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Abstract 
Multiprocessor System on Chip (MPSoC) technology presents an interesting 
solution to reduce the computational time of complex applications such as 
multimedia applications. Implementing the new High Efficiency Video Cod-
ing (HEVC/h.265) codec on the MPSoC architecture becomes an interesting 
research point that can reduce its algorithmic complexity and resolve the real 
time constraints. The implementation consists of a set of steps that compose 
the Co-design flow of an embedded system design process. One of the first anf 
key steps of a Co-design flow is the modeling phase which allows designers to 
make best architectural choices in order to meet user requirements and plat-
form constraints. Multimedia applications such as HEVC decoder are com-
plex applications that demand increasing degrees of agility and flexibility. 
These applications are usually modeling by dataflow techniques. Several ex-
tensions with several schedules techniques of dataflow model of computation 
have been proposed to support dynamic behavior changes while preserving 
static analyzability. In this paper, the HEVC/h.265 video decoder is modeled 
with SADF based FSM in order to solve problems of placing and scheduling 
this application on an embedded architecture. In the modeling step, a 
high-level performance analysis is performed to find an optimal balance be-
tween the decoding efficiency and the implementation cost, thereby reducing 
the complexity of the system. The case study in this case works with the 
HEVC/h.265 decoder that runs on the Xilinx Zedboard platform, which offers 
a real environment of experimentation. 
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Systems 

 

1. Introduction 

The evolution of digital video industry is being driven by continuous improve-
ments in processing performance, availability of higher-capacity storage and 
transmission mechanisms. The increasing complexity of embedded applications 
deployed on Multiprocessor Systems-on-Chip (MPSoC) ranging from multime-
dia applications and telecommunications to aerospace applications has raised 
problems related to performance estimation and evaluation. The designer must 
have a view of the execution time of the various functions of the system to be de-
signed, the memory size, the energy consumed, the silicon space of the hardware 
components and other necessary parameters to take decisions for architectural 
solutions. Performance evaluation in embedded systems can be carried out by 
different methods; either by measurement, by simulation or by analytical me-
thods. Analytical methods are based on mathematical models to represent the 
application on one hand and the hardware platform on the other hand and then 
to apply performance estimation algorithms to analyze them. 

Although these analytical approaches are less precise than approaches based 
on measurements and simulation, they are characterized by their speed and high 
level of abstraction allowing the designer to make quick decisions for the archi-
tectural choices of the system to be designed. Analytical methods represent the 
system to be conceived as a set of competing processes or actors linked through 
communication channels and called Model of computation. A Model of Com-
putation (MoC) determines the rules that are used for computation inside 
processes and communication between processes. Models of computation allow 
abstracting the implementation of computation and communication in the sys-
tem. Once system functionality is expressed using a MoC, this model can be 
subjected to transformations and analysis to reach an efficient implementation. 
There are many MoCs in the literature [1] [2] [3]. One of the most MoCs used to 
model streaming applications is Synchronous Data Flow (SDF) [4] [5]. Our 
work is concerned by the use of a variant of SDF graphs called SADF to estimate 
analytically the maximal achievable throughput of a multitask application under 
design. SDF Graphs (called also multi-rate regular dataflow graphs), initially 
proposed by Lee [6], are directed graphs where edges represent one-to-one data 
channels and whose vertices represent actors or tasks that operate on that data. 
As soon as all the input data have arrived, these actors begin their execution, af-
ter which they produce their output data. As long as such a data flow model is 
analyzable, performance guarantees can be obtained at design time. 

2. Related Works 
Synchronous Data Flow graphs are used in several works that deal with model-
ing, performance estimation and throughput analysis of MPSoC applications. S. 
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Stuijk [7] is the first person who proposed an SDF graph to map a multimedia 
application on NoC-MPSoC platforms in order to minimize the resource usage. 
The flow begins with an application-aware SDF that is gradually transformed to 
handle resource sharing over a multi-tile architecture. In [8], authors use timed 
SDF graph to model NoC architectures with predefined guaranteed of band-
width and a maximum latency. Several predictable arbitration mechanisms of 
MPSOC and NoC have been used, such as Round robin, TDMA, and Static 
sharing. In [9], authors studied the use of SDF in performance estimation after 
task migration from software to hardware. In [10], authors proposed an ap-
proach that uses Resource Manager (RM) actor to analyze applications that are 
modeled with SDF graphs. RM is a task responsible for resources access (critical 
or not). The designer reserves for the RM a whole execution node (CPU, mem-
ory, bus...) which increases the cost of the total MPSoC system. In [11], Wiggers 
et al. proposed a solution that exploits the SDF graphs to compare the through-
put obtained with the target throughput of the application. SDF is used for the 
modeling sharing multi-port memory tiles in order to generate the best alloca-
tion. In [12], authors use SDFs to estimate the worst-case performance of a sys-
tem before implementation. They developed a generic communication assistant 
module for multi-processors and multi-applications systems. In [13] [14], au-
thors use FSM-SADF in order to model dynamic applications with multiple ex-
ecution scenarios. Each scenario (behavior) is modeled by an SDF, and the FSM 
represents the possible orders in which active scenarios occur. Astochastic ver-
sion of the SADF model is studied in [15]. In addition, in [16] homogeneous 
SDF graphs are considered (graphs in which all consumption and production 
rates are equal to one) to use SDF behavior. Only the execution times of affixed 
collection of actors can vary with scenarios. The approach presented in [17] is 
the most related to this work. It uses essentially the same model of computation, 
Scenario-Aware Dataflow Graphs (SADF). It introduces an analysis technique 
that works by building up a global state-space representation of the detailed be-
havior of the graph across sequences of scenarios. Transitions are at the level of 
individual firings of actors. This tends to lead to very large state spaces and trac-
tability issues with larger models. [18] deals with scenarios of SDF behavior, but 
in their case only homogeneous SDF graphs are considered (graphs in which all 
consumption and production rates are equal to one), and only the execution 
times of affixed collection of actors can vary with scenarios. In [19], authors 
tried to find linear upper bounds on transient behavior of an SDF; this allows the 
behavior of an SADF to be analyzed. 

