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Abstract 
A study of the optical luminosity function of Quasi Stellar Objects (QSOs) and its evolution with 
redshift is carried out using the data from the Sloan Digital Sky Survey Data Release Seven (SDSS 
DR7). It is shown that the observed QSO luminosity function is well fitted by a Schechter function 

model of the form ( ) ( ) ( ) ( )i i i i i i i iL dL L L L L d L Lexp∗ ∗ ∗ ∗Φ = Φ −
α

, where iL∗  is the break or charac-
teristic luminosity with luminosity evolution characterized by a second order polynomial in red 
shift. The best fit parameters are determined by using the Levenberg-Marquardt method of nonli-
near least square fit. 
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1. Introduction 
Quasi Stellar Objects (QSOs) or quasars were defined originally as star-like objects of large redshift. They are 
powered by the accretion of matter onto supermassive black holes (SMBHs). The QSOs are considered to be the 
most luminous subclass of Active Galactic Nuclei (AGNs) [1]. Soon after the discovery of QSO [2], their popu-
lation was observed to evolve strongly with redshift. As a result these objects provide a unique tool in the study 
of galaxies and large-scale structure formation throughout the history of the universe [3]. The QSO luminosity 
function and its evolution with redshift provide important clues about the demographics of the AGN population 
and strong constraints on physical models and evolutionary theories of AGN [4]-[6]. The faint-end slope of the 
luminosity function is a measure of how much time QSOs spend at relatively low accretion rates. On the other 

 

 

*Corresponding author. 

http://www.scirp.org/journal/ijaa
http://dx.doi.org/10.4236/ijaa.2016.63020
http://dx.doi.org/10.4236/ijaa.2016.63020
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


S. A. Singh et al. 
 

 
248 

hand, the bright-end slope tells us about the intrinsic properties of the QSO population during the time when 
black holes were increasing in mass most rapidly (e.g. triggering rate, active black mass function, etc.) [7]. 

The differential QSO luminosity function is defined as the number density of QSOs per unit comoving vo-
lume, and per unit luminosity as a function of luminosity and redshift [8] [9]. The luminosity function is usually 
derived by using the max1 V  method (e.g. [10]-[14]). The most common analytical representation for the shape 
of the QSO luminosity function in the literature is a double power-law (e.g. [6] [15]-[22]). In this paper, we use 
the Schechter function model [23] to describe the shape of the QSO luminosity function. In earlier papers such 
as Goldschmidt et al. (1998) [24], Warren et al. (1994) [25] and Singh et al. (2016) [26] the Schechter function 
is found to represent the shape of the QSO luminosity function. Using the Edinburgh UVX quasar survey, 
Goldschmidt et al. (1998) [24] used the Schechter function model with the evolution of the characteristic mag-
nitude, ( ) ( )*

0 102.5 log 1M z M zγ= − +  to fit the quasar luminosity function at the redshift range 1.7 ≤ z ≤ 2.2. 
The fit is observed to be acceptable with a significance level for rejection of 10%. Warren et al. (1994) [25] used 
the Schechter function model with evolution of the characteristic magnitude of the form ( )*

0 1.08 LM z M k τ= −  
usinga wide-field multicolor survey for high redshift quasars (z ≥ 2.2), where τ is the look-back time. Singh et al. 
(2016) [26] has shown that the shape of the QSO luminosity functions is adequately represented by the Schech-
ter function with second order polynomial evolution model from the 2QZ and 6QZ samples in the redshift range 
0.3 ≤ z ≤ 2.4. 

Historically, there are two fundamental models for the evolution of QSOs namely, pure luminosity evolution 
(PLE) and pure density evolution (PDE). If the redshift and luminosity dependence are separable, the evolution 
of the luminosity function can be modelled in terms of the PLE where QSO luminosities change with time, but 
the total number of QSO remains constant and the PDE where the number density of QSOs changes but their 
luminosities remain constant. Various hybrid models such as luminosity and density evolution model (LEDE) 
and luminosity-dependent density evolution model (LDDE) are also used to describe the evolution of QSOs with 
redshift. Ross et al. (2013) [21] and Croom et al. (2009) [7] presented the luminosity function evolved with 
LEDE where the bright-end and faint-end slopes have fixed values and normalization and characteristic lumi-
nosity evolve independently. Croom et al. (2009) [7] and Bongiorno et al. (2007) [27] used the LDDE to study 
the luminosity evolution of QSOs. The luminosity evolution of QSOs with redshift in this paper is described by 
the PLE. 

