
Int. J. Communications, Network and System Sciences, 2017, 10, 107-128
http://www.scirp.org/journal/ijcns

ISSN Online: 1913-3723
ISSN Print: 1913-3715

DOI: 10.4236/ijcns.2017.106006 June 13, 2017

Achieving Mobile Cloud Computing through
Heterogeneous Wireless Networks

Amani S. Alnezari1, Nasser-Eddine Rikli2

1Community College in Alula, Taibah University, Madinah, KSA
2Department of Computer Engineering, King Saud University, Riyadh, KSA

Abstract
A Mobile Cloud Computing environment with remote computing and vertical
handover capabilities will be considered. A fuzzy logic model will be suggested
for both the offloading and handover functions using energy, delay and com-
putation complexity as criteria. Based on the application requirements, some
rules will be proposed and evaluated when deciding on the offloading then the
selection of the network that keeps the traffic carried to the cloud at an ac-
ceptable level. All this ought to be achieved in real time while the application
is still running. The proposed engine will be implemented and run on an An-
droid mobile device connected to Google’s App Engine servers. Results will be
presented and analyzed, and conclusions will be provided.

Keywords
Mobile Cloud Computing, Vertical Handover, Fuzzy Logic

1. Introduction

Mobile Cloud Computing (MCC) builds on the concept of Cloud Computing
with an added mobility feature [1]. It is considered as a viable solution to over-
come the limitations of mobile devices, such as low computational power, li-
mited battery life, and restricted memory capabilities. With the rapid advance-
ments in telecommunications technologies, MCC has received attention as a way
to overcome these limitations. In an MCC environment, the entire data is sent to
the Cloud server from the mobile device, so that data may be processed using the
powerful computing resources available in the Cloud servers. Afterwards, the
mobile device gets the processed data back from the Cloud server, after all
processes have been completed. It is such integration of mobile computing with
Cloud computing that has become known by MCC.

How to cite this paper: Alnezari, A.S. and
Rikli, N.-E. (2017) Achieving Mobile Cloud
Computing through Heterogeneous Wire-
less Networks. Int. J. Communications,
Network and System Sciences, 10, 107-128.
https://doi.org/10.4236/ijcns.2017.106006

Received: April 15, 2017
Accepted: June 10, 2017
Published: June 13, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ijcns
https://doi.org/10.4236/ijcns.2017.106006
http://www.scirp.org
https://doi.org/10.4236/ijcns.2017.106006
http://creativecommons.org/licenses/by/4.0/

A. S. Alnezari, N.-E. Rikli

108

MCC is expected to be used in heterogeneous networks that need different
wireless network interfaces. Possible candidates to access the cloud may include
WCDMA, GPRS, WiMAX, CDMA2000, and WLAN. Some issues arise as a
consequence of the concurrent handling of the wireless connectivity and provi-
sioning of the requirements of MCC applications (e.g., always-on connectivity,
on-demand scalability of wireless connectivity, and the energy efficiency of mo-
bile devices). The existence of heterogeneous networks increases the availability
of Internet services and applications (i.e., cloud services). Actually, most of the
latest mobile phones have at least two interfaces to access these services either
via WiFi or UMTS/HSPA [2], in addition to Bluetooth. An optimal use of hete-
rogeneous networks with today’s mobile phones includes seamless data trans-
mission by using vertical handoff (VHO) solution.

Commonly, heterogeneous networks have different characteristics in network
capacity, data rates, bandwidth, power consumption, Received Signal Strength
and coverage areas. Vertical handoff is a process that will allow selecting the best
network. It requires accurate and precise decisions about the availability of the
networks and their resources for connection. The actual trend is to integrate
complementary wireless technologies with overlapping coverage, to provide the
expected ubiquitous coverage and to achieve the Always Best Connected (ABC)
advantage. The ABC concept is to enable users to choose among a host of net-
works that best that suits his needs and to change when something better be-
comes available. It needs a framework for supporting mobility management,
access discovery and selection, authentication, security and profile server [3].

Our focus in this study, will be based on reducing energy consumption and
application execution time by providing seamless service through a combination
of offloading of computing processes to the cloud and vertical handover between
heterogeneous wireless networks [4]. The rest of the paper will be organized as
follows. In the next section, the related work will be presented, followed by the
proposed model. The simulation results will be presented an analyzed in the next
section, and finally we will summarize our main findings in the conclusion sec-
tion.

2. Related Work

In this section, we will present the latest major developments in designing ener-
gy-efficient techniques for the provision of services to mobile devices in a Cloud
environment. The authors in [5] present an augmentation model called
Cloud-based Mobile Augmentation (CMA). It leverages proximate and distant
clouds to enhance, and optimize computing capabilities of mobile devices aim-
ing at an execution of Resource-intensive Mobile Applications (RMAs). They
then analyze the impacts of the distance between mobile cloud and some inter-
mediate hops as influential factors on CMA performance, and show that there is
a correlation between distance and intermediate hops on the overall execution
costs of RMAs.

A mobile device perspective on energy consumption of applications is pre-

A. S. Alnezari, N.-E. Rikli

109

sented in [6]. It explores the impact of cloud-based applications on battery life of
mobile devices. An algorithm “GreenSpot” is proposed that considers applica-
tion features and energy-performance trade-off to determine whether cloud or
local execution will be more preferable.

In [7], the authors provide an energy-efficient dynamic offloading and re-
source scheduling (eDors) policy to reduce energy consumption and shorten ap-
plication completion time. The algorithm consists of sub-algorithms of compu-
tation offloading selection, clock frequency control and transmission power al-
location. eDors algorithm was implemented in a real test bed and experimental
results demonstrate that it can effectively reduce the energy consumption and
application completion time, by taking advantage of the CPU clock frequency
control in local computing and the transmission power allocation in cloud
computing.

The research work in [8] presents a Mobile Augmentation Cloud Services
(MACS) middleware that enables an adaptive extension of Android application
execution from a mobile client into the cloud. Two prototype applications using
the MACS middleware demonstrate the benefits of the approach. The evaluation
shows that applications, which involve costly computations, can benefit from of-
floading with around 95% energy savings and significant performance gains
compared to local execution only.

