
Int. J. Communications, Network and System Sciences, 2015, 8, 282-294
Published Online July 2015 in SciRes. http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.87028

How to cite this paper: Abdulkareem, M., Akil, K., Kalakech, A. and Kadry, S. (2015) EFRED: Enhancement of Fair Random
Early Detection Algorithm. Int. J. Communications, Network and System Sciences, 8, 282-294.
http://dx.doi.org/10.4236/ijcns.2015.87028

EFRED: Enhancement of Fair Random Early
Detection Algorithm
Muntadher Abdulkareem1, Kassem Akil2, Ali Kalakech2, Seifedine Kadry3
1Arts, Sciences and Technology University, Beirut, Lebanon
2MIS Department, Lebanese University, Beirut, Lebanon
3Math and Statistics Department, American University of the Middle East, Egaila, Kuwait
Email: skadry@gmail.com

Received 17 June 2015; accepted 26 July 2015; published 29 July 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Quality of Service (QoS) generally refers to measurable like latency and throughput, things that
directly affect the user experience. Queuing (the most popular QoS tool) involves choosing the
packets to be sent based on something other than arrival time. The Active queue management is
important subject to manage this queue to increase the effectiveness of Transmission Control
Protocol networks. Active queue management (AQM) is an effective means to enhance congestion
control, and to achieve trade-off between link utilization and delay. The de facto standard, Ran-
dom Early Detection (RED), and many of its variants employ queue length as a congestion indica-
tor to trigger packet dropping. One of these enhancements of RED is FRED or Fair Random Early
Detection attempts to deal with a fundamental aspect of RED in that it imposes the same loss rate
on all flows, regardless of their bandwidths. FRED also uses per-flow active accounting, and tracks
the state of active flows. FRED protects fragile flows by deterministically accepting flows from low
bandwidth connections and fixes several shortcomings of RED by computing queue length during
both arrival and departure of the packet. Unlike FRED, we propose a new scheme that used hazard
rate estimated packet dropping function in FRED. We call this new scheme Enhancement Fair
Random Early Detection. The key idea is that, with EFRED Scheme change packet dropping func-
tion, to get packet dropping less than RED and other AQM algorithms like ARED, REM, RED, etc.
Simulations demonstrate that EFRED achieves a more stable throughput and performs better than
current active queue management algorithms due to decrease the packets loss percentage and
lowest in queuing delay, end to end delay and delay variation (JITTER).

Keywords
QoS, Quality of Service, Active Queue Management, EFRED Algorithm, Fair Random Early Detection,
Congestion Control

http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.87028
http://dx.doi.org/10.4236/ijcns.2015.87028
http://www.scirp.org
mailto:skadry@gmail.com
http://creativecommons.org/licenses/by/4.0/

M. Abdulkareem et al.

283

1. Introduction
Congestion control is one of the most important problems in the Internet. Most of the existing Internet routers
play a passive role in congestion control because the ever fast development of network technology and new
network applications augment the Quality of Service (QoS) requests from network users. Although the majority
of the traffic over the Internet is still TCP-based, the increasing growth and deployment of UDP based real time
applications such as voice over IP and video-conferencing bring in solemn congestion problem at the interme-
diate nodes. In an attempt to foil congestion and control the queue length, Active Queue Management (AQM)
techniques make use of sending congestion signals in a proactive manner. The essence is that an AQM router
may intelligently drop packets before the queue overflows.

The main objective of this thesis is to realize a study about the existing AQM [1] like RED [2], FRED [3]
etc… The results of this study will be of use later in order to develop a new algorithm based on the studied algo-
rithms. In order to attain our main objective, we start this thesis by studying and exploring the QoS metrics that
can be used in order to compare the different AQM algorithms existing on the market. In second place, we have
studied in depth these AQM algorithms in order to deduce the weaknesses and the advantages of each of them.
This study has shown that each algorithm has its own advantages with respect to others. For example, FRED
protects fragile flows by deterministically accepting flows from low bandwidth connections and fixes several
shortcomings of RED by computing queue length during both arrival and departure of the packet. FRED algo-
rithm focuses on the management of per-flow queue length.

In our work, we have modified the drop function adopted by FRED and replaced it by the hazard function.
This new algorithm, which we have called EFRED (Modified FRED) is implemented and tested using the NS2
simulator.