3. Background 

A Co-design flow of embedded systems [20] consists of a set of steps beginning 
with a requirements specification and ending with the integration of the soft-
ware and hardware into silicon chip. Among all stages of a Co-design flow, per-
formance estimation is performed to carry out measurements relating to execu-
tion time, energy consumption, memory space of the various functions and other 
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necessary information for co-design steps. 
Specification is usually represented as a software application coded with a 

high level language such as C/C++, Matlab, Sytemc. This specification is run on 
a host machine in order to test its functionalities and further understand the 
specificities of the whole system. Once this specification is tested, a profiling step 
[21] [22] is usually performed to define a profile of each entity of the system and 
establish a call graph function as well as other information such as execution 
time, size and type of data Exchanged. All this information is a parameter whose 
designers use to define architectural choices either in the modeling phase and 
partitioning phase of the Co-design flow. Once the modeling is done, a verifica-
tion of the established model is required. Several methods, languages and tools 
are available to designers to do this verification. The choice of tools and ap-
proaches depends essentially on the nature of the application to be modeled (for 
example, data flow oriented or control flow oriented), but also depends on the 
experience of the design team and the availability of tools grasped. 

Usually the verification step is performed by simulation, hardware emulation 
or by formal methods (e.g. Model Checking, Theorem Proving...). But when ap-
plications become increasingly complex (e.g. Multimedia applications) and ar-
chitectures are increasingly powerful (e.g. MPSOCs), the use of these traditional 
verification methods on complex embedded systems appears increasingly ineffi-
cient. In fact, the use of traditional methods of verification with these new sys-
tems consumes either an intolerable processing time (e.g. logic simulation), or 
an exaggerated memory size (e.g. Model Checking). For this purpose, designers 
have recourse to new modeling and verification methods, namely Model of 
Computation (MOC). 

3.1. Data Flow Model of Computation 

A model of computation is a representation of the application as a function of 
the data dependencies that exist between its different functional blocks. The ap-
plication will thus be represented as a network of several tasks whose application 
is composed of. This type of representation makes it possible to facilitate the 
knowledge of the intrinsic parallelism of the application and of the memory 
space that the application will need. Kahn process networks [23] were at the ori-
gin of the data flow paradigm. A Kahn process network is a network of actors 
connected by infinite (unbounded) channels of the FIFO type and able to store 
data tokens. A data token is an atomic data fragment (can not be split). Kahn 
also established a formal representation for the Kahn Process Network. An actor 
can therefore be described as a functional process that produces a sequence of 
data tokens from another data token sequence. The network of data flow 
processes inherits its formalism from the Kahn process networks, but associates 
with each actor a set of fusion rules that give the tokens necessary for an actor to 
trigger. This allows for a more in-depth analysis of the network using a set of 
properties. To allow further analysis, the Synchronous Data Flow (SDM) model 
takes the semantics of the data-flow process network and restricts its expressivity 
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by specifying the data production/consumption rate as an integer value for each 
actors interconnection. Such information allows certifying the application to be 
deadlock free and to compute a statically schedule and computer memory re-
quirements. In order to allow the expressiveness of the rather restrictive SDF 
model, several models were issued. The Boolean Data Flow Model (BDF) [24] 
aims at introducing switching and selection instructions into the SDF model. 
Boolean data flow (BDF), for instance, extends the SDF model of computation 
with two special actors called switch and select. The first one reads one input to-
ken and forward it to one of two possible outputs. The output to select is speci-
fied by a second Boolean input port. In the same way the select actor reads a to-
ken from one of two possible inputs and forwards it to a single output port. Al-
ready these simple extensions together with unbounded FIFOs are sufficient to 
generate a Turing complete model of computation. Integer-controlled data flow 
(IDF) [25] is an extension of BDF in that the switch and select actors can have 
more outputs or inputs, respectively. Whereas this helps to simplify the applica-
tion models, it does not offer further expressiveness, as BDF is already Turing 
complete. Cyclo-dynamic data flow (CDDF) [26] aims to enhance the analysis 
capabilities of dynamic data flow descriptions. Its major idea is to provide more 
context information about the problem to analysis tools than this is done by 
BDF. For this reason, an actor executes a sequence of phases whose length de-
pends on a control token. The latter can be transported on any edge, but must be 
part of a finite set. Each phase can have its own consumption and production 
behaviour, which can even depend on control tokens. Several restrictions take 
care that the scheduler can derive more context information, as this would be 
the case for BDF graphs. For instance, a CDDF actor is not allowed to have a 
hidden internal state. 