In [9], the authors present optimizing offloading strategies in Mobile Cloud
Computing. They have developed a stochastic model to study the dynamic of-
floading in the context of MCC. The model captures various performance me-
trics and intermittently available access links (WLAN hotspots). It gives a new
state and cost aware offloading policy that takes into account the mobility, the
existing tasks, and the anticipated tasks.

The authors in [10] present a Mobile Cloud Computing Service in a hetero-
geneous wireless and mobile P2P network. They proposed an Integration be-
tween the two types of networks to bring the new concept in constructing mobile
cloud computing system. The integrated network architecture provided the
comprehensive infrastructure in enabling network as a service (NaaS) capabilities.

The objective of the work presented in [11] is to highlight the heavyweight
aspects of current application offloading frameworks and to propose a
lightweight model for distributed application deployment in MCC. The pro-
posed framework eliminates the overhead associated with runtime-distributed
deployment. It also provides a synchronization mechanism for coping with the
issues of disconnections in the wireless network environment and ensuring con-
sistency of distributed platform.

The authors in [12] describe the Phone 2 Cloud system, a computation of-
floading-based system for energy saving on smartphones in the context of mo-
bile cloud computing. Additionally, it enhances the application’s performance
through reducing its execution time.

The authors in [13] present a novel offloading algorithm called “Dynamic
Programming with Hamming Distance Termination” (DPH), which offloads as

A. S. Alnezari, N.-E. Rikli

110

many tasks as possible to the cloud when the network transmission bandwidth is
high. This improves the total execution time of all tasks and minimizes the
energy use of the mobile device.

The main objective of the work in [14] is the tradeoff between reducing ex-
ecution time and saving energy consumption in cloud offloading systems. A
novel adaptive offloading scheme is proposed and analyzed based on the tradeoff
analysis.

3. Simulation Model and Algorithm
3.1. Basic Function

The main components of the considered mobile cloud computing model will
consist of two parts. The offloading engine that will be used to test and evaluate
the benefits of choosing to offload the application processes to the cloud, and the
vertical handover function that will be used in the case of offloading selection.
The handover function will continuously monitoring the possible communica-
tion link options to enhance the application performance and provide seamless
service for mobile devices.

The criteria used in the first engine will be based on minimizing the energy
consumption on the mobile device. The assistance of the cloud through offload-
ing has the potential to save execution time and energy consumption. However,
this energy savings should not exceed the time and energy cost due to the addi-
tional communication between mobile devices and cloud. Indeed, bulky data
transmissions, especially under unfavorable wireless channel conditions, could
consume a large amount of battery power as well. Hence, the offloading decision
should be made for the components of the target application taking into account
the current network conditions, the mobile device capabilities, and the applica-
tion complexity.

In the second engine, the available wireless networks for cloud computing
should be managed efficiently as well to support seamless services to mobile us-
ers regardless of their locations and movements. Here also, delays incurred dur-
ing handover should be taken into consideration as well as the ping-pong effect
due to short temporary variations in the network conditions.

3.2. Basic Operation

Figure 1 shows the basic architecture of the proposed model. The two engines
are denoted by ODE (Offloading Decision Engine) and the HDE (Handoff Deci-
sion Engine). When the application starts, the application manager runs auto-
matically ODE and contacts the cloud server. The basic purpose of this engine is
to take the offloading decision that depends on many factors, such as mobile
battery, wireless state, application requirement, to run the application locally on
the mobile device or remotely on the cloud server. If the ODE decided to run the
application remotely in the cloud, then it starts offloading the computing directly.

At the same time, the application manager runs the HDE to monitor wireless
network status. When the existing connection is at stake, or when a new resource,

A. S. Alnezari, N.-E. Rikli

111

Figure 1. Overview of our model architecture.

which consumes less energy is found, a handoff request is initiated. The handoff
is vertical handoff, between resources pertaining to different wireless networks.

In the case where there is no connection to the cloud or the ODE takes the de-
cision to run the application locally, both engines will run in the background
and take any decisions that may occur such as the connection to the cloud server
is available, or there is a new wireless connection.

3.3. Choosing the Application

The initial idea was to create the application that has three different tests. Each
test requires different computation levels. The reason for using three tests was to
get a better understanding if different tasks could be more or less efficient for
cloud offloading. We developed an Image processing application, which imple-
ments three filters. The low filter consists of 20 filters that are applied to a se-
lected image. The medium filter has 40 filters and the high filter contains 60 dif-
ferent filters. Each of these filters needs different time and computation power to
be applied. In addition, the image size will affect in time and computation con-
sumed when applying the filtering.

The core functionality of the application is acquiring a user image on the An-
droid client, apply image filters locally or on the cloud App Engine depending
on a computed decision. Then displaying the image on the user’s Android with
filters applied. The theory of the application is to develop measure and compare
the running of CPU-intensive processing on mobile and on cloud backbends.

We have conducted many experiments and tests by adding other options in
the application such as execution locally, through the cloud or half local half
cloud. Also, we took measurements of the execution time and energy in each
test. By comparing the obtained results, we built an offloading decision engine.

This application is hosted on App Engine by using the App Engine backend.
Google Cloud Endpoints consist of tools, libraries and capabilities. They gener-
ate APIs and client libraries from an App Engine application. The Endpoints
provide a simple way to develop a shared web backend, which are used in de-
veloping the mobile applications. Because the API backend is an App Engine,

A. S. Alnezari, N.-E. Rikli

112

the app can uses all of the services and features available in the App Engine, such
as Datastore, Google Cloud Storage, Mail, Url Fetch, Task Queues, and so forth
[15]. The application uses (GCM) service to inform the user about which filter is
being executed at that moment in the progress bar. The user will also be notified
when a filter is finished or started.

3.4. Offloading Decision Algorithm

Fuzzy techniques are used to take the offloading decision. Fuzzy is chosen be-
cause the decision-making is fuzzy in nature. The service is offloaded when the
need for offloading (Energy factor) is high and Time for offloading involved
(Time factor) is low. Accordingly, the proposed algorithm calculates the Energy
factor (Efactor) and Time factor (Tfactor) for offloading the execution.