The results obtained by simulation show that our EFRED algorithm achieves higher throughput and minimum
loss compared with other existing mechanisms such as RED and REM.

2. Active Queue Management
The ever fast development of network technology and new network application augment the Quality of Service
(QoS) requests from network users. Although the majority of the traffic over the Internet is still TCP-based, the
increasing growth and deployment of UDP based real time applications such as voice over IP and vid-
eo-conferencing bring in solemn congestion problem at the intermediate nodes. In an attempt to foil congestion
and control the queue length, Active Queue Management (AQM) techniques make use of sending congestion
signals in a proactive manner. Even though there are several mechanisms to improve the fairness of the Internet
and to suppress the unresponsive flows from monopolizing the available network resources, the respective
problems of unresponsive flows detection and their impact on the performance of AQM still leave space for
further developing in this research direction. Active Queue Management (AQM) mechanisms are link algo-
rithms and are deployed inside the network, i.e. in the routers, to regulate the flows. By sending congestion sig-
nals in a proactive manner, an AQM technique makes attempt to prevent congestion and control the queue
length. This would finally cause the senders to reduce the sending rates. An AQM scheme may mark or drop the
packets depending upon the policy at the router [4].

An AQM scheme can detect congestion based on
• The queue length at the link
• The arrival rate of the packets at the link
• Combination of both

In addition to this, most of the AQM schemes include adapting the marking probability in some other way.
Active queue management (AQM) is advocated to improve the quality of services (QoS) for Internet. Active

queue management (AQM) refers to a family of packet dropping mechanisms for router queues that has been
proposed to support end-to-end congestion control mechanisms in the Internet.

AQM has been designed to support end-to-end congestion control in packet networks. The principle of AQM
is to pro-actively drop packets in a router in anticipation of congestion. Such packet losses are further interpreted
(through acknowledgements or timeouts) by TCP sources as a request to reduce their sending rates TCP and
UDP loss rate. Loss rate is defined as the number of dropped packets divided by the total number of packets ar-
rived at the router’s input ports. While TCP good put and loss rate are somewhat redundant metrics, loss rate
covers a very important role for applications using UDP. We choose to differentiate between TCP and UDP loss

M. Abdulkareem et al.

284

rates to verify AQM mechanisms’ behavior against different kind of traffic sources.
The Internet depends on the cooperation between TCP senders and subnet routers to adjust the source data

rates in the presence of network congestion along the path of the TCP flow. Currently, buffer management
schemes are used in the Internet routers to indicate congestion to edge hosts, while the buffer management algo-
rithms can be classified into two categories: Passive Queue Management (PQM) and Active Queue Management
(AQM).

Active queue management is the pro-active approach of informing you about congestion before a buffer over-
flow occurs. AQM is done using Dynamic buffer limiting (DBL). DBL tracks the queue length for each traffic
flow in the switch. When the queue length of a flow exceeds its limit, DBL will drop packets or set the Explicit
Congestion Notification (ECN) bits in the packet headers.

DBL classifies flows in two categories:
• Adaptive: flows reduce the rate of packet transmission once it receives congestion notification.
• Aggressive: flows do not take any corrective action in response to congestion notification.

Queue length is measured by the number of packets. The number of packets in the queue determines the
amount of buffer space that a flow is given. When a flow has a high queue length the computed value is lowered.
This allows new incoming flows to receive buffer space in the queue. This allows all flows to get a proportional
share of packets through the queue.

3. EFRED: Enhancement Scheme for Active Queue Management
Different algorithms are developed for Active Queue Management like Drop Tail [5], REM [6], Blue [7], SFQ
[8], and RED, and FRED to achieve these Goals: 1) reduce the packets loss rate; 2) reduce the end to end delay;
3) increase the actual rate sending over the bandwidth called throughput; 4) reduce the time interval between
two sequence packets called (delay Variation). We introduce a new idea to reduce the packets loss rate and
achieve the other goals of AQM. The idea depends on the enhancement of the FRED algorithm by replace the
hazard rate estimated packets dropping function in FRED, we call this new algorithm EFRED algorithm.