3.2. Synchronous Data Flow 

Synchronous dataflow (SDF) [27] [28] network is composed of actors that are 
connected by FIFO channels. When an actor fires, it consumes tokens from in-
put channels and produces tokens on output channels. Firings of an SDF actor 
create a process. The actor’s firing rule specifies how many tokens are consumed 
on each input and how many will be produced on each output. In SDF, the 
number of tokens consumed on each input in every firing is constant, ie the fir-
ing rule remains the same. 

The constant number of chips consumed and produced makes possible to 
make very efficient statics schedules. 

Figure 1 presents an SDF graph with three actors. Consumption and produc-
tion rates of tokens are labeled on each channel. For example, the consumption 
and production rates in channel ch3 are respectively TA13 and TA31. 

To construct a static schedule for an SDF graph, we must follow two steps. 
The first step is to determine how many times each actor should fire during ite-
ration. Iteration is a series of actor firings that return the channels to their origi-
nal state. The number of tokens in a channel is the same before and after  
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Figure 1. Example of a SDF graph. 

 
iteration. To accomplish the first step, we must solve the set of balance equa-
tions. Balance equations state that production and consumption of tokens must 
be equal on all channels. The balance equations for the SDF graph the Figure 1 
are shown below. 

1 11 2 21
1 13 3 31
3 32 2 23

FA TA FA TA
FA TA FA TA
FA TA FA TA

× = ×
× = ×
× = ×

 

FA1, FA3, FA2 are integers showing how many times actors A1, A2 and A3 
fire in a single iteration. They form a firing or repetition vector. The least posi-
tive integer solution is taken. For example if TA11 = 2, TA13 = 2, TA31 = 3, 
TA32 = 3, TA21 = 6 and TA23 = 6 then FA1 = 3, FA3 = 2 and FA2 = 1. We must 
resolve this equation: 1 2 2 6FA FA× = ×  and 1 2 3 3FA FA× = ×  and  

3 3 2 6FA FA× = × . We have as solution FA1 = 3, FA3 = 2 and FA2 = 1 
If we have as solution zero (the only solution), then the SDF graph is said to 

be inconsistent. This means that production and consumption of tokens cannot 
be balanced on all channels. As a result, the executions of an inconsistent SDF 
graph. 

SDF graph is an analyzable model, while certain more expressive dataflow 
models such as Dynamic Dataflow or Kahn Process Networks [23] are known to 
be undecidable; they couldn’t be used directly for such purpose. SDF graphs re-
strict their actors to produce and consume data with fixed rates per firing or, in 
case of CSDF (Cyclo Static Data Flow) with fixed periodic patterns. Many mod-
ern streaming applications, such as video or audio codec’s use advanced com-
pression and decompression algorithms and consequently have dynamic beha-
vior. So, they can’t be represented by a classic SDF graph. Extensions of the SDF 
graph are then necessary to cover such applications. Indeed, the dynamism ori-
ginates from various modes of operation in which resource requirements are 
considerably different. As an example the HEVC codec, the case study on this 
work. This CODEC divides a video stream into frames which itself is divided 
into blocks called CTU and uses different coding schemes for each CTU, de-
pending on its content [29] [30] [31]. SDF or CSDF cannot capture dynamic 
switching between frame types except by using an overly pessimistic common 
pattern for any frame type. Scenario-based or mode-based design [13] [14] is an 
approach in which the dynamic behavior of an application is considered as a set 
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of separate behaviors, called scenarios or modes. Each scenario is static and pre-
dictable in performance and resource utilization. It can therefore be treated by 
traditional methods. However, some other difficulties need to be addressed such 
as predicting scenarios and handling transitions between them. 

In this work, we use the Scenario-Aware Dataflow (SADF) [14] generalization 
of CSDF (Figure 2, Figure 3), which is based on scenarios to model the embed-
ded software and the target hardware platform. SADF characterizes each scena-
rio or individual mode by a specific SDF graph that models tasks with constant 
worst-case execution times. A finite state machine (FSM) is used for the Transi-
tions between scenarios. 

