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Abstract 
The metrics of the compact objects should be the continuous function of coordinates. The metrics 
inside every object is set by its internal structure. The metrics in the adjacent empty space is de-
scribed by the outer Schwarzschild or Kerr solution of the Einstein field equations. It appears that 
the linkup of both object-interior and empty-space metrics is not continuous at the physical sur-
faces of the objects for the common, generally (by convention) accepted set of assumptions. We 
suggest the new way of how to achieve the success in the linkup, which does not assume the higher 
value of the relativistic speed limit in the empty space governed by the object, in contrast to our 
previous suggestion. We also give a more detailed explanation of the existence of inner physical 
surface of compact objects and suggest the way of the linkup of metrics in this surface. To achieve 
the continuous linkup, we assume a lower value of the speed limit in the object’s interior as well as 
a new gauging of the outer Schwarzschild solution for the inner empty space of the object. Newly 
established gauging constants are calculated and the success of the linkup is shown in several 
examples. The new gauging implies a lower gravitational attraction (lower gravitational constant) 
in the inner empty space in comparison with that in the outer space, which is measured in the 
common, observed, gravitational interactions of material objects. 
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1. Introduction 
The first description of the internal structure of dead stars, which spent all storage of their nuclear fuel, was pub-
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lished by Oppenheimer and Volkoff [1] about three quarters of century ago. These authors derived the equations 
for the numerical integration to calculate the behavior of state quantities in the object’s interior. They assumed 
the non-rotating object consisting exclusively of neutrons. Later, their concept was improved considering a more 
complex composition and several effects in stiff matter discovered meanwhile. And, the advanced models have 
been worked out for the rotating objects. Nevertheless, the original Oppenheimer-Volkoff concept was again 
considered, recently, to demonstrate two new essential features of neutron stars (NSs, hereinafter). 

In 2011, Chinese researcher Ni [2] published the solution of the equations in the original Oppenheimer-Vol- 
koff problem, which implies an inner physical surface of the object. The solution could be obtained after aban-
doning a relativistic postulate (more specified in Section 2). Ni concluded that his solution has no upper mass 
limit1. In our earlier paper [5] (Paper I, hereinafter), we corrected this conclusion related to the pure neutron ob-
jects. Since the neutron is an unstable particle in the neutron gas with a density lower than a certain critical value, 
the mass of stable neutron objects cannot exceed several ten thousand to few hundred thousand solar masses 
(however, this correction does not exclude an existence of more massive stable objects, but consisting of the gas 
of other kind). 

In Paper I, we pointed out the second feature that every realistic concept of NS must possess: the spacetime 
metrics must be the continuous function of radial distance from the object’s interior up to the adjacent outer 
space. It appears, the continuity is not obvious at the outer physical surface of the object. The metrics inside the 
object's body can be calculated from the model of the object’s internal structure. In the case of non-rotating ob-
ject, the metrics of the outer space is described by the outer Schwarzschild (OSCH, hereinafter) solution [6] of 
the Einstein field equations [7] [8]. We showed that the continuous linkup is impossible, if the OSCH solution is 
gauged in the common, generally well-known way (until now). 

To solve the problem of the linkup, we suggested the alternative way of gauging of one integration constant in 
the OSCH solution. Namely, there should be a specific relativistic speed limit, c , in the outer spacetime go-
verned by the given compact object. We empirically found that c c> , where c  is the common speed limit or 
the velocity of light in vacuum (measured in our laboratories). 

The fact that there is assumed the speed limit larger than c  implies some difficulties in physics. For example, 
the space around the compact object should behave as a concave lens deflecting the light rays away from the 
object. We have no observational indication of such an effect. 

Meanwhile we found that the assumption of the limit c c>  is not any sole possibility to solve the linkup 
problem. The gauging can be done in another alternative way, which is presented in this paper. In the new gau- 
ging, the maximum speed limit remains c, but the velocity of light figuring in the equations determining the in-
ternal structure of the compact object is assumed lower than c, on contrary. 

We note, we create a “global” model, which describes the overall internal structure of compact neutron object, 
here. It means, we do not give any description of local phenomena or fields (e.g., magnetic field), which can oc- 
cur at the surface of the object or in its close vicinity. The ignorance of these phenomena or fields does not re- 
present, however, any principal problem, since the outer physical surface in all presented models is situated 
above the corresponding event horizon. Thus, the modeling is analogous to that of the internal structure of 
common stars. The local phenomena at the stars often used to be described in addition to the stellar model as a 
whole. 