3.1. The Hazard Function
The hazard function [9] is the conditional density function of failure at time t, given that the unit has survived
until time t. Therefore, letting X denote the random variable and x denote the realization,

() ()

()
() ()

()

()
{ }

()
()

()
()

| |
lim

|
lim

,
lim

lim
1

1

x

x

x

x

f x X x h x

F x X x

F x x X x F x X x
x

F x X x x X x
x

F x X x x X x
xP X x

F x X x x
x F x

f x
F x

∆ →

∆ →

∆ →

∆ →

≥ =

′= ≥

+ ∆ ≥ − ≥
=

∆

≤ ≤ + ∆ ≥
=

∆

≤ ≤ + ∆ ≥
=

∆ ≥

≤ ≤ + ∆
=

∆ −

=
−

It turns out that specifying a hazard function completely determines the cumulative distribution function (and
vice-versa).

3.2. The Failure Rate for the Weibull Distribution
For the Weibull distribution [10], the hazard function is

M. Abdulkareem et al.

285

() ()
()

()() ()

()

1 /

/

1

1

e

e

x

x

f x
h x

F x

x

x

β

β

β θ

θ

β

β θ θ

β
θ θ

− −

−

−

=
−

=

 =

Note that if β = 1 the Weibull hazard function is constant. This should be no surprise, since for β = 1 the
Weibull distribution reduces to the exponential. When β > 1, the Weibull hazard function increases, approaching
∞ as β → ∞. Consequently, the Weibull is a fairly common choice as a model for components or systems that
experience deterioration due to wear-out or fatigue. For the case where β < 1, the Weibull hazard function de-
creases, approaching 0 as β → 0. For comparison purposes, note that the hazard function for the gamma distri-
bution with parameters r and λ is also constant for the case r = 1 (the gamma also reduces to the exponential
when r = 1). Also, when r > 1 the hazard function increases, and when r < 1 the hazard function decreases.
However, when r > 1 the hazard function approaches λ from below, while if r < 1 the hazard function approach-
es λ from above. Therefore and before plunging into details of the study, we need to clarify and briefly explain
about some important concepts that would make a clear background and introductory presentation for this topic.
Even though the graph of the gamma and Weibull distributions look very similar, and they can both produce
reasonable fits to the same sample of data, they clearly have very different characteristics in terms of describing
survival or reliability data. Finally we can simplify hazard function for Weibull distributions as h(x) = cxc−1.

4. EFRED Algorithm
Fair Random Early Detection (FRED) keeps state based on instantaneous queue occupancy of a given flow.
FRED protects fragile flows by deterministically accepting flows from low bandwidth connections and fixes
several shortcomings of RED by computing queue length during both arrival and departure of the packet. FRED
algorithm focuses on the management of per-flow queue length. The FRED algorithm has an O (N) space re-
quirement (N = buffer size), which was one of the major advantages compared with per-flow queuing mechan-
isms (e.g. Fair Queuing). But with today’s memory price, it turned out space requirement is not an important
factor. The computational resources required for each packet is more significant. For each arriving packet,
FRED need to classify the packet into a flow, update flow information, and calculate average queue length (also
done when a packet is departing), and deciding whether to accept or drop the packet. Although optimizations
can be employed to simplify the per-flow operation, it’s not clear whether it can be cost-effectively implemented
in backbone routers. The implementation issue is not unique to per-flow algorithms, but also applies to algo-
rithms like RED. We choose the FRED algorithm because FRED achieves the fairness and high link utilization
by share the buffer size among active flows. It is also easy to configure, and adapt itself to preserve performance
under different network environments (different bandwidth, buffer size, flow number) and traffic patterns
(non-adaptive flows, robust adaptive flows, and fragile flows). From the study of the FRED character, we see
the dropping probability of a flow depends on the number of buffered packets from that flow, so in some case
the drop probability began high thus cause increasing in packets loss. So we propose to simply replace the ha-
zard rate estimated packet dropping function in FRED. The rest of the original FRED remains unchanged. We
call this new scheme EFRED. Simulations demonstrate that EFRED achieves a higher and more stable through-
put than RED and other efficient variants of AQM algorithms and low in delay between packets (that called
JITTER [12]). Since EFRED is fully compatible with FRED, we can easily upgrade/replace the existing FRED
implementations by EFRED in network simulator NS2 [11]. EFRED idea came from the combination of the ha-
zard function and the FRED algorithm see Figure 1, Figure 2

We make some major changes to the FRED algorithm and call the new algorithm EFRED. An important ad-
vantage of our algorithm EFRED is that one can change the probability value p via the use of the hazard func-
tion h(x) = cxc−1. Let T and qlen denote the target value and the queue length, respectively. In order to stabilize
the queue length against high congestion levels, we use c = 3, c = 2 and again c = 3 in the hazard function for the
cases where minth < qlen < T, T < qlen < maxth and maxth < qlen < 2* maxth, respectively. The pseudo code
for EFRED algorithm is illustrated in Figure 2.