The HEVC Decoder is a dynamic application with several execution scenarios. 
Therefore, it cannot be modeled by SDF. The FSM-based-SADF extension is the 
suitable to model the application for a specific class of bitstream. Indeed, for a 
given class (a fixed frames resolution), it is possible to have four possible confi-
gurations (AI, RA, LP, LB) and several execution scenarios. The management of 
the various scenarios is carried out using a finite state machine (FSM). 

4. Our Approach of MPSoC Co-Design Oriented Performance 
Evaluation 

Our goal for using SDF in our Co-design flow is the performance estimation. It 
enables us to carry out measurements relating to execution time, energy con-
sumption, memory space of the various functions and other necessary informa-
tion for Co-design steps. Figure 4 presents our approach of MPSoC Co-design 
oriented performance evaluation. This approach is structured around four mod-
els: Functional Model (MF) of the application that describes the application be-
havior, Architecture Model AM which describes the target platform in number 
of processors, cache memory, communication system Bus/NoC…, Constraint 
Model (CM)in which constraints are specified and Performance Model (PM) 
that is used to provide performance metrics such as execution time and 
throughput. The two new models that we introduce in this approach are the PM 
and the CM models. These are two key models that guide the designer in the 
architectural choices during the Co-design process of the MPSoC system. The 
Constraint Model (CM) describes the functional constraints of the application 
and non-functional constraints of the target platform. The Performance Model  
 

 

Figure 2. Example of a CSDF graph. 
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Figure 3. Example of a SADF graph. 

 

 
Figure 4. Approach of MPSoC Co-design oriented Performance estimation. 

 
PM describes a performance evaluation of the system in every abstraction level. 
Every refinement of system is followed by a refinement of the correspondent PM 
model. The PM is enriched by results gotten by techniques and tools of perfor-
mance evaluation. The PM is more precise to the lowest abstraction levels. It 
takes into account the task parallel model, Software/Hardware partition, Oper-
ating System Real Time (RTOS), hardware architecture (type and number of the 
processors, size of RAM and size of cache memory) and communication system 
(Bus, NoC). 

Since at each step of the design of an MPSOC there is often a huge set of solu-
tions that should be explored, then a good performance estimation technique is 
required to identify no efficient solutions at early steps. We propose an approach 
where, at each level of abstraction, a functional model of the application is mapped 
on a model of the target platform to estimate the performance. If performance 
values obtained do not meet the application constraints then other design solutions 
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should be explored at this abstraction level otherwise additional details will be 
added to these models. 

Starting from a pure functional model of the application, the following details 
are gradually added: the number of processing elements, the HW/SW partition-
ing, the hardware topologies, scheduling techniques used by the embedded OSs, 
Communication network architecture, HAL, etc. Both analytic and simulation 
techniques are used during the estimation. 

5. Case Study: HEVC/h.265 Decoder 

The HEVC standard [29] [30] is based on hybrid video coding based blocks. It 
implements the concept of block partitioning, which divides the image into 
blocks. Each block is predicted using either intra-frame or inter picture predic-
tion. Intra-frame exploits spatial redundancy between the blocks within an im-
age. Inter-picture uses the temporal redundancy between pictures. The predic-
tion error is made by the difference between the original image and the pre-
dicted image in the case of both intra- and inter-picture prediction. The result-
ing prediction error is transmitted to the transform coding means followed by 
quantization and entropy coding. In the previous version of the standard HEVC 
(AVC, h.264) [31], the division of a frame is done according to 16 × 16 ma-
cro-blocks. In HEVC, h.265, a frame can be divided into “coding tree blocks” 
(CTBs). Depending by an encoding setting, the size of the CTB can be of 64 × 
64, 32 × 32 or 16 × 16. Indeed, several studies have shown that bigger CTBs pro-
vide higher efficiency (but also higher encoding time). Each CTB can be split 
recursively, in a quad-tree structure, in 32 × 32, 16 × 16 down to 8 × 8 
sub-regions, called coding units (CUs). 

In HEVC, CUs are the basic unit of prediction. Usually smaller CUs are used 
around detailed areas (edges and so on), while bigger CUs are used to predict 
flat areas. Each CU can be recursively divided into Transform Units (TUs) or 
Prediction Units (PUs) with the same quad-tree approach used in CTBs. Unlike 
AVC that used mainly a 4 × 4 transform and occasionally an 8 × 8 transform, 
HEVC has several transform sizes: 32 × 32, 16 × 16, 8 × 8 and 4 × 4. The trans-
forms are based on DCT (Discrete Cosine Transform) except for intra 4 × 4, 
when transform is based on DST instead (Discrete Sine Transform) because sev-
eral tests have evidenced a small improvement in compression. The HEVC de-
coder takes as an input a compressed file called bit-stream from which it extracts 
and decodes all the syntax elements, and then constructs each frame of the orig-
inal video sequence. Figure 5 illustrates a common architecture of the HEVC 
decoder. 