Concerning the structure of our paper, it is following. In the second section of our paper, we explain, once 
more, the mechanism of the formation of inner physical surface of compact object. In Section 3, we recall the 
basic equations determining the internal structure of non-rotating neutron object and also explain how the alter-
native gauging of the OSCH solution can be done. In the beginning of Section 4, the first way of the alternative 
gauging of integration constant in the OSCH solution is reminded. Then, the new assumption is presented in de-
tail and the appropriate modified constants are given. In Section 5, we present a series of solutions for the inter-
nal structure of neutron objects with the description of whole metrics as well as some interesting dependencies 
concerning the relationship between the mass and outer radius or that between both outer radius and Schwarz-
schild gravitational radius, etc. In this paper, we also deal with the linkup in the inner physical surface, in Sec-
tion 6. Some conclusion remarks are written in Section 7. 

 

 

1The solution without the upper mass limit was also found by Fiziev several years earlier [3] [4]. This author assumed an alternative gauging 
of field equations. Besides the common radial coordinate, he established another variable, which started to have the physical meaning from a 
certain critical value. 
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2. Inner Physical Surface 
In the Newtonian physics with the flat, Euclidean space, the area of a spherical surface delineated by a spherical 
angle is proportional to the quadrate of the distance from the area. The Newtonian gravitational force and, hence, 
the corresponding acceleration is proportional to the reciprocal quadrate of the distance. 

In general relativity, the metrics of the vacuum in a vicinity of spherically symmetric distribution of matter is 
OSCH, according to the Birkhoff theorem. It means that the time component, 44g , of the metric tensor is equal 
to 44 11g C r= + , where 1C  is an integration constant. Because of the singularity in 0r → , it is however 
postulated that 1 0C =  and the metrics is, therefore, flat inside a spherical shell. Thus there is no difference 
between the Newtonian physics and general relativity concerning the metrics in the vacuum inside the spherical 
shell. 

In the following, let us nevertheless to discuss the case when we abandon the postulate and consider the non- 
degenerated OSCH metrics also inside the shell (or, the postulate 1 0C =  is reduced to be valid only in 0r =  
to avoid the singularity). 

Taking into account this assumption, let us consider a spherically symmetric, thin material shell (Figure 1). 
There is vacuum as outside the shell as well as in its interior. The gravitational acceleration of a test particle si-
tuated outside the shell is non-zero and oriented toward its center. We denote it by Nouta  in the Newtonian case 
(Figure 1, upper scheme). Inside the shell, the net Newtonian force and corresponding acceleration ( Nina  in the 
upper scheme in Figure 1) of a particle are zero. Let us further do a thinking experiment that the shell consists 
of a gas with the internal pressure. The gradient of the pressure pushes the gas as outward as inward the shell. 
The outward acting gradient can be balanced by the gravity and this is the mechanism of how the outer physical 
surfaces of, e.g., stars or gaseous planets form. Since the net gravity inside the shell is zero, there is nothing to 
balance the inward acting gradient of pressure. No stable configuration with an inner physical surface can occur 
in the case of Newtonian gravity. The whole interior of shell must be, earlier or later, filled in with a gas. This is, 
likely, the physical justification of our psychological belief that every gaseous object is a full sphere. 

Let us further consider the analogous shell, but so compact that its gravity significantly curves the spacetime, 
therefore the relativistic description of gravity is relevant. Inside the shell, there is a point-like test particle in the 
position characterized with a radius vector. The plane containing the particle and perpendicular to the particle’s 
radius vector (indicated with the violet dashed straight-line in the bottom schemes in Figure 1) divides the shell 
to the outer (red in Figure 1) and inner (blue in Figure 1) parts with respect to the shell’s center. The relativistic 
gravitational acceleration from the matter in the outer (inner) part of the shell is 1GRina  ( )2GRina . Notice that the 
vector 1GRina  is naturally oriented in the outward direction, toward the acting material part of the shell (we em-
phasize that the gravity is always regarded as the attractive force). 

The solution of the Einstein field equations found by Ni implies that 1 2GRin GRin>a a , when no postulate is 
applied. It means that the resultant acceleration vector in the general-relativistic case, GRina , is oriented outward 
(as shown in the bottom-right scheme in Figure 1). If we now repeat the thinking experiment, we find that there 
is an agent, the outward oriented gravity, which can balance the inward acting gradient of pressure. The mecha- 
nism of formation of the inner physical surface is essentially the same as that leading to the formation of outer 
surface. 