M. Abdulkareem et al.

286

Figure 1. EFRED scheme.

5. EFRED: Simulation and Results
In this section, we discussed about network configuration used over the network simulator NS-2 to simulate the
algorithms RED, SFQ, REM, DropTail, BLUE, ARED, RIO, FRED, and EFRED and after that we analyzed
about the results obtained from our simulations. The algorithms compared here are first deployed into the ns2
architecture then following simulation scenario has been generated to compare their performance on the simula-
tion setting.

There are five nodes at each side of the bottleneck link. Here five nodes are acting as a TCP source and five
nodes are acting as a TCP sink so that both routers are applying the congestion control algorithm. There is two-
way traffic in the system. We consider the network scenario as shown in Figure 3. We simulate this network on
ns2 for different AQM algorithms RED, SFQ, REM, DropTail, BLUE, ARED, RIO, FRED, and EFRED for
same network parameters as given in Table 1 except to the bottleneck link. We simulated these algorithms RED,
SFQ, REM, DropTail, BLUE, ARED, RIO, FRED, and EFRED on the same bottleneck link R1-R2. Firstly we
consider the bottleneck link to 5 Mbps for each considered AQM algorithm. We considered a fixed packet size
of 1 KB and buffer capacity of 30 KB throughout the simulation. Round trip delay for each link has been dis-
played in Table 1. To metric the EFRED algorithm performance with RED, SFQ, REM, DropTail, BLUE,
ARED, RIO and FRED and prove our algorithm (EFRED) is better than other AQM algorithms. The perfor-
mance parameters are used:

1) Packets loss rate.
2) Throughput.
3) End to end delay.
4) JITTER.
5) Average Queuing Delay.
6) Link Utilization.
Our algorithm is consisting of two parts, the first part is the header file of EFRED algorithm and the second

part is the body of the EFRED algorithm. After we write a code and added it to NS2 Architecture and compiled
this code and make the new algorithm is valid under Ns2 Architecture.

6. Analysis of the Result
Our algorithm is consisting of two parts, the first part is the header file of EFRED algorithm and the second part
is the body of the EFRED algorithm. After we write a code and added it to NS2 Architecture and compiled this
code and make the new algorithm is valid under Ns2 Architecture…

6.1. Packet Loss Rate

When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the
LossRatemyfirst_sen_3tcpco.tcl, then the result we get from this test will be as in Table 2 and Figure 4 and
Figure 5.

The majority of this parameter is take the rate of dropping packet by divide the number of drop packet over

M. Abdulkareem et al.

287

Figure 2. EFRED flowchart.

Figure 3. Topology used.

M. Abdulkareem et al.

288

Figure 4. Diagram when use packet loss—part 1.

Figure 5. Diagram when use packet loss—part 2.

Table 1. parameters are used in dumpbell topology.

Link RTT (Ms.) Rate (Mbps) AQM Algorithms

Pc1-R1 10 100 DropTail

Pc2-R1 10 100 DropTail

Pc3-R1 10 100 DropTail

Pc4-R1 10 100 DropTail

Pc5-R1 10 100 DropTail

R1-R2 10 1, 2, 3, 4, 5 DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ, EFRED

R2-Pcd1 10 100 DropTail

R2-Pcd2 10 100 DropTail

R2-Pcd3 10 100 DropTail

R2-Pcd4 10 100 DropTail

R2-Pcd5 10 100 DropTail

Table 2. Results when use packets loss parameter—part 1.

Packet Loss Rate

Linkcong. RED ARED FRED RIO REM BLUE DROPTAIL EFRED

1 0.0177 0.0184 0.0283 0.0150 0.0145 0.0150 0.0145 0.0106

2 0.0118 0.0112 0.0113 0.0090 0.0083 0.0090 0.0082 0.0066

3 0.0077 0.0076 0.0083 0.0050 0.0051 0.0050 0.0051 0.0044

4 0.0057 0.0055 0.0083 0.0041 0.0041 0.0041 0.0041 0.0035

5 0.0040 0.0039 0.0082 0.0029 0.0026 0.0029 0.0026 0.0025

M. Abdulkareem et al.

289

the total send packets. It is very important parameter to evaluate the AQM. In Figure 4 we can notes our algo-
rithm (EFRED) is the best algorithm with compare to RED, ARED, FRED and RIO because it have the mini-
mum value of drop packet rate, and we can notes the second best algorithm after the EFRED is RIO.