The Energy factor is the measure for the need to offload the execution. This
factor is calculated using two parameters Ediff and Elevel. Ediff is the difference be-
tween energy consumption values for executing in the device and offloading it to
the Cloud as shown in (1). The Elevel represents the energy available in the mobile
device now.

diffE local Energy Taken cloud Energy Taken.= − (1)

3.4.1. Energy and Time Consumption on Smartphone
In order to calculate the energy consumption consumed by running the applica-
tion on the smartphone, we use Measurements-Activity function that measures
the time and energy taken to perform local and cloud processing. To take energy
measurement, it connects to a background service that measures the energy
taken and calculates the values as shown in (2) and (3).

local Time Taken local End Time local Start Time.= − (2)

local Energy Taken local End Energy local Start Energy.= − (3)

3.4.2. Energy and Time Consumption on Cloud
Calculating energy consumption consumed by running the application on cloud
(cloud Total Energy Taken) is more complicated than local (local Energy
Taken). Before introducing how to calculate (cloud Total Energy Taken).

It needs three steps to finish computation offloading: First, upload the image
to the cloud. Then, processing the image in the cloud and download image after
processing to smartphone. Thus, (cloud Total Energy Taken) includes three
parts: the energy consumed by upload “image” to the cloud (cloud Upload
Energy Taken). The (cloud Processing Energy Taken), is the energy consumed
while processing image in cloud and (cloud Download Energy Taken) the
energy consumed by downloading results on smartphone.

cloud Upload Time Taken cloud Upload End Time cloud Upload Start Time.= − (4)

cloud Upload Energy Taken cloud Upload End Energy cloud Upload Start Energy.= − (5)

cloud Processing Time Taken cloud Processing End Time cloud Processing Start Time.= − (6)

cloud Processing Energy Taken cloud Processing End Energy cloud Processing Start Energy.= − (7)

A. S. Alnezari, N.-E. Rikli

113

cloud Download Time Taken cloud Download End Time cloud Download Start Time.= − (8)

cloud Download Energy Taken cloud Download End Energy cloud Download Start Energy.= − (9)

cloud Total Time Taken cloud Upload Time Taken cloud Processing Time Taken
cloud Download Time Taken.

= +
+

(10)

cloud Total Energy Taken cloud Upload Energy Taken cloud Processing Energy Taken
cloud Download Energy Taken

= +
+

(11)

If the difference between the energy consumption for offloading and execut-
ing to the device is high, the need for offloading is high. If the difference is low,
the energy factor is low. For those values where the difference is neither low nor
high, the energy level left in the device is used for evaluating the offloading factor.

Table 1 gives the values for quantifying the offloading factor. The table below
explains the fuzzy logic rules that used to calculate the energy factor. Efactor lev-
el is assigned to make the decision more accurate. The table contains the values
that effect the decision. Energy-Bigger Value represents the place that consumes
more energy to execute the process. It could be a cloud or mobile device. The
energy available in the mobile device now “Elevel” has three levels: low, medium
and high. Ediff represents the difference between the cloud-based and locally
based. A function is used for calculating the level of Ediff. It returns the level
whether low, medium, and high. In addition, it gives an integer number and
maximum scale.

The number is compared with the scale. If the number is within the first third
of the scale, the level is low. If the number is within the two-thirds of the scale,
the level is medium. If the number is within the last third of the scale, the level is
high. The last value represents the decision for the Efactor and its level. Time
factor measures the time for offloading the execution to the Cloud. The time
factor is related to the execution time (Trt) for offloading and retrieving the results
from the cloud and current received signal strength (RSSnet) of the wireless me-
dium. The time factor for offloading is low, if the execution time is high, medium

Table 1. Decision making for energy factor.

Energy - Bigger Value E level Ediff Efactor

Local Low Low or Medium or High Cloud - High

Local Medium Low Cloud - Low

Local Medium Medium Cloud - Medium

Local Medium High Cloud - High

Local High Low or Medium Cloud - Low

Local High High Cloud - Medium

Cloud Low Low or Medium or High Local - High

Cloud Medium Low Local - Low

Cloud Medium Medium Local - Medium

Cloud Medium High Local - High

Cloud High Low or Medium Local - Low

Cloud High High Local – Medium

A. S. Alnezari, N.-E. Rikli

114

or low, and the signal strength is low. However, the time factor is quantified as a
medium, if the response time is not high, and the signal strength falls in the me-
dium range. Moreover, the time factor for offloading is high, if the execution
time is high, and the signal strength is medium. Table 2 gives the values for
quantifying the Time factor. This quantification, along with the values of of-
floading factor help in deciding whether to offload or not.

The fuzzy logic rules are explained in the table above. They are used to calcu-
late the time factor and assign Tfactor level to make the exact decision. The table
contains the values that effect the decision. It begins with the Execution
Time-Bigger Value, which represents the place that takes more time to execute
the process; it could be a cloud or mobile device. Then, it includes the RSS that
represents the received signal strength, which has three levels: low, medium and
high. Moreover, it includes the ETdiff, which represents the difference in the
Execution Time between cloud-based and the locally based. The ETdiff has three
levels: low, medium and high. The last value of the table represents the decision
for the Tfactor and its level.

Table 3 gives the decision for offloading based on the values of energy factor
and Time factor. The service is offloaded when the need for offloading is high,
and when the time for offloading is low. If the energy factor is neither high nor
low, and the time factor is low, the decision of execution offloading to the cloud
or not depends on the level of the factors.

3.5. Vertical Handover Engine

The (HDE) engine starts when the application starts execution. It monitors the
network status and detects any change. If the connection with the current net-
work is at stake, in order to improve its energy efficiency and reduce its latency,

Table 2. Decision making for time factor.

Execution time - Bigger Value RSS ETdiff T Factor

Local Low Low or Medium or High Cloud - Low

Local Medium Low Cloud - Low

Local Medium Medium Cloud - Medium

Local Medium High Cloud - High

Local High Low Cloud - Low

Local High Medium Cloud - Medium

Local High High Cloud - High

Cloud Low Low or Medium or High Local - High

Cloud Medium Low Local - Low

Cloud Medium Medium Local - Medium

Cloud Medium High Local - High

Cloud High Low Local - Low

Cloud High Medium Local - Medium

Cloud High High Local - High

A. S. Alnezari, N.-E. Rikli

115

Table 3. Decision making for offloading.

