: th

p
analysis indicates that

Lower reaches dams should be built on rivers which 
empty into th
fr

inland. Moreover, they can retain and regulate the 
drainage of underground water. They stop seawater 
in
fresh w

tide actions. Otherwise, tidal barrages sh
se upper part is barrage and the lower part is
rground da

As for the upper reaches dams in seawater intruded 
areas, since the intrusion has occurred, the underground 
walls must be built at the head of these areas with the 
aim to retain underground water and increase the fresh 
water head from upper reaches and to make seawater 
intrusion stable. This is also useful for inland fresh water 
areas far from the coast because these dams prevent the 
decrease of fresh water amount going into the sea, and 
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thus prevent the descent of underground water level in 
the upper area of intruded areas. The descent of under- 
ground water level accelerates seawater going into the 
inner part of fresh water areas. 

We predicted the effects of the dams on both upper 
and lower reaches on seawater intrusion. We chose the 
above-mentioned calculation regions. The results are 
shown in Table 5. Figure 9 shows the calculated 
concentration comparison curve. Where A is the depth of 
the lower reaches dam 0 m. water level of the upper 
reaches is –1.5 m. B is the depth of lower reaches dam 
2m. Water level of the upper reaches is –1 m. C is the 
depth of lower reaches dam 4 m. Water level of upper 
reaches is –0.5 m. D is the depth of the lower reaches 
dam 6 m. Water level of upper reaches is 0 m. 

5.3. Applied Modular Form of Project 
Adjustment 

We should also apply numerical simulation to make 
underground water mechanics serve our goal. As for 
water supply, we should study how to make the limited 
underground water resources exert the most social and 
economic benefits, how to limits underground water 
level descent within our control and how make water 
supply reach the utmost. As for the protection of natural 
resources, we should study how to control pollutant 
discharge and prevent underground water being polluted, 
and how to keep water quality within the permission of 
hygienic standards. Here we propose the optimal 
 
Table 5. Cl‾ concentration computation with the effect of 
upper reaches and lower reaches dams (after two months). 

Observation point Computation 
condition 1 2 3 4 5 6 

A 0.103 0.186 2.148 4.019 10.900 15.046

B 0.103 0.184 2.142 3.999 10.678 14.800

C 0.103 0.182 2.136 3.987 10.460 14.531

D 0.103 0.180 2.132 4.006 10.325 14.358

 

 

 

Figure 9. Curves of concentration comparison (two months). 

m

r are 4940 
m/d and 4227 m/d, respectively. Taking some observed 

d well and 
appl ethods, we optimize and study ad-

salt concentration of Case 1 is shown in Figure 10. 
n tables, it at the second 

pum ll a cts m re h ily n th irst one as 
for the level of rved wells. Thus, we can draw he 
follow  conc n

1) F  the f g  w e 
 

Tab . Adj m f    (

m ber

ethod (linear programming) and numerical method. By 
their combined efforts the modular form is optimized and 
controlled. Namely, we take underground water vari- 
ables (water level, discharge, concentration and so on) in 
differential equations as the decision variables, use dif-
ference method change them into linear algebraic equa-
tion groups and introduce them into linear programming 
model as the constraint conditions. 

Now we perform numerical simulation of a real pro-
ject. Assume that there are two pumping wells lying in 
some area, whose quantities of pumping wate

well A near pumping wells as a new observe
ying previous m

justed project modes under different cases. 
Let it be supposed that the maximum quantity of 

pumping water of each well is never more than 5000 
m3/d during winter without any rain. Three cased are 
considered here to optimize the quantity of each well 
with adjusted computation. The first case is that the 
groundwater level of observed well doesn’t decrease 
(Case 1). The second case is that the increase of the level 
is less than 0.1 m (Case 2). And the last case is that the 
increase of the level is more than 0.1 m (Case 3). Nu-
merical data under three cases described above are illus-
rated in Table 6. t

With three cases considered above, prediction for 
seawater intrusion problems is shown in Table 7, and the 

From the data i  is easily seen th
ping we ffe

obse
o eav tha e f

 t
ing lusio s. 
or ixed pumpin  well and observed ell, th

le 6 usted ode o  water saving project m3/d). 

Pu ping well num  
Quantity

1 2 3 

Case 1 5000 1840 6840 

Case 2 5000 1620 6620 

Case 3 5000 2050 7050 

 
Table 7. Changes of salt concentration in soil under differ-
ent conditions (mg/L). 

Observation point 
Water head 

1-1 2-2 3-2 4-2 5-2 6-2

Case 1 3875 3043 1494 101 98 100

Case 2 3870 3042 1491 101 98 100

Case 3 3924 3056 1526 101 98 99 

Copyright © 2012 SciRes.                                                                                  IJG 



Y. R. YUAN  ET  AL. 990 

 

Figure 10. The salt concentration of Case 1. 
 
first pumping well can work in the usual form while the 
second one should be strictly restricted by applying some 
water saving rules nearby. 

2) Needs of the second pumping well should be firstly 
considered in Yellow River Diversion Project. 

If the locations of pumping wells and observation 
points are different, the regulation modular forms are 
different too. With the establishment of ecological and 
environmental control projects, it is possible to get the 
timely and accurate observation data about seawater in-
trusion. Therefore, the established control model can do
co
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