In section 2 we give a brief description of the SDSS sample. The determination of the binned optical luminos-
ity function and its evolutionary behaviors are presented in section 3. Finally in section 4 we give our conclusion. 
Throughout this paper we use a Ʌ cosmology with 0.3mΩ = , 0.7ΛΩ = , and Ho = 70.0 km⋅s−1⋅Mpc−1. 

2. The Sample 
The Sloan Digital Sky Survey Data Release Seven (SDSS DR7) [28] uses a CCD camera [29] on a dedicated 2.5 
m wide field telescope [30] located at Apache Point Observatory (APO) near the Sacramento peak in Southern 
New Mexico, to obtain images in five photometric bands: u, g, r, i and z [29] [31] over approximately 10,000 
square degrees of high Galactic latitude sky in the Northern Hemisphere [32]. The survey data-processing soft-
ware measures the properties of each detected object in the imaging data in all five photometric bands and de-
termines and applies both astrometric and photometric calibrations [33]-[35]. The photometricis calibrated to an 
AB system [36] and the photometric measurements are reported as asinh magnitudes [37]. The spectroscopy is 
performed by using a 640-fibre-fed pair of multiobject double spectrographs with coverage from 3800 Å to 9200 
Å and a resolution of λ λ∆  of roughly 2000 [28]. 

The final SDSS DR7 quasars catalog from SDSS I/II was presented in Schneider et al. (2010) [38] which 
contains 105,783 spectroscopically confirmed quasars and the redshift distribution of these QSOs is also shown 
in Singh et al. (2014) [39]. The catalog consists of quasars that have a luminosity larger than Mi = −22.5 (calcu-
lated assuming Ʌ cosmology with 0.3mΩ = , 0.7ΛΩ = , and Ho = 70.0 km⋅s−1⋅Mpc−1) and have at least one 
emission line with full width at half-maximum (FWHM) larger than 1000 km⋅s−1 or have interesting/complex 
absorption features, and also that are fainter than i = 15.0, and have highly reliable redshift [38]. About half of 
these objects are selected uniformly using the final quasar target selection algorithm described in Richards et al. 
(2002) [40], and form a homogeneous, statistical quasar sample. In this homogeneous sample, quasars are 
flux-limited to i = 19.1 for z < 2.9 and to i = 20.2 for z > 2.9. The sky coverage of this uniform quasar sample is 
6248 deg2 [41]. 
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3. The Luminosity Function and Its Analysis 
The optical luminosity function of QSOs is determined by using the max1 V  method [42]. It is given by 

[ ]( ) [ ] max,

1 12
2

N

i
ji j

M z
M z V

 
Φ = =   ∆ =  

∑                          (1) 

with a Poisson statistical uncertainty 

( ) [ ]

1 22

max,

1 1 ,
2

N

ji jVM z
σ

  
 Φ =   =    

∆ ∑                          (2) 

where max, jV  is the volume corresponding to the maximum distance that object j could be observed, and still be 
included in the sample. The summation is over all quasars within a redshift-magnitude bin. 

Figure 1 shows the binned optical luminosity function of QSOs (indicated by filled circle points) for nine 
redshift intervals i.e. 0.3 ≤ 0.5; 0.5 ≤ z ≤ 0.7; 0.7 ≤ z ≤ 0.9; 0.9 ≤ z ≤ 1.1; 1.1 ≤ z ≤ 1.3; 1.3 ≤ z ≤ 1.5; 1.5 ≤ z ≤ 1.7; 
1.7 ≤ z ≤ 1.9 and 1.9 ≤ z ≤ 2.4. The bin size of absolute magnitude, iM∆  is 0.3 mag. 