Efactor Decision Efactor Decision Level Tfactor Decision Tfactor Decision Level Decision

Cloud Low Cloud Low or Medium or High Cloud

Cloud Low Local Low Preferably Local

Cloud Low Local Medium or High Local

Cloud Medium Cloud Low or Medium or High Cloud

Cloud Medium Local Low Cloud

Cloud Medium Local Medium Preferably Local

Cloud Medium Local High Local

Cloud High Cloud Low or Medium or High Cloud

Cloud High Local Low or Medium Cloud

Cloud High Local High Preferably Local

Local Low Cloud Low Preferably Local

Local Low Cloud Medium or High Cloud

Local Low Local Low Preferably Local

Local Low Local Medium or High Local

Local Medium Cloud Low Local

Local Medium Cloud Medium Preferably Local

Local Medium Cloud High Cloud

Local Medium Local Low or Medium or High Local

Local High Cloud Low or Medium Local

Local High Cloud High Preferably Local

Local High Local Low or Medium or High Local

the engine takes the necessary handoff decision to connect with a different net-
work.

The decision-making algorithm decides whether to place the execution locally
or remotely on the Cloud based on the number of interaction data transmitted
per transaction and the current network status after applying the handoff. The
engine works in the application background to takes necessary handoff. In addi-
tion, it updates the info of wireless network. Moreover, it informs the (ODE)
with new information to take the accurate decision.

In the android platform, the automatic handover between 3G and WLAN
networks is done usually when the current network link is going down. When
the Android device connects to the Wi-Fi network, the platform automatically
closes the 3G data connection. In contrast, when the Wi-Fi network is unavaila-
ble (or the user disconnects the Wi-Fi network from the device), the platform
reactivates the 3G data connection.

When multiple access networks are available, the connection to a WLAN with
strong signal can be used when the device is near the public access point, as the
algorithm bellow. The handoff decision algorithm for the purpose of taking
handoff decisions is shown in Table 4.

In our approach, received signal level of neighbor networks is periodically

A. S. Alnezari, N.-E. Rikli

116

Table 4. The handoff decision algorithm.

1: Mobile device connect to access point that Connected with Cloud.
2: While
3: Measure RSSnew; and BRnew of discovered access point
4: if (RSSnew -RSScurrent > RSSThreshold) and(BRnew > BRcurrent) then
5: Tcurrent = N * (D / BRcurrent + Tprop + ETm + ETcloud)
6: Tnew = N * (D / BRnew + Tprop + ETm + ETcloud
7: if (Tnew < Tcurrent) then
8: handoff occur (RSSnew = RSScurrent , BRnew = BRcurrent)
9: take new decision for offloading
10: end if
11: end while

measured, and the “best” network (in terms of higher signal level) is selected as
the current access network.

4. Performance Analysis

In this section, we introduce the results of our application to achieve mobile
cloud computing. For comparison purposes, three kinds of processing (low, me-
dium and high) filters run remotely in Google app engine as cloud side and runs
locally in android device as client side. Also, we made tests in different input size,
bandwidth, delays and mobile devices. Both static and dynamic code offload is
tested and recorded results in order to measure the cost of offloading decision.

The execution time is measured on the Android mobile device, and Google’s
App Engine servers. The energy consumed is measured by comparing the energy
consumed when running the app locally, and when running it remotely. These
measurements will provide means to analyze the viability of mobile cloud com-
puting, and evaluate whether executing the code remotely on more powerful
servers is advantageous or not. The time needed to communicate with the re-
mote servers is measured to analyze the communication added costs of the re-
mote execution. Furthermore, with the level and complexity of processing, the
measurement of time is important in the terms of user experience and applica-
tion performance. The energy consumption and execution time of three types of
processing are evaluated; as shown in Table 5 with respect to many factors. The
table examines how these factors affect the energy consumption and execution
time of the applications. The table evaluates the influence of each specified factor
on both the energy consumption and execution time of three applications under
different ranges. The results obtained from the experiments are shown below
with the focus on the execution time and power consumption (The Table 6 dis-
tinguishes the image sizes that used in all tests).

4.1. Comparison of the Cloud-Based and Local Based Test Results

Figure 2(a) shows the execution time of a low processing case under different
input sizes and network status. In all cases, the value of cloud is more than the
value of smartphone. The gap between them expands as the input grows. In the
first test, the difference between the cloud-based and locally-based is a little bit.
However, in the second test, the input size value is 3 MB, which is almost the

A. S. Alnezari, N.-E. Rikli

117

Table 5. Applications used in experiment.

NO Application Description

1 Low CPU-intensive processing
It consists of 10 simple filters that Applied in selected

images

2 Medium CPU-intensive processing
It consists of 40 middle filters that Applied in selected

images

3 High CPU-intensive processing
It consists of 100 complex filters that Applied in selected

images

Table 6. Sizes of the images used in tests.

Image Size

Small image 50 KB

Medium image 3 MB

Large image 6.5 MB

doubled value. Finally, the last test is almost three times the perfect time with the
worst network connection. The reason lies in the additional communication cost
of the cloud and smartphone, which surpasses the processing cost. Therefore,
the app should run locally whatever the status of network in the low processing
option.

The execution time of medium processing filters is measured. In addition, this
work studies how the execution time in medium case depends on the application
input parameters and different networks situation. It is clear that running the
application on the cloud does not always consume more time than running it
locally. That is shown in Figure 2(b). The reason is the execution time for me-
dium processing on the mobile will cost time. It will grow as the image size is
increased. Moreover, the gap between running the application on the cloud and
locally becomes smaller. In addition, it is reflected for the cloud. It is obvious
from the Figure that the execution time in cases of medium or large image sizes,
with a good connection, will cost less in the cloud. Regarding this option, if the
input size is more than 3 MB, with an ideal network available, the app should
always run remotely.

Figure 2(c) shows the execution time of high processing case under different
input sizes and network status. In all cases, the execution time values on the
cloud are less than the execution time values on the smartphone. The gap be-
tween them expands, as the input grows. The gap reaches up to half time with
the large input sizes. In the first test, the difference between the cloud-based and
locally based is a little bit. In the second test, the difference is less with the
high-speed network, and a little bit more with the slow network connectivity.
Finally, in the last test, when the input size is more than 6 MB, running the ap-
plication on the cloud will takes almost half time. That is compared to the locally
based on the perfect network case. However, with the worst network connection,
it takes less time than locally. Therefore, the app should always run remotely on
the cloud, whatever the status of network in the high processing case.