The majority of this parameter is take the rate of dropping packet by divide the number of drop packet over
the total send packets. It is very important parameter to evaluate the AQM.

In Figure 5 we can notes our algorithm (EFRED) is the best algorithm with compare to REM, Blue, DropTail
and SFQ because it have the minimum value of drop packet rate, and we can notes the second best algorithm af-
ter the EFRED is DropTail.

6.2. Throughput
When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the
through put 2 ensultimatie.tcl, then the result we get from this test will be as in Table 3 and Figure 6 and Fig-
ure 7.

The majority of this parameter is take the total size of arriving packets in received node over the time period
from the first sending packets to the last packet received on the received node. This parameter show the actual
rate is send from the source to destination. In Figure 6 we can notes our algorithm (EFRED) is in some time
better and in other time is not good, but we can notes the better one to achieve the higher throughput is RED.

The majority of this parameter is take the total size of arriving packets in received node over the time period
from the first sending packets to the last packet received on the received node. This parameter show the actual
rate is send from the source to destination. In Figure 7 we can notes our algorithm (EFRED) is in some time

Figure 6. Result diagram when use throughput parameter—part 1.

Figure 7. Result diagram when use the throughput parameter—
part 2.

M. Abdulkareem et al.

290

Table 3. Results when use Throughput parameter—part 1.

Throughput in kbps

Link cong. RED ARED FRED RIO EFRED REM BLUE DropTail SFQ

1 278.553 436.151 341.782 424.622 411.047 472.673 424.622 472.673 457.496

2 937.329 780.158 804.075 592.099 772.528 698.573 592.099 698.573 896.843

3 1194.000 963.655 1117.530 1286.890 998.619 1292.130 1286.890 1292.130 1300.850

4 1549.030 1642.800 1289.630 1411.400 1422.890 1385.160 1411.400 1385.160 1614.770

5 1727.380 1929.000 1580.910 1734.950 1525.740 1539.960 1734.950 1539.960 2008.270

better and in other time is not good, but we can notes the better one to achieve the higher throughput is SFQ.

6.3. End to End Delay
When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the delay-
e2ensultimatie.tcl, then the result we get from this test will be as in Table 4 and Figure 8 and Figure 9.

The majority of this parameter is taken the average total time from source to destination, it is an important
parameter. In Figure 8 we can note our algorithm (EFRED) is the better then RED, ARED, FRED and RIO, be-
cause it have the minimum value of end to end delay in time and we can note also the second one best after our
algorithm is RED in sometime and ARED in other sometime.

The majority of this parameter is taken the average total time from source to destination, it is an important
parameter. In Figure 9 we can note our algorithm (EFRED) is the better then REM, Blue, DropTail and SFQ,
because it have the minimum value of end to end delay in time and we can note also the second one best after
our algorithm is SFQ.

6.4. Jitter
When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the ji-
termyfirst_sen_3tcpco.tcl, then the result we get from this test will be as in Table 5 and Figure 10 and Figure
11.

The majority of this parameter is taken the average total JITTER from source to destination, its means the de-
lay variation between sequence packets, also it is important parameter. In Figure 10 we can note our algorithm
(EFRED) is the better then RED, ARED, FRED and RIO, because it have the minimum value of delay variation
between sequence packet (JITTER) and we can note also the second one best after our algorithm is RIO.

The majority of this parameter is taken the average total JITTER from source to destination, its means the de-
lay variation between sequence packets, also it is important parameter. In Figure 11 we can note our algorithm
(EFRED) is the better then REM, Blue, DropTail and SFQ, because it have the minimum value of delay varia-
tion between sequence packet (JITTER) and we can note also the worst algorithm in JITTER is SFQ.

6.5. Average Queuing Delay
When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the de-
lay-linknsultimatie.tcl, then the result we get from this test will be as in Table 6 and Figure 12 and Figure 13.