The object with the inner surface is further referred to as the “hollow sphere”. Inside such the object, there is 
always a distance maxr , in which pressure and energy density acquire the maximum values. This distance is, of 
course, larger than the radius of the inner surface inR  and smaller than the radius of outer surface outR . We 
note that it is possible to construct the models with arbitrarily small values of inR  and maxr . If the step of the 
numerical integration, used to gain the behavior of state quantities, is r∆ , we can find such input values enter-
ing the numerical integration, which imply the values of inR  and maxr  satisfying inequalities  

max0 inR r r< < ≤ ∆ , but outR  is as large as expected for a typical outer radius of NS. Four examples of the 
numerical integration with the extremely small values of maxr  are shown in Figure 2. Specifically, 3

max 10r −= , 
410− , 510− , and 610 gR−



 (i.e. about 300, 30, 3, and 0.3 cm, respectively). We use the gravitational radius of 
the Sun, 3 kmgR



 , as the unit of length. 
Distance maxr  is, in fact, the critical distance in which the orientation of the vector of gravitational attraction 

changes from inward to outward direction. Its existence can also be deduced if we realize that the vector of gra-
vitational attraction is oriented outward inside the spherically symmetric material shell introduced above. When 
we consider a test particle near the outer physical surface of compact object, there are much more material layers  
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Figure 1. The schemes helping to explain the formation of the inner physical surface of compact object. The 
green (upper scheme) and blue-red (bottom schemes) circles represent a thin, spherically symmetric material 
shell in the case of Newtonian (upper scheme) and general-relativistic (bottom schemes) description of gravity. 
The violet dashed straight-line indicates the plane passing through a test particle, situated inside the shell, and 
perpendicular to the particle’s radius vector. The acceleration of a particle being outside of shell due to its 
gravity is denoted by aNout or aGRout. The acceleration of test particle being inside the shell due to its outer 
(inner) part is denoted by aGRin1(aGRin2) and the acceleration of this particle due to the net force is aNin or aGRin.   

 

 
(a)                                            (b) 

Figure 2. The behavior of density inside four compact objects with the extremely small distance rmax and inner radius Rin. 
The density is given in the logarithmic scale and the radial distance in both linear (a) and logarithmic (b) scales. The thick, 
solid curves illustrate the behavior in the distances from rmax to the outer radius Rout and thin, dashed curves that from rmax 
down to the inner radius Rin.                                                                             
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below this particle and it is obviously more attracted by these layers than by few layers above it. If we consider 
the particle in a shorter and shorter object-centric distances, there are less and less layers below and more and 
more layers above it. Therefore, the particle is in a lesser and lesser degree attracted by the lower layers and 
more and more attracted by the upper layers. Considering the solution by Ni, we get to the distance, where the 
attraction of the lower layers (toward the center) is balanced by the attraction of the upper layers (outward the 
center). 

The gradient of pressure, balancing the gravity, also changes its orientation in distance maxr . The formula 
giving the gradient can be written in the following form. We know that the general relativity has to converge to 
the Newtonian physics in the limit of weak field and this requirement yields the gauging in the relations for the 
metric-tensor components 11g  and 44g  in the OSCH solution in the form 2

11 441 1 2g g U c− = = + , where 
U  is the gravitational potential. The auxiliary function u , which was established by Oppenheimer and 
Volkoff [1] as  

11

1 11 ,
2

u r
g

 
= + 

 
                                  (1.1) 

can be given with the help of U  as ( )2 21 1 2 2u r U c rU c= − − = −  or 22 2u r U c= − . Although this is 
derived for the OSCH solution, it would be strange to represent function u as directly related to the potential in 
the OSCH solution, but as related to some else quantity in the NS body. Therefore, the well-known formula for 
the gradient of pressure, d dnP r , figuring in the Oppenheimer-Volkoff problem, can be given as  

( )
2

22

d 2 ,
d 2 1 2

n n n
n

P E P Ur P
r cr U c

γ
+  = − − 

+  
                         (1.2) 

where nE  and nP  are the energy density and pressure, and constant 48π cγ κ=  in the used SI units (κ  is 
the gravitational constant). 

The pressure reaches its maximum value when d d 0nP r = , i.e. 2 2
max 2 0nr P U cγ − = . It appears, if maxr r> , 

then 2 22 0nr P U cγ − >  and d d 0nP r <  (we empirically found that there is always valid 21 2 0U c+ >  in 
the denominator of Equation (1.2)). On contrary, if maxr r< , then 2 22 0nr P U cγ − <  and d d 0nP r > . 