The decoding process can be divided into four main stages (Figure 5). The 
first stage is the entropy decoding that parses and decodes the bitstream file. It 
extracts relevant data such as reference frame indices; intra-prediction mode and 
coding mode. This information is transmitted to their respective modules. The 
second stage is called reconstruction step, which contains the inverse quantiza-
tion (IQ), inverse transform (IT) and a prediction process. 
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Figure 5. Block diagram of HEVC Decoder. 

 
Quantized and transformed coefficients are handled, respectively, by the in-

verse quantization (IQ module in Figure 5) and the inverse transform (IT mod-
ule, in Figure 5). The prediction process can be either intra-prediction or mo-
tion compensation (inter-prediction). The intra prediction block operates when 
the frame is an I frame. The inter prediction block operates when the frame is a 
P or B frame. The next step, before filtering is the storage of the reconstructed 
samples, the residue added to the predicted samples. This latter, will be used as 
references by the intra-frame or the inter-frame prediction modules. 

The third step is the Loop filter composed by two filters blocks. The first is 
Deblocking Filter (DF) applied at the boundaries of the reconstructed blocks. It 
reduces the mean sample distortion of the decoded frame compared to the orig-
inal one. The second is a new filter introducing with HEVC called Sample Adap-
tive Offset (SAO). It transmits offset values that can either resemble to the inten-
sity band of pixel values (band offset) or the difference compared to neighboring 
pixels (edge offset). 

6. FSM-SADF Model of HEVC/265 Decoder 

To model an application with an SDF graph, the designer must have at his dis-
posal information that concern the application, its functions (actors), the ex-
changed data (tokens) and their sizes, the size of the data used in each function 
and constraints to which the application is subject. This information can be ex-
tracted by performing a fine profiling step of the application. We have thus per-
formed a profiling step that combines manual profiling with the use of available 
profiling tools such as Valgrind [32], Gpr of [33], mempr of [34]. Sequences 
used in this work are extracted from reference sequences and configurations 
proposed by the JCT-VC [35]. The sequences are divided into 6 groups 
(Classes). Group A corresponds to sequences with a resolution of 2560 × 1600 
pixels, group B contains sequences with a resolution of1920 × 1080, group C 
consists of sequences with a resolution of 832 × 480 pixels, sequences of groups 
D have a resolution of 416 × 240 pixels and Group E consists of sequences with a 
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resolution of 1280 × 720. The last group, F consists of sequences with a resolu-
tion of 1024 × 768. 

Our work is based on the HEVC HM Test Model [36]. This is an open source 
project under BSD license. It is intended for the implementation of an efficient 
HEVC C++ decoder. The version used in this work has been downloaded from 
[36] and it is compliant with the HEVC standard. Our profiling strategies are 
described in previous work [22] [30]. 

6.1. Actors Identification and Dependencies 

To determine actors of the system and the relations between them, we check the 
behavior of the decoder described above by carrying out a parametric analysis of 
the application. 

According to the profile stage, we identify eight actors as presented in Table 1. 
Each actor represents a set of C++ classes in the HM test Model application.  

6.2. Number and Size of Data Exchanged (Tokens Exchanged) 

The number and size of the tokens exchanged between the actors is determined 
by following the WCET principle. 
It is necessary to observe the data exchanged in the different configurations and 
to choose the largest number and the largest size. We must therefore define this 
information for the different classes (A, B,∙∙∙, F). We will take as an example the 
class C that corresponds to the 832 × 480 resolution which corresponds to 
399,360 pixels. So the size will be 399,360 × 4 = 1,597,440 bytes. According to the 
rule of the worst case, the size of CTU that will be chosen is 16 × 16 (256). So the 
maximum number of CTUs (tokens) exchanged will be: (832 × 480)/256 or 
399360/256 = 1560 CTU (case of class C). 

The data exchanged between the different actors of the HEVC CODEC are: 
- Residual CTUs that are processed by IQ, IT actors. The maximum size of a 

CTU is 64 × 64 or 4096 pixels or 16,384 bytes. 
- Intra-prediction data (from the ED block to the Intra-prediction), it can be at 

most a CTU that is: 16,384 bytes. 
 

Table 1. Actors of HEVC Decoder. 

Actor Functionnal Block 

ED Entropy Decoding 

IQ Inverse Quantification 

IT Inverse Transform 

IP Intra Prediction 

MC Motion Compensation 

RC Reconstruction 

DF Deblocking Filter 

SAO SAO Filter 
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- Inter-prediction data (from the ED block to the Inter-prediction block or MC 
block) composed of the motion vectors. Each motion vector is encoded 
with 12 bytes (array of 3 integers). Indeed, the motion vector is composed 
of 3 parameters, the origin, the angle and its length. Each one coded by 1 
byte. 

- An unfiltered image (from the RC block to the Loop Filter block), 399,360 
pixels* 4 bytes or 1,597,440 bytes (size of a frame for class C). 

- A full filtered image (from the Loop Filter block to the prediction blocks, IP 
and MC), 399,360 bytes or 1,597,440 bytes (size of a frame for class C). 

- Useful data for the Loop Filter block (from the ED block to the SAO filter). It 
can be maximum 5 bytes. 