The shape of the QSO luminosity function is fitted by the Schechter function model [23]. The generalized 
form of the Schechter function model is given by 

( ) *
* * *expi i i

i i
i i i

L L LL dL d
L L L

α
     

Φ = Φ −     
     

 

which, in terms of absolute magnitude, becomes 
 

 
Figure1. The binned optical luminosity functions of QSOs for the SDSS DR7 sample (de-
noted by filled circle points in each panel). The solid lines denote the prediction of the best 
fit Schechter function model with second order polynomial evolution in redshift. The dashed 
line in each panel shows the luminosity function at 1.3 ≤ z ≤ 1.5 as a reference. 
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Table 1. The best fitting parameter values derived from the SDSS DR7 sample for the Schechter function model with second 
order polynomial in redshift. 

Redshift ranges α *
iM  k1 k2 

* 610φ −×  
(Mpc−3⋅mag−1) 

2 vχ  

1.5 - 2.4 −2.52 −22.96 1.91 −0.44 0.09 40.48/28 

0.3 - 1.5 −2.32 −23.99 1.46 −0.35 0.13 298.50/76  

0.3 - 2.4 −2.32 −23.97 1.38 −0.30 0.15 412.43/109 

 

( ) ( ) ( )( ) ( )* *0.4 1 0.4*0.4 10 10 exp 10i i i iM M M M
iM In

α
φ φ

− − + − − = × −  
                    (3) 

where *φ  is a normalization parameter whose dimension is the number density of objects, α is the faint-end 
slope of the luminosity function and *

iL  is the characteristic luminosity (with an equivalent characteristic abso-
lute magnitude, *

iM ). The evolution of the luminosity function is described by the redshift dependence of the 
characteristic luminosity or magnitude. We have modelled this evolution as a second-order polynomial in red-
shift of the form 

( ) ( ) 2
1 2* * 0 10k z k z

i iL z L +=  

or in terms of absolute magnitude, 

( ) ( ) ( )* * 2
1 20 2.5i iM z M k z k z= − +                           (4) 

By using equations (3) and (4), we fit the PLE model to the binned optical luminosity function determined by 
Shen & Kelly (2012) [41] in various redshift ranges. The best-fitting parameters are determined from the PLE 
model by using the Levenberg-Marquardt method of nonlinear least square fit [43]. The resulting best-fitting 
parameters in various redshift ranges are listed in Table 1. In Figure 1, the solid lines represent the Schechter 
function model with PLE fit to the observed luminosity functions of QSOs. In assessing the goodness-of-fit, we 
measure the 2χ  value by comparing the observed luminosity function and theoretical luminosity function pre-
dicted by best fit model. A 2χ  comparison of the model luminosity function to the binned luminosity function 
gives 2 412.43 109vχ =  for 0.3 ≤ z ≤ 2.4. But, if we restrict the redshift range being fit, we obtain significant 
improvement with 2 40.48 28vχ =  for the redshift range 1.5 ≤ z ≤ 2.4. Thus, the Schechter function model 
can be regarded as simply one way of describing the basic shape of the QSO luminosity function which displays 
a steepening above the characteristic luminosity *

iL  (or below a characteristic absolute magnitude *
iM ). From 

Figure 1, it is clear that there is in general good agreement between the model and data. However, there are 
more bright QSOs than predicted by the model at the bright end of the luminosity function which is due to the 
exponential decrease in the Schechter function model at *

iiL L> . 

4. Conclusion 
The shape of the luminosity function of QSOs and its evolution with redshift are studied by using the Schechter 
function model with PLE. The best fitting parameter values for the model are determined by using the Leven-
berg-Marquardt method of nonlinear least square fit. For the Schechter function model the dimensionless para-
meter α gives the slope of the luminosity function for QSOs fainter than the characteristic luminosity *

iL  (i.e. 
*
iiL L
); for QSOs more luminous than the characteristic luminosity *

iL  (i.e. *
iiL L
), the luminosity func-

tion drops exponentially with luminosity. A comparison of the 2χ  values and the number of degrees of free-
dom shows that the Schechter function model with polynomial evolution of the characteristic magnitude pro-
vides acceptable fit to the QSO luminosity function. 
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