We note that, according to some solutions of the Einstein field equations, the matter can still be distributed 
from the true center of NS in such a way that the vector of the gravitational attraction is oriented inward from 
this center to infinity and gradient of pressure always acts against this attraction inside the NS body. 

3. Structure of Compact Neutron Object 
The equations to describe the non-rotating object, without any internal source of energy, consisting of a cold, de- 
generated, Fermi-Dirac gas, has been presented many times, starting with the famous paper by Oppenheimer and 
Volkoff [1]. Therefore, we only remind that the final set of the equations for numerical integration, written with 
the help of denotation used in Paper I, is  

( )
( )
( ) ( )3sinh 2sinh 2d 4 1 sinh 8sinh 2 3 ,

d 2 cosh 4cosh 2 3 6
Kr u

r r r u
τ ττ γ τ τ τ

τ τ
−  = − − + +   − − +  

        (1.3) 

( )2d 1 sinh ,
d 2
u Kr
r

γ τ τ= −                                (1.4) 

( )d 1 1 1 1sinh 8sinh 2 3 .
d 1 2 3

Kr
r u r r r
ν γ τ τ τ = − + + −   −  

                   (1.5) 

Components 11g  and 44g  of the metric tensor were also written with the help of auxiliary functions 
( )rλ λ=  and ( )rν ν=  in the form ( )11 expg λ= −  and ( )44 expg ν= . The energy density, nE , and pres-

sure, nP , of the considered neutron gas can be given as the functions of the auxiliary quantity τ : 
( )sinhnE K τ τ= −  and ( ) ( )3 sinh 8sinh 2 3nP K τ τ τ= − +    [9]. Quantity τ  is related to the Fermi im-

pulse, Fp , as  
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2

4 ln 1F F

n n

p p
m c m c

τ
   = + +     

                             (1.6) 

( nm  is the rest mass of neutron) and constant K  can be expressed as  
4 5

3

π
,

4
nm c

K
h

=                                      (1.7) 

therefore the product Kγ  figuring in Equations (1.3)-(1.5) equals  
2 4

3

2π
,nm c

K
h
κ

γ =                                    (1.8) 

where h  is the Planck constant. 
A model of internal structure of a neutron object as the hollow sphere can be calculated assuming a set of in-

put values Fop  (or oτ ), ou , and oν  in a distance or  inside the object, i.e. satisfying inequalities 
in o outR r R< < . Because of practical reason, it is worth to eliminate at least one input parameter. As already 

mentioned in Section 2, in the object occupying the hollow sphere, there is always such the distance maxr , in 
which τ  and, consequently, nP  and nE  acquire the maximum values. We can start the integration just in 

maxor r=  and utilize that  

31 sinh 8sinh 3
6 2

o
o o o ou Kr

τ
γ τ τ = − − + 

 
                          (1.9) 

in this distance. The latter is derived from the condition for the local maximum of function τ , i.e. from 
d d 0rτ = . After we put maxor r= , we have to choose only the input values ,maxFo Fp p=  (or maxoτ τ= ), and 

oν  in maxr . 
The sum of the rest masses of all neutrons constituting the object, i.e. the object’s rest mass, can be calculated 

as  

( ) 2 24π e d ,out

in

R
o n R

M m n r r rλ= ∫                             (1.10) 

and the object’s total or gravitational mass as  

( ) 2 2
2

4π e d ,out

in

R
nR

M E r r r
c

λ= ∫                              (1.11) 

where ( )n n r=  is the number density of neutrons given by relation  

3 3
3

8π ( ) .sinh
43 nn m c

h
τ

=                                (1.12) 

In the case of the spherical symmetry, only the components 11g , 22g , 33g , and 44g  of metric tensor are 
non-zero. Further, the components 22g  and 33g  are identical for both object’s interior and outer empty space. 
In a search for a continuous metrics, we therefore need to deal only with the components 11g  and 44g . 

In the process of the derivation of OSCH solution, we obtain the differential equation d d d dr rλ ν= − . In-
tegrating the latter, we obtain Kνλ ν= − , where Kν  is the integration constant. If it is converted to constant 

cK  as ( ) 2exp cK Kν = , the line element of the metrics for vacuum, described by the OSCH solution, is  

( )22 2 2 2 2 2 2 2d e d d sin d e d ,cs r r r K c tλ νϑ ϑ ϕ= − − − +                   (1.13) 

in the spherical coordinate frame r , ϑ , and ϕ . In the classical gauging of the OSCH solution, only the uni-
versal speed limit, c , is considered, therefore only zero Kν  (i.e. 1cK = ) is relevant. 