6.3. Number of Motion Vectors 

The number of motion vectors is always less than or equal to the number of 
CTUs (it will be equal if all the CTUs that exist in the current image also exist in 
the reference image even if they change positions) because a vector of Movement 
carries information about a CTU that has a copy in the reference image. To do 
this, we can fix the Maximum number of motion vectors in a frame at 1560 (the 
number of CTUs in a class C frame). 

This will pose a modeling problem since it is difficult to create a scenario for 
each case (i.e. 1561 cases for class C, for example). According to a work in [37], 
the number of blocks that have motion vectors in a frame obeys a probabilistic 
law. We rely on the values proposed in the following table (Table 2) and the 
curve of Figure 6. 

Actually, and observing this probability curve, we can note that this charts has 
a spike between values 30.3% and 60.6%. So it is possible to limit the choice of 
the values representative of the possible cases of the motion vectors, which are 
very numerous as it is already mentioned. It can be limited to values in this in-
terval and moreover one will try to distribute the chosen values along the chosen 
portion of the interval to be near to the real values whatever the case (the real 
value falls always close to one of the approximate values). 

6.4. Scenarios Determination 

An application that changes its mode of operation according to its input is a dy-
namic application. Therefore, it must be modeled with dynamic modeling. Each 
use case will have its own parameters (execution time, memory size, number of 
tokens exchanged....) and therefore corresponds to an execution scenario. The 
HEVC decoder is an example of dynamic applications with multiple execution 
scenarios. Indeed, for a given class (A, B, C,∙∙∙, F), the operation mode of the de-
coder depends on three parameters: 
- The type of frame to be decoded (I, P or B). 
- The number of motion vectors in this frame (P and B). 
- The number of blocks that do not have copies in an I frame. 
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Figure 6. Probability of the numbers of motion vectors. 

 
Table 2. Percentage and number of CTU/frame with motion vectors 

% of 
CTU/frame 

Number of 
CTU/Frame 

(Class A) 

Number of 
CTU/Frame 

(Class B) 

Number of 
CTU/Frame 

(Class C) 

Number of 
CTU/Frame 

(Class D) 

Number of 
CTU/Frame 

(Class E) 

Number of 
CTU/Frame 

(Class F) 
Probability 

0 0 0 0 0 0 0 0.02 

30.3 4848 2454.30 472.68 118.17 1090.80 930.816 0.05 

40.4 6464 3272.40 630.24 157.56 1454.40 1241.088 0.25 

50.5 8080 4090.50 787.80 196.95 1818.00 1551.360 0.25 

60.6 9696 4908.60 945.36 236.34 2181.60 1861.632 0.09 

70.7 11312 5726.70 1102.92 275.73 2545.20 2171.904 0.09 

80.8 12928 6544.80 1260.48 315.12 2908.80 2482.176 0.09 

100 16000 8100 1560 390 3600 3072 0.04 

 
The number of scenarios will therefore depend on the combinations of frame 

types, number of blocks in a frame with motion vectors (for P and B frames), 
and blocks with copies for I frames 

7. Experimental Results 
7.1. Experimental Platform 

Zedboard platform [38] (Table 3) is an evaluation platform based on a 
Zynq-7000 family [39]. It contains on the same chip two components. The first 
is a dual-core ARM Cortex MPCore based on a high-performance processing 
system (PS). It can be used under Linux operating system or in a standalone 
mode. The second is an advanced programmable logic (PL) from the Xilinx 7th 
family that can be used to hold hardware accelerators in multiple areas. The two 
parts (PS and PL) interact between them by using different interfaces and other 
signals through over 3000 connections. Available four 32/64-bit high-performance 
(HP) Advanced eXtensible Interfaces (AXI) and a 64-bit AXI Accelerator Cohe-
rency. 

7.2. Test Sequences 

As an effort to carry out a good evaluation of the standard, the JCT-VC devel-
oped a document with some reference sequences and the codec configuration,  
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Table 3. Zed board technical specifications. 

Component Characteristics 

Processeur ZYNQ-7020 AP SOC 
XC7Z020-7CLG484CES 

2 ARM Cortex A9 cores at 667 MHz 

Memory 512 MB DDR3, 256 MB Quad-SPI Flash and SD Card 

Communication 10/100/1000 Ethernet, USB OTG and USB UART 

Extension FMC (Low Pin Count) and 5 Pmod headers (2 × 6) 

Display HDMI output, VGA output and 128 × 32 OLED 

Input/Output 8 switches, 7 push buttons and 8leds 

Current and Voltage 3.0 A (Max) and 12V DC input 

Certification CE and RoHS certifier 

 
which should be used with each one [35]. The sequences are divided into 6 
groups (Classes) based on their temporal dynamics, frame rate, bit depth, reso-
lution, and texture characteristics 

A subset of six video sequences was selected from this list. These six video se-
quences were selected from classes A to F. Detailed descriptions of the sequences 
are given in Table 4. 