A. S. Alnezari, N.-E. Rikli

118

(a)

(b)

(c)

Figure 2. Execution time and energy consumption for different processing kind.

The results of power consumption are shown in the second row of the Figure
2. It is clear in the Figure 2(a) that the difference in energy consumption be-
tween the mobile and cloud will vary. Since it depends on the image size and
network status. In the case of small image size, the difference in energy con-
sumption between the mobile and cloud is very small. However, the difference is
increased in the locally based for the slow network. The same situation happens
with the medium image size. But the difference is increased in the slow network.

Finally, the energy consumed in the cloud is less than the energy consumed in
the mobile in the large image size. In addition, the cloud will consume more
energy, if the network is in its worst case. Therefore, the app should run locally
and remotely depending on the status of network in the low processing option.

Figure 2(b) illustrates the energy consumption of medium processing under
different input size. In the first test, it is obvious that the energy consumed is
smaller in the locally based device, with the small input sizes only that are equal
to “50 KB”. In other cases, the energy consumed is smaller on the cloud-based
device. Regarding the medium processing option, running the application on the
cloud will save the energy consumed whatever the network status. It is noticea-

0
5

10
15
20
25
30
35

Small Image
size

Medium
Image size

High Image
Size

Ti
m

e
(s

ec
)

Input Size (Byte)

Execution Time
Local

Cloud - speed
network

Cloud - slow
network 0

20

40

60

Small Image size Medium Image size High Image Size

En
er

gy
 C

on
su

m
ed

 (J
ou

le
s)

Input Size (Byte)

Energy Consumed

0
10
20
30
40
50

Small Image
size

Medium
Image size

High Image
Size

Tm
e

(s
ec

)

Input Size (Byte)

Execution Time

Local

Cloud - speed
network

Cloud - slow
network 0

20

40

60

Small Image size Medium Image size High Image Size

En
er

gy
 C

on
su

m
ed

 (J
ou

le
s)

Input Size (Byte)

Energy Consumed

0
20
40
60
80

100
120

Small Image
size

Medium
Image size

High Image
Size

Ti
m

e
(s

ec
)

Input Size (Byte)

Execution Time

Local

Cloud - speed
network

Cloud - slow
network 0

50

100

150

Small Image size Medium Image size High Image Size

En
er

gy
 C

on
su

m
ed

 (J
ou

le
s)

Input Size (Byte)

Energy Consumed

A. S. Alnezari, N.-E. Rikli

119

ble in Figure 2(c) that the energy consumed will be less if the app is running on
the cloud whatever the input size and network status. However, with the high
computing applications, running the application on the cloud will cost the mo-
bile a little energy compared to running it locally. That is because the high inten-
sive processing in the mobile device consumes resources. In addition, it requires
much RAM, memory, and energy.

4.2. Effects of Upload, Download and Process Ratio

The objective of this section is to analyze the performance of running the appli-
cation remotely under different network situation. The application is tested in
different latencies, bandwidth available and response times. The effect of band-
width available will lead to delay and packet loss. The results of this section are
that the offloading decision should measure the network condition constantly as
well as estimate the bandwidth available and latency.

4.2.1. Case of Low Processing, Low Image
The test is performed on three-network status. The first network bandwidth
available is 5.88 Mbps. Moreover, its latency is almost 20 ms. The second net-
work has more latency, about 35 ms. In addition, its bandwidth available is 2.50
Mbps. The third network has the worst situation. It has a low bandwidth, which
is 1.05 Mbps. Also, it has a low delay, which is 18 ms approximately.

The execution time consists of three parts as shown: Upload time, Processing
time and Download time. The Figure 3(a) presents the changes in execution
time with the different network status. It is clear that the best performance is in
the first network. The second network has overhead in processing time due to
delay rate. In addition, it has a medium upload ratio. Finally, the third network
has the worst performance, although it has the lowest delay. However, with a low
bandwidth, the upload and download cost a lot of time.

The energy consumption of the application, which is running on the cloud is
influenced by the bandwidth available and delay in different networks, as shown
in the Figure 3(b). An Upload energy, Processing energy, and Download energy
compose the total energy. In the first network, the power consumption on the
cloud is decreased because the bandwidth available is increased and the delays is
decreased. The second network has more power consumption than the first one
due to the small bandwidth available and delay rate (35 ms). Finally, the third
network has the biggest energy consumption value, because the bandwidth
available is decreased until (1.05) Mbps.

4.2.2. Case of Medium Processing, Medium Image
The application is tested on three networks status. The first network bandwidth
available is 5.88 Mbps, and its latency is almost 20 ms. The second network has
the worst situation. Its latency value is 50 ms, and its bandwidth available is 2.00
Mbps. The third network has the standard situation. It has a low bandwidth
available, which is 2.50 Mbps. In addition, it has the lowest delay, which is 30 ms
approximately.

A. S. Alnezari, N.-E. Rikli

120

(a)

(b)

Figure 3. Execution time and energy consumption for low processing under differ-
ent networks.

Figure 4(a) describes how the bandwidth available and delay effect in running

the medium processing apps on the cloud under different network status. It is
obvious in the Figure that the execution time is very fast at the first network
compared to the other networks. The application achieves the best performance
due to the high bandwidth available and the low latency. The application
achieves the worst performance with the second network due to the high delay,
which effects the processing time in the cloud, in addition to the medium upload
ratio. Finally, the application in the third network has an acceptable perfor-
mance. It has a medium delay and bandwidth. However, the upload costs a bit of
time.

On the other hand, the energy consumed by the medium processing applica-
tion on the cloud is increased or decreased. It depends on the bandwidth availa-
ble and delay ratio in different networks, as shown in the Figure 4(b). It is noti-
ceable that the energy is saved significantly in the first network. The second
network has the largest value of the energy consumption due to the small band-
width available and high delay. Finally, the third network has the acceptable value

0

1

2

3

4

5

6

7

8

9

10

network 1 network 2 network 3

Ex
ec

ut
io

n
Tm

e
(s

ec
)

Download Time

Process Time

Uploud Time

0

1

2

3

4

5

6

7

network 1 network 2 network 3

En
er

gy
(J

ou
le

s)

Download Energy

Process Energy

Uploud Energy

A. S. Alnezari, N.-E. Rikli

121

(a)

(b)

Figure 4. Execution time and Energy consumption for medium processing under
different networks.

of energy consumption compared to the other networks status.