Although the line element (1.13) with constant cK  is derived for the vacuum, we generalize it also for a ma-
terial environment in our further considerations. Specifically, we will use constants outK , mK , and inK  for 
the outer empty space, material interior of the NS body, and inner empty space, respectively (Term “body” is 
used to specify the part of object between its inner and outer physical surfaces, without the internal void). 
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4. Gauging of Internal-Structure Speed Limit 
Using ( )11 expg λ= −  and according to relation (1.1),  

12e 1 u
r

λ
−

 = − 
 

                                   (1.14) 

inside the NS. Let us denote function u  in the distance outr R=  by outu . The first requirement for the conti-
nuous metrics is equality of the function ( )exp λ  given by (1.14) in outR  and its OSCH-metrics counterpart in 
this distance, i.e. ( ) ( )1 1 2 1 1out out g outu R R R− = − . From the latter, we gain the requirement  

1,
2

g

out

R
u

=                                      (1.15) 

where gR  is the Schwarzschild gravitational radius. It can be determined considering the object’s mass, M , 
given by relation (1.11). So, it is unique for the given object. The value of outu  is also unique, implied by the 
model of internal structure of the given object. 

In Paper I, we constructed the dependencies of the ratio ( )2g outR u  on the input value ,maxFp  for a series 
of maximum distances maxr  and found that there is always valid ( )2 1g outR u >  for every ,max 0Fp > . It 
means, component 11g  determined for the object does not equal to that for the OSCH metrics in outR . There is 
a principal displacement of 11g  in this distance when the traditional values of all concerning constants are con-
sidered. 

The second requirement of acceptable linkup of metrics is equality of ( )exp ν  calculated for the object and 
its OSCH-solution counterpart in outR . Denoting function ν  in outR  with the symbol outν  and realizing that 

44 1 g outg R R= −  in the OSCH solution in outR , we obtain the mathematical form of the second requirement  

e 1 .out g

out

R
R

ν = −                                   (1.16) 

When the input values of ,maxFp , oν , and maxr  are chosen ad hoc, condition (1.16) is not satisfied. However, 
it is always possible, via an iteration, to find such the input oν , at given combination of ,maxFp  and maxr , that 
the condition is satisfied. By the way, this circumstance implies that not all input parameters to the numerical 
integration of Equations (1.3)-(1.5) are free. 

The continuous linkup however requires that also the derivatives of 11g  and 44g  with respect to r  for 
both object and empty space have to equal each other, respectively, in the neutron-object’s surface. It means,  

( )2 2

de ,
d 1out

out

g

r R g r R

R
r R r r

λ λ

=
=

 
   = −     − 

                        (1.17) 

2

de .
d

out out

g

r R r R

R
r r

ν ν

= =

   =   
   

                            (1.18) 

Because of the above-mentioned displacement of 11g  in outR , it is meaningless to investigate if condition 
(1.17) is satisfied. Condition (1.18) was not found to be satisfied for any of several hundred solutions calculated 
in Paper I in the case of 1outK =  (and, we implicitly assumed, 1mK = ). 

In Paper I, we assumed that the active agent that shapes the local spacetime and also determines its intrinsic 
properties is the mass accumulation in the object. The metrics of the adjacent empty space should thus be 
adapted to become a smooth continuation of that, which was found for the object alone. Consequently, we sug-
gested the alternative gauging of the OSCH solution postulating that the requirement (1.15) must be satisfied 
and replacing the value of speed limit, c , with the product outK c , whereby whatever real value of constant 

outK  was allowed. 
Product outK c  was denoted by symbol c  and represented, in Paper I, as the new relativistic speed limit. 