7.3. The SDF3 Tool 

The open-source SDF3 tool set [40] used in this work offers an SADF graph 
generation algorithm that constructs random SADF graphs, which are con-
nected, consistent, and deadlock-free. This generation algorithm can be used to 
benchmark novel SADF analysis, transformation, and implementation algo-
rithms. The user can restrict relevant properties of the generated graph (e.g., 
limit port rates, or construct only acyclic or strongly connected graphs). A set of 
command line tools as well as a C/C++ API implemented all algorithms used. 
The rich set of algorithms offered by SDF3, makes it a versatile tool set for the 
development of novel dataflow-based design approaches. 

The predictable design flow contains four phases. Phase 1 aims to determine 
the memory that will be allocated for each actor and channel of the application 
graph on the tiles of the target platform. Phase 2 computes the minimal band-
width needed by the application and the maximal latency on the NoC. Phase 3 
binds the actors and channels of the application graph to the tiles of the 
NoC-MPSoC target platform. The arbitration is based on TDMA wheels for each 
processor. Phase 4 schedules the communication on the NoC, given the actors 
and channels mappings. When it is successful, the output of the predictable de-
sign flow is a NoC-MPSoC configuration that satisfies the throughput con-
straint. The configuration contains a mapping of the actors and channels of the 
SDF graph to the tiles and connections of the NoC-MPSoC destination platform. 
The mapping is modeled by applying transformations to the application graph, 
in order to model the binding of actors and channels to tiles and connections. 
The SDF3 tool has a conservative approach, which means that it will assume the 
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Table 4. Test sequences used on experimentations. 

Class Séquence QP Number of frames 

A Traffic 22 150 

B Cactus 22 500 

C Party Scene 22 500 

D BQ Square 22 600 

E Kristen And Sara 22 600 

F China Speed 22 500 

 
worst-case scenario at any stage of the analysis. The constraint that the SDF 
graph must respect is the bit rate that must not be below 25 frames per second. 
Therefore, 25 iterations per second because the decoder decompresses an image 
by iteration. The value of the constraint will therefore be 0.025 iterations pertime 
unit (ms). 

7.4. Actor’s Execution Times and Space Memory 

Execution times of actors are the first information needed for the modeling. It is 
expressed in abstract time units used by the sdf 3 flow command. The designer is 
thus free to map this abstract unit to a “manly” unit. The time unit used in this 
work is the processor cycle. To get actors’ execution times, several techniques are 
used. Some techniques use WCET tools or binaries; other uses simulation and 
other uses measurement and experimentations. In this work, we have done sev-
eral profiling experimentations on the target platform (Zedboard) to calculate 
the WCET of each actor. Table 5 presents sequences execution time and 
throughput for all classes on the Zed board platform. Figure 7 presents the indi-
vidual execution times for actors of HEVC Decoder (HM test model applica-
tion). 

In the rest of this paper, we present the experimental values applied to bits of 
class C (832 × 480 pixels). 

We will work with the largest execution time for the AI configuration (worst 
case), which is equal to 307.414 seconds, and after division on 500 we will have 
0.615 seconds (615 ms). In Tables 6-8, we present actors execution time, size of 
memory and size of tokens exchanged between actors for AI configuration. 

For the RA, LD, LP configurations, the largest execution time of the three 
configurations is 176.658 seconds and after division on 500 will have 0.3533 
seconds (354 ms), Actors Execution time (ms)-RA/LP/LB configuration 

The memory space sizes for RC, MC, IP, SAO and DB are 400,000 bytes be-
cause they manipulate variables that contain whole frames while the remainders 
are 5000 bytes because they only manipulate CTUs and then their variables are 
smaller. 

To model the HEVC decoder for all configurations in class C (our uses case in 
experimentations), we use FSM-based-SADF extension. It is the most suitable 
tool to describe the application. 
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Table 5. Sequences execution time and throughput for all classes on the Zedboard plat-
form. 

Class Configuration Execution Time (s) Throughput (f/s) 

A 

AI 610.68 0.25 

RA 293.25 0.51 

LP 310.86 0.48 

LB 333.82 0.45 

B 

AI 1074.852 0.47 

RA 532.566 0.94 

LP 595.297 0.84 

LB 609.094 0.82 

C 

AI 307.414 1.63 

RA 153.405 3.26 

LP 176.658 2.83 

LB 174.779 2.86 

D 

AI 86.741 6.92 

RA 48.555 12.36 

LP 55.283 10.85 

LB 55.67 10.78 

E 

AI 393.206 1.53 

RA 171.72 3.49 

LP 175.796 3.41 

LB 190.186 3.15 

F 

AI 382.396 1.31 

RA 216.837 2.31 

LP 217.949 2.29 

LB 226.296 2.21 

 
The SDF3 tool requires an xml file that describes all information collected 

from profiling step (such memory sizes, actors execution times, scenarios, tran-
sitions between scenarios…). It is essential to adapt this information to the syn-
tax imposed by the sdf3 because there are many rules to follow: 
- Sizes must be in bytes. 
- A same unit of time must be used along the description. 
- The execution times introduced are just for a single iteration. 