4.2.3. Case of High Processing, High Image
The test is performed to three-network status. The first network has a low
bandwidth available, which is about 1.00 Mbps. In addition, its latency is almost
35 ms. The second network has more latency, which is about 25 ms. In addition,
its bandwidth available is 5.00 Mbps. The third network has a high bandwidth,
which is about 5.05 Mbps. Moreover, its delay is 30 ms approximately.

In most cases in the high processing apps, as proved before, the value of ex-
ecution time on the cloud is always less than value of execution time on the
smartphone. Therefore, the total time, as shown in the Figure 5, is effected by
the network status, which has different bandwidth available and delay. In the
case of high processing apps with the large image, the effect of input size has a
great impact on the offloading process, because of the large amounts of data
transfer between the mobile and cloud. In addition, the complexity of computing
on the high intensive processing filters requires offload computing on the cloud
server.

0

10

20

30

40

50

60

70

80

90

100

network 1 network 2 network 3

Ti
m

e
(s

ec
)

Download Time

Process Time

Uploud Time

0

10

20

30

40

50

60

70

network 1 network2 network 3

En
er

gy
(J

ou
le

s)

Download Energy

Process Energy

Upload Energy

A. S. Alnezari, N.-E. Rikli

122

(a)

(b)

Figure 5. Execution time and Energy consumption for high processing under different networks.

These types of applications obviously require more bandwidth available and
low latency, because the response time is effect by the both factors. The power
consumption on the cloud is decreased in the high processing applications for
most networks. However, the total value is effected by the current situation of
network.

4.3. Comparing the Decision Engine Based Test Results

This section shows the results of decision engine, with the effect of three factors;
including the input size, bandwidth available and CPU processor speed. Some
factors related to the application, wireless status, and mobile device specifica-
tions.

4.3.1. Input Size
Figure 6 shows the execution time and power consumption of the low CPU-in-
tensive processing under different input sizes. The red line in the Figure represents
the execution time and power consumption, which depends on the decision en-
gine. The green line represents running the application locally on the smart-
phone. The purple line represents running the application remotely on the cloud.

0

20

40

60

80

100

120

140

network 1 network 2 network 3

Tm
e

(s
ec

)

Download Energy

Process Energy

Upload Energy

0

5

10

15

20

25

30

35

40

network 1 network 2 network 3

En
er

gy
(J

ou
le

s)

Download Energy

Process Energy

Upload Energy

A. S. Alnezari, N.-E. Rikli

123

(a) In case of low processing

(b) In case of medium processing

(c) In case of high processing

Figure 6. Execution time and energy consumption of three applications under different input size.

First, it is clear in the case of low processing that the value of the execution
time when the app is running on the cloud is more than the value of the execu-
tion time when the app is running locally. The gap between them expands on the
input grows. Because the time cost due to the data transmission between the
cloud and mobile device is more than the time cost of running the app locally.
Therefore, regarding this kind of processing, the application should run on the
mobile device. In this case, the decision engine can make a wise offloading deci-
sion. The energy consumed by the low CPU-intensive processing running on the
cloud is much more than running on the smartphone. The reason is that the
energy consumed by applying the filters on the mobile device is less than the
energy consumed by applying the filters locally due to the data transmission,
which includes sending input data and receiving results. It is obvious that with

0
1
2
3
4
5
6
7
8
9

10

50 1000 3500 6500

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Input Size (KB)

0
2
4
6
8

10
12

50 1000 3500 6500

En
er

gy

co
ns

um
ed

(J
ou

le
s)

Input Size (KB)

0
5

10
15
20
25
30
35

50 1000 3500 6500Ex
ex

cu
tio

n
Ti

m
e

(s
ec

)

Input Size (KB)

0
10
20
30
40
50
60

50 1000 3500 6500

En
er

gy

co
ns

um
ed

(Jo
ul

es
)

Input Size (KB)

0

20

40

60

80

100

120

50 1000 3500 6500

Ex
ex

cu
tio

n
Ti

m
e

(s
ec

)

Input Size (KB)

0

20

40

60

80

100

120

50 1000 3500 6500

En
er

gy
 co

ns
um

ed
(Jo

ul
es

)

Input Size (KB)

A. S. Alnezari, N.-E. Rikli

124

the low CPU-intensive processing application, it is better to run it locally.
In the medium processing case, it is noticeable that the engine takes the accu-

rate decision as shown in Part B of the Figure 6 Because the execution time of
applying filters on the cloud is less than the execution time on a mobile device
when the input size is larger than 1 MB. So, it is recommended to run the appli-
cation on the cloud in that case. The results in Part B illustrates that the energy
consumed by the medium CPU-intensive processing is increasing when the in-
put size is smaller than 1 MB. Since the application that runs on the cloud costs
more energy than the application that runs locally. The power consumption on
the smartphone is larger than the power consumption on the cloud. Whenever
the input size is increased, the cost of processing is increased, too. Therefore,
processing in the cloud is better because the cost of processing is more than the
cost of transmission data.

Furthermore, the costs of execution time on the cloud are less than the costs
of execution time on the smartphone at the high processing as shown in Part C
of the Figure 6 As the input size is increased, the engine decides to run the app
remotely on the cloud, especially when the input size is greater than 1 MB.
However, the power consumption of running high CPU-intensive processing on
the mobile device is much more than the power consumption on the cloud as
shown in Part C of the Figure 6. The power consumed due to the processing is
much more than transmitting data, because of the high complexity of filters on
the mobile device. It is observed that with such kind of the application, the deci-
sion should always be offloaded on the cloud. Moreover, it is obvious that the
engine saves much more energy at the high CPU-intensive processing under
these circumstances. As it is noticeable in the all cases, the engine takes the deci-
sion to run the app locally or on the cloud based on the best results. In most cas-
es, the engine takes the same value or a very close value to the best performance.
So, the decision engine makes a wise decision, which improves the user’s expe-
rience.