Queue Delay is very important characteristic to determine that how well the active queue management of the
congestion control algorithm has been working, the majority of this parameter is measure the time from instant
enter the packet to the queue to the instant of leave the packet queue. In Figure 12 we can note our algorithm
(EFRED) is the better then RED, ARED, FRED and RIO, because it have the minimum value of Queuing delay
and we can note also the worst algorithm in Queuing delay is RIO.
The majority of this parameter is measure the time from instant enter the packet to the queue to the instant of
leave the packet queue. In Figure 13 we can note our algorithm (EFRED) is the better then REM, Blue, Drop-
Tail and SFQ, because it have the minimum value of Queuing delay and we can note also the worst algorithm in
Queuing delay is Blue.

M. Abdulkareem et al.

291

Figure 8. Result diagram when use the throughput
parameter—part 2.

Figure 9. Result diagram when uses end to end delay
parameter—part 2.

Figure 10. Result diagram when uses average JITTER
parameter—part 1.

Figure 11. Result diagram when uses Average JITTER
parameter—part 2.

M. Abdulkareem et al.

292

Figure 12. Result diagram when uses average queuing delay—
part 1.

Figure 13. Result diagram when uses Average queuing delay—
part 2.

Table 4. Results when uses end to end delay parameter—part 1.

End to end delay in seconds

Link cong. RED ARED FRED RIO EFRED REM BLUE DropTail SFQ

1 0.0323 0.0308 0.0620 0.0650 0.0213 0.0681 0.0650 0.0681 0.0567

2 0.0188 0.0205 0.0324 0.0361 0.0149 0.0350 0.0361 0.0350 0.0304

3 0.0154 0.0169 0.0228 0.0271 0.0128 0.0268 0.0271 0.0268 0.0226

4 0.0144 0.0151 0.0184 0.0224 0.0121 0.0218 0.0224 0.0218 0.0206

5 0.0137 0.0136 0.0146 0.0190 0.0117 0.0199 0.0190 0.0199 0.0191

Table 5. Results when uses average JITTER parameter—part 1.

Average JITTER in seconds

Link cong. RED ARED FRED RIO EFRED REM BLUE DropTail SFQ

1 1.5097 1.5974 2.3625 1.6205 1.0150 1.5425 1.6205 1.5425 8.7070

2 0.6578 0.7012 0.8273 0.6477 0.2242 0.6241 0.6477 0.6222 2.8636

3 0.4131 0.4093 0.4807 0.3726 0.5042 0.3848 0.3726 0.3848 1.2767

4 0.3281 0.3172 0.3845 0.2718 0.3044 0.2836 0.2718 0.2836 0.6775

5 0.2260 0.2100 0.2686 0.2148 0.1526 0.1679 0.2148 0.1679 0.5818

M. Abdulkareem et al.

293

Figure 14. Result diagram when uses link utilization parameter
— part 1.

Figure 15. Result diagram when uses link utilization parameter
—part 2.

Table 6. Results when uses Average Queuing delay—part 1.

Average Queuing Delay in seconds

Link cong. RED ARED FRED RIO EFRED REM BLUE DropTail SFQ

1 0.0726 0.0685 0.1836 0.1776 0.0450 0.1761 0.1776 0.1761 0.1490

2 0.0374 0.0392 0.0804 0.0911 0.0246 0.0950 0.0911 0.0951 0.0853

3 0.0265 0.0290 0.0469 0.0609 0.0186 0.0603 0.0609 0.0603 0.0526

4 0.0226 0.0239 0.0342 0.0463 0.0165 0.0457 0.0463 0.0457 0.0394

5 0.0202 0.0211 0.0234 0.0366 0.0152 0.0396 0.0366 0.0396 0.0334

Table 7. Results when uses Link utilization parameter—part 1.

Link utilization %

Link cong. RED ARED FRED RIO EFRED REM BLUE DropTail SFQ

1 97.8213 98.5124 97.6322 97.5031 93.6136 97.5530 97.5031 97.5530 98.7860

2 94.5200 92.3555 94.7715 95.6800 84.2980 96.2550 95.6800 96.3385 97.5930

3 89.4483 89.9983 91.5363 93.4260 77.5473 93.3246 93.4260 93.3246 93.2810

4 86.9545 89.0335 82.3210 89.6822 79.0772 89.8435 89.6822 89.8435 88.8177

5 84.4350 85.9484 84.9898 88.0414 67.5340 92.2392 88.0414 92.2392 86.9466

M. Abdulkareem et al.

294

6.6. Link Utilization
When we use these algorithms DT, RED, ARED, BLUE, REM, RIO, FRED, SFQ and EFRED and run the lin-
kutilizationnsultimatie.tcl, then the result we get from this test will be as in Table 7 and Figure 14 and Figure
15.