The extension of SDF, FSM-based-SADF, which we exploited in our work, 
requires that the values introduced in the XML description of the application are 
values that describe the worst case. In this case, the measurement and estimation 
results in terms of bit rate (throughput) and memory space provided by SDF3 
will never be exceeded even if there are other applications that run simulta-
neously on the same platform. 

For the class C we have 8 scenarios: I, BP0, BP400, BP600, BP800, BP1000, 
BP1300, BP1560. After that, we can notice the existence of the values of the rates, 
which are denoted by integers (when the value is constant for all the scenarios) 
or by letters (a, b, c, d when the value is a variable according to the scenarios),  
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(a)                                                   (b) 

Figure 7. Percentages of execution time for each actor (for AI and RA configuration). 
 

Table 6. Actors Execution time (ms)—AI configuration. 

(a) 

ED RC IQ IT MC IP DF SAO 

313.56 12.30 18.44 43.04 inactif 122.97 73.78 30.74 

(b) 

ED RC IQ IT MC IP DF SAO 

84.80 7.07 7.07 10.60 148.39 21.20 60.06 14.13 

 
Table 7. Sizes of memory spaces consumed to store the internal state of each actor (byte). 

ED RC MC IQ IT DB IP SAO 

5000 400,000 400,000 5000 5000 400,000 400,000 400,000 

 

Table 8. Sizes of tokens (byte). 

DE2IQ DE2MC DE2IP DE2SAO IQ2IT IT2RC TA23DF DF2SAO MC2RC SAO2MC TA23IP IP2RC 
16,384 12 16,384 5 16,384 16,384 1,597,440 1,597,440 1,597,440 1,597,440 1,597,440 1,597,440 

 
Table 9 presents the values of rates according to the execution scenario. Y is the 
number of CTUs that are the references in an I frame. i.e. CTUs that will be used 
to generate the others (they will be passed in the residue). X is the number of 
blocks that have motion vectors. So (1560-x) is the number of CTUs that will be 
passed in the residue (case of frames of types P and B). 

Table 10 illustrates the throughput variation of the decoding application ac-
cording to the available memory size. 

When we increase the memory space dedicated to input output channels for 
different actors, the throughput increases. 

8. Conclusions 
In this paper, we presented an approach oriented performance estimation for 
MPSoC Co-design flow. This approach is structured around four models:  
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Table 9. Scenarios. 

 
Scenarios 

Iy BPx 

a Y 1560 – x 

b 0 X 

c 1 0 

d 1 0 

 
Table 10. Throughputs variation. 

Total memory size (MB) Throughput (frame/s) 

0.85379 5.1 

21.099652 5.1 

21.09975 5.1 

21.427566 5.1 

21.427622 5.1 

21.755438 5.1 

312.548904 64.5 

312.630914 64.5 

312.794898 64.5 

312.958882 64.5 

313.122866 64.5 

313.28685 64.5 

521.159654 106.1 

521.323638 106.1 

521.487622 106.1 

521.651606 106.1 

521.81559 106.1 

521.979574 106.1 

729.852378 147.7 

730.016362 147.7 

730.180346 147.7 

730.34433 147.7 

730.508314 147.7 

730.672298 147.7 

938.545102 189.3 

938.709086 189.3 

938.87307 189.3 

939.037054 189.3 

939.201038 189.3 

939.365022 189.3 
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Functional Model MF (describing the application behavior), Architecture Model 
AM (describing the platform targets in number of processors, cache memory, 
communication system Bus/NoC), Constraint Model CM and Performance 
Model PM (execution time representation). The two new models introduced are 
the PM and the CM. The Constraint Model (CM) describes the functional con-
straints of the application and non-functional constraints of the target platform. 
The Performance Model PM describes a performance evaluation of system in 
every abstraction level. An extension of Khan’s model is used. It is based on ad-
dition of relative annotations to execution times and to the size of the data ex-
changed of the parallel model. Experimentation is achieved, in this context, on 
the HEVC/h.265 decoder and the Zedboard platform of Xilinx. 

The HEVC/h.265 video decoder is modeled with SADF based FSM in order to 
solve problems of placing and scheduling this application on an embedded ar-
chitecture. This is done by identifying actor dependencies, number of data ex-
changed (tokens), execution time and space memory of the decoder applied on 
C class of bitstreams. 

A high-level performance analysis is performed to find an optimal balance 
between the decoding efficiency and the implementation cost allowing for a 
complexity reduction at a system level. For an optimal use of the HEVC tools, 
the best configuration parameters are obtained. For this cost-efficient configura-
tion, the absolute complexity values, the memory and task level profiling results 
confirmed the big challenge needed for its effective implementation. For such 
implementation, a multiprocessor approach is needed to share the decoding ap-
plication execution time between several processors for achieving better execu-
tion performances and real time decoding. 
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