4.3.2. Bandwidth
The second factor is associated with the effect of wireless network status. The
bandwidth available is an important factor. Since it directly affects the perfor-
mance of app, especially when it varies from one network to another in the he-
terogeneous environments. This project studies this factor and its effect to the
engine and performance of app.

The first column in the Figure 7 shows the relationship between the execution
time of three applications and bandwidth. The second column represents the
energy consumption of three applications under different bandwidth. In the first
case is a low processing case as shown in Part A. It shows that running the app
on the cloud always takes more time than running it locally. The execution time
is decreased gradually as the bandwidth available is increased. Therefore, the de-
cision engine can make a wise offloading decision for this kind of processing by
running the app on the mobile device.

In the same case, the value of power consumption on the cloud is always

A. S. Alnezari, N.-E. Rikli

125

(a) In case of low processing

(b) In case of medium processing

(c) In case of high processing

Figure 7. Execution time and energy consumption of three applications under different bandwidth.

higher than the value of power consumption on the mobile device. Therefore, it
is better to run this kind of apps locally. The explanation for this is that the
energy consumed by the processing computation on the mobile device is less
than the energy consumed by the data transmission. However, the energy con-
sumption whether remotely or locally is getting closer and closer as the band-
width available is increased.

In the medium processing case, as in Part B of the Figure 7, the results are lit-
tle different. The execution time on the cloud is less than the execution time on
the mobile device when the bandwidth available is more than 3.5 MB/s.

The opposite occurs when the bandwidth available is smaller than 3.5 MB/s.
Regarding the energy consumption of app on the cloud and mobile device, the
decision engine offloads processing to the cloud, and it makes the right decision
again. The CPU-intensive processing spends more time on the mobile device
than on the cloud as shown in Part C of the Figure 7.

Furthermore, the power consumed on the mobile device is kept the same. It is

0

5

10

15

20

25

1.00 MB 2.00 MB 3.00 MB 4.00 MB

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Bandwidth

0
2
4
6
8

10
12

1.00 MB 2.00 MB 3.00 MB 4.00 MB

En
er

gy
 c

on
su

m
ed

(J

ou
le

s)

Bandwidth

0
5

10
15
20
25
30
35
40

1.00 MB 2.00 MB 3.00 MB 4.00 MB

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Bandwidth

0

5

10

15

20

25

1.00 MB 2.00 MB 3.00 MB 4.00 MB

En
er

gy
 c

on
su

m
ed

(J

ou
le

s)

Bandwidth

0

10

20

30

40

50

60

1.00 MB 2.00 MB 3.00 MB 4.00 MB

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Bandwidth

0
10
20
30
40
50
60
70

1.00 MB 2.00 MB 3.00 MB 4.00 MB

En
er

gy
 c

on
su

m
ed

(J

ou
le

s
)

Bandwidth

A. S. Alnezari, N.-E. Rikli

126

clear in the Figure 7(b) and Figure 7(c) that the power consumption on the
mobile device is much more than the power consumption on the cloud for the
medium and high CPU-intensive processing running under such circumstances.
In addition, the power consumption on the cloud is decreased as the bandwidth
available is increased. So, it is recommended to offload the apps on the cloud
because that saves much energy for users. The engine runs the app locally or on
the cloud, and makes the right decision to get the best results.

4.3.3. CPU Processor Speed
The last factor is related to the capabilities of mobile device. The smartphone
specifications play as an important factor, since they directly affect the perfor-
mance of applications in supporting the connection with any wireless networks.

Figure 8 shows the relationship between the execution time and energy con-
sumption of the three applications and CPU processor speed. The first case, Part
A, represents a low processing case. In this case, running the app on the cloud
always takes less time than running it locally. The execution time on the cloud

(a) In case of low processing

(b) In case of medium processing

(c) In case of high processing

Figure 8. Execution time and energy consumption of three applications under CPU processor speed.

0

5

10

15

20

25

1.2 GHz 1.6 GHz 2.5 GHz

Ex
ec

ut
io

n
Ti

m
e(

se
c)

CPU processer speed (GHz)

0

5

10

15

20

25

1.2 GHz 1.6 GHz 2.5 GHzEn
er

gy
 c

on
su

m
ed

(J

ou
le

s)

CPU processer speed (GHz)

0
10
20
30
40
50
60

1.2 GHz 1.6 GHz 2.5 GHzEx
ex

cu
tio

n
Ti

m
e

(s
ec

)

CPU processer speed (GHz)

0
10
20
30
40
50
60
70
80

1.2 GHz 1.6 GHz 2.5 GHzEn
er

gy
 c

o
n

su
m

ed
 (J

o
u

le
s

)

CPU processer speed (GHz)

0

20

40

60

80

100

1.2 GHz 1.6 GHz 2.5 GHz

Ex
ex

cu
tio

n
Ti

m
e

(s
ec

)

CPU processer speed (GHz)

0

20

40

60

80

100

120

1.2 GHz 1.6 GHz 2.5 GHz

En
er

gy
 co

ns
um

ed

(Jo
ul

es
)

CPU processer speed (GHz)

A. S. Alnezari, N.-E. Rikli

127

almost has a constant value, because the cloud capabilities do not change or ef-
fect by the smartphone specifications. The execution time on the locally based
device is decreased gradually as the CPU processor speed is increased; until it
reaches a limiting value with the fast processors. Therefore, the decision engine
can make a wise offloading decision for this kind of processing by offloading to
the cloud.

The medium and high processing have the same results as shown in Part B
and C of the Figure 8. The execution time on the cloud is less than the execution
time on the mobile device. The gap between them is decreased as the CPU pro-
cessor speed is increased. Therefore, the decision engine can make a wise of-
floading decision by offloading to the cloud for all the cases. The engine always
offloads the apps to the cloud for all the cases as shown in the Figure 8. The
value of power consumption on the cloud is always smaller than the value of
power consumption on the mobile device. In addition, the energy consumption
of running the apps on the cloud is almost not changed. It is worthy to say that
for this kind of apps, the decision should always be running the apps remotely

5. Conclusion

In conclusion, this project shows obvious advantages of the mobile cloud com-
puting technology. In addition, by applying engines to decide the offloading and
vertical handover, that will improve both the application execution time and the
energy consumed by the mobile device. These results prove that the cloud com-
puting is very probable, and the offloading computation to the cloud server is a
viable timesaving option. As long as the network speeds are suitable. It is an ad-
vantage to offload the computationally intensive applications to a more powerful
server. It is not only an advantage, but it is also necessary in some situations.
E.g., it is necessary when the mobile device is unable to run certain applications
due to memory restrictions or limited mobile specifications. Generally, the most
cloud platforms show the advantage of offloading the applications to the cloud
resources in the context of providing a SaaS. By outsourcing computation of-
floading to the backend servers, the simple mobile device becomes more power-
ful. However, there is no best or simple implementation of the mobile cloud
computing. Options include dynamic vs. static code offload, method vs. OS mi-
gration, and various connections protocols. Different applications have different
resource requirements effecting the best possible connection to the cloud. Finally,
the MCC application should be built to adapt intelligently to different changes in
the surrounding networks, device capabilities and application requirements.
That is necessary to make the device decides the best particular application for it.