The majority of this parameter is how the algorithm can achieve higher link throughput over the time these
called link utilization. In Figure 14 we can note our algorithm (EFRED) is the worst then RED, ARED, FRED
and RIO, because it have the minimum value of link utilization % and we can note also the best algorithm is
RIO.

The majority of this parameter is how the algorithm can achieve higher link throughput over the time these
called link utilization. In Figure 15 we can note our algorithm (EFRED) is the worst then REM, Blue, DropTail
and SFQ, because it have the minimum value of link utilization and we can note also the best algorithm is SFQ.

7. Conclusion
In this paper we present the proposal EFRED algorithm on the TCP protocol under Linux platform and we
compare the result with the other algorithms like RED, ARED, FRED, DropTail, REM, Blue, RIO and SFQ
with different quality of service parameter like throughput, packet loss rate, end to end delay, JITTER, average
queuing delay and etc. we conclude our algorithm is better from side of packet loss, end to end delay, queuing
delay, JITTER, and worst from side throughput and link utilization.

References
[1] Abbasov, B. and Korukoglu., S. (2009) An Active Queue Management Algorithm for Reducing Packet Loss Rate.

Mathematical and Computational Applications, 14, 65-72.
[2] Athuraliya, S., Li, V.H., Low, S.H. and Yin, Q. (2001) REM: Active Queue Management. IEEE Network, 15, 48-53.

http://dx.doi.org/10.1109/65.923940
[3] Balchunas, A. (2010) Introduction to QoS. Aaron Balchunas. http://www.routeralley.com/
[4] Braden, B.A. (1998) Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC 2309,

April.
[5] Chan, M.-K. and Hamdi, M. (2003) An Active Queue Management Scheme Based on a Capture-Recapture Model.

IEEE Journal on Selected Areas in Communications, 21, 572-583. http://dx.doi.org/10.1109/JSAC.2003.810499
[6] Cisco Systems Inc. (2010) Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide. Cisco Press, San

Jose.
[7] Feipeng, L. (2011). Drop Tail and RED—Two AQM Mechanisms. www.roman10.net

http://www.roman10.net/drop-tail-and-redtwo-aqm-mechanisms/
[8] Feng, W.-C., Kandlur, D.D., Saha, D. and Shin, K. G. (1999) BLUE: A New Class of Active Queue Management Al-

gorithms. Technical Report CSE-TR-387-99, Dept. of EECS, University of Michigan, April.
[9] Floyd, S. and Jacobson, V. (1993) Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Transac-

tions on Networking, 1, 397-413. http://dx.doi.org/10.1109/90.251892
[10] Thiruchelvi, G. and Raja, J. (2012) Active Queue Management Based Adaptive Flow Control Mechanism for Unres-

ponsive Flows. European Journal of Scientific Research, 70, 67-80.
[11] Thiruchelvi, G. and Raja, J. (2008) A Survey on Active Queue Management Mechanisms. IJCSNS International Jour-

nal of Computer Science and Network Security, 8, 130-145.
[12] Kadry, S. (2011) A New Proposed Technique to Improve Software Regression Testing Cost. arXiv preprint ar-

Xiv:1111.5640.

http://dx.doi.org/10.1109/65.923940
http://www.routeralley.com/
http://dx.doi.org/10.1109/JSAC.2003.810499
http://www.roman10.net/
http://www.roman10.net/drop-tail-and-redtwo-aqm-mechanisms/
http://dx.doi.org/10.1109/90.251892

	EFRED: Enhancement of Fair Random Early Detection Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Active Queue Management
	3. EFRED: Enhancement Scheme for Active Queue Management
	3.1. The Hazard Function
	3.2. The Failure Rate for the Weibull Distribution

	4. EFRED Algorithm
	5. EFRED: Simulation and Results
	6. Analysis of the Result
	6.1. Packet Loss Rate
	6.2. Throughput
	6.3. End to End Delay
	6.4. Jitter
	6.5. Average Queuing Delay
	6.6. Link Utilization

	7. Conclusion
	References