References
[1] Song, W. and Su, X. (2011) Review of Mobile Cloud Computing. 3rd International

Conference on Communication Software and Networks, Xi’an, 27-29 May 2011,
1-4. https://doi.org/10.1109/iccsn.2011.6014374

[2] Dinh, H.T., et al. (2013) A Survey of Mobile Cloud Computing: Architecture, Ap-

https://doi.org/10.1109/iccsn.2011.6014374

A. S. Alnezari, N.-E. Rikli

128

plications, and Approaches. Wireless Communications and Mobile Computing, 13,
1587-1611. https://doi.org/10.1002/wcm.1203

[3] Akhila, S., et al. (2012) An Overview on Decision Techniques for Vertical Handoffs
across Wireless Heterogeneous Networks. International Journal of Scientific & En-
gineering Research, 3, 1-6.

[4] Sanaei, Z., et al. (2014) Heterogeneity in Mobile Cloud Computing: Taxonomy and
Open Challenges. Communications Surveys & Tutorials, 16, 369-392.
https://doi.org/10.1109/SURV.2013.050113.00090

[5] Abolfazli, S., et al. (2014) An Experimental Analysis on Cloud-Based Mobile Aug-
mentation in Mobile Cloud Computing. IEEE Transactions on Consumer Electron-
ics, 60, 146-154. https://doi.org/10.1109/TCE.2014.6780937

[6] Namboodiri, V. and Toolika, G. (2012) To Cloud or Not to Cloud: A Mobile Device
Perspective on Energy Consumption of Applications. IEEE International Sympo-
sium on World of Wireless, Mobile and Multimedia Networks, San Francisco, 25-28
June 2012, 1-9 . https://doi.org/10.1109/wowmom.2012.6263712

[7] Guo, S., Xiao, B., Yang, Y. and Yang, Y. (2016) Energy-Efficient Dynamic Offload-
ing and Resource Scheduling in Mobile Cloud Computing. 35th Annual IEEE In-
ternational Conference on Computer Communications, San Francisco, 10-14 April
2016, 1-9 .

[8] Kovachev, D. and Klamma, R. (2012) Framework for Computation Offloading in
Mobile Cloud Computing. International Journal of Interactive Multimedia and Ar-
tificial Intelligence, 1, 6-15.

[9] Hyytiä, E., Thrasyvoulos, S. and Jörg, O. (2013) Optimizing Offloading Strategies in
Mobile Cloud Computing.

[10] Larosa, Y.T., et al. (2011) Mobile Cloud Computing Service Based on Heterogene-
ous Wireless and Mobile P2P Networks. 7th International Wireless Communica-
tions and Mobile Computing Conference, Istanbul, 4-8 July 2011, 661-665.

[11] Shiraz, M., Gani, A. and Khokhar, R.H. (2012) Towards Lightweight Distributed
Applications for Mobile Cloud Computing. IEEE International Conference on
Computer Science and Automation Engineering, Zhangjiajie, 25-27 May 2012, 89-
93.

[12] Xia, F., et al. (2014) Phone2Cloud: Exploiting Computation Offloading for Energy
Saving on Smartphones in Mobile Cloud Computing. Information Systems Fron-
tiers, 16, 95-111. https://doi.org/10.1007/s10796-013-9458-1

[13] Shahzad, H. and Szymanski, T.H. (2016) A Dynamic Programming Offloading Al-
gorithm for Mobile Cloud Computing. 2016 IEEE Canadian Conference on Elec-
trical and Computer Engineering, Vancouver, 15-18 May 2016, 1-5.
https://doi.org/10.1109/CCECE.2016.7726790

[14] Wu, H., Wang, Q. and Wolter, K. (2013) Tradeoff between Performance Improve-
ment and Energy Saving in Mobile Cloud Offloading Systems. Communications
Workshops, Budapest, 9-13 June 2013, 728-732.

[15] Google Developers. What Is Google App Engine.
https://developers.google.com/appengine/docs/whatisgoogleappengine

https://doi.org/10.1002/wcm.1203
https://doi.org/10.1109/SURV.2013.050113.00090
https://doi.org/10.1109/TCE.2014.6780937
https://doi.org/10.1109/wowmom.2012.6263712
https://doi.org/10.1007/s10796-013-9458-1
https://doi.org/10.1109/CCECE.2016.7726790
https://developers.google.com/appengine/docs/whatisgoogleappengine

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ijcns@scirp.org

http://papersubmission.scirp.org/
mailto:ijcns@scirp.org

	Achieving Mobile Cloud Computing through Heterogeneous Wireless Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Simulation Model and Algorithm
	3.1. Basic Function
	3.2. Basic Operation
	3.3. Choosing the Application
	3.4. Offloading Decision Algorithm
	3.4.1. Energy and Time Consumption on Smartphone
	3.4.2. Energy and Time Consumption on Cloud

	3.5. Vertical Handover Engine

	4. Performance Analysis
	4.1. Comparison of the Cloud-Based and Local Based Test Results
	4.2. Effects of Upload, Download and Process Ratio
	4.2.1. Case of Low Processing, Low Image
	4.2.2. Case of Medium Processing, Medium Image
	4.2.3. Case of High Processing, High Image

	4.3. Comparing the Decision Engine Based Test Results
	4.3.1. Input Size
	4.3.2. Bandwidth
	4.3.3. CPU Processor Speed

	5. Conclusion
	References