After replacing c  with c , the “modified” gravitational radius is ( )222 2g outR M c M K cκ κ= =

 . Or, 
2

g g outR R K= . With the new postulate and assumptions, requirement (1.15) can be re-written as  
( )2 1g outR u =  or ( )22 1g out outR u K = . From the latter,  
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2 .
2

g
out

out out

R MK
u c u

κ
= =                               (1.19) 

After the new, alternative gauging, components 11g  and 44g  of metric tensor are  

11

2

1 1 1 ,
2111 g outg

out

g
R uR

rK rr

= − = − = −
−−−





                       (1.20) 

2 2 2 2
44 2

2
1 1 1 .g g g out

out out out out
out

R R R u
g K K K K

r r rK r
     = − = − = − = −          



             (1.21) 

When this OSCH solution is considered, the displacement in outr R=  in the linked 11g  disappears. And, 
the conditions (1.17) and (1.18), in which gR  is replaced with gR , appear to be satisfied, i.e. the functions 

( )11 11g g r=  as well as ( )44 44g g r=  appear to be continuous in outR . It is remarkable that making a single 
assumption (that c  should be replaced with c ) results in the satisfaction of three requirements at the same 
time. 

The dependence of outK  and, therefore, the new speed limit c  on M  and outu , according to relation 
(1.19), means that the object changes the intrinsic properties of the spacetime, where its gravity dominates, and 
this action results in the specific speed limit for each material object. 

We empirically found, in Paper I, that 1outK >  and, therefore, c c> . This conclusion has, however, several 
problematic consequences. For example, the space around the object (with the velocity of light equal to c ) 
would behave as a concave lens, which deflects the light rays away from the object. As far as we know, such a 
type of lensing has not been spotted in any observation. 

Meanwhile, we noticed another possibility of the successful linkup of the metrics under our study, with veloc-
ity c  retained to be the maximum. Our assumption that the active agents determining the properties of space-
time are the material objects was based on the fact that the energy density and pressure of vacuum in a vicinity 
of an object are assumed to be zero in general relativity. This could however be only an approximation valid for 
a local spacetime. In the elementary-particle physics, vacuum is assumed, on contrary, to possess an energy. It is 
possible that this energy summed through the entire universe is the dominant agent that determines the proper-
ties of free space. These properties are not, then, dependent on the local material objects. 

Considering the new assumption, we retain the original, historical gauging of the integration constants in the 
OSCH solution and change constant c  in the relations describing the internal structure and properties of space-
time corresponding to the object. In other words, we keep constant c  in the 11g  and 44g  components of the 
OSCH metrics putting 1outK =  and replace velocity c  with mc  (whereby mc c< ) in relations (1.6)-(1.8), 
(1.11), and (1.12) finding the appropriate value of mK , which is lower than unity. This procedure is enabled by 
the fact that the success in the linkup should not depend on the specific numerical values of c  and c . So, it 
should appear, in our previous alternative gauging, also for the formal replacements c c→  and mc c→ . 

We remind, constant mK  relates the newly established velocity mc  and c , whereby  

.m mc K c=                                     (1.22) 

Ratio mc c  in the new gauging can obviously be expected different from ratio c c  in the old gauging, 
therefore the new constant mK , for the metrics in the material environment, has to be found in an iteration. In 
more detail, we have to find such a value of mK  at the given combination of input parameters ,maxFo Fp p=  
and maxor r=  that the model is characterized with M  (implying gR ) and outu  satisfying condition (1.15). 

The decrease of the velocity of light in a material environment is the effect well described in optics. It is 
known that the relative permittivity in an optically thick environment is larger than that in vacuum (unity) and, 
thus, the velocity of light in this environment is smaller than the velocity of light in vacuum. Our new gauging 
of the speed limit is, however, related to the properties of spacetime resulting in the effects that discriminate 
between the relativistic physics and its Newtonian approximation. It is disputable if the optical effects can be 
identified with the latter. There are also further questions like, e.g., what is the mass of a particle if the value of 
speed limit decreases from c  to mc  and we require the validity of the energy-conservation law, according to 
which there should be valid 2 2

? mmc m c= ? Or, is the inertial mass (identical to ?m ) increased to  
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( )2
? mm c c m=  inside the NS matter? We postpone a hard, complicated discussion about these and another 

fundamental problems, yielding from the necessary alternative gauging of the speed limit, to future. 
In gases, the relative permittivity depends on their density. Analogously, a similar dependence can be 

expected for the value of gauged speed limit, mc , in the neutron gas. Unfortunately, we have no idea, at the 
moment, how to determine the behavior of mc  with the radial distance. In the following, we do a farther study 
considering a toy model with the constant velocity mc  inside the whole body of neutron object. 

5. Some Examples and Relations 
Let us now to describe two examples of the metrics, when the new gauging of the velocity of light in the equa-
tions of internal structure is done. The examples are for the hollow spheres, but the same principles are also va-
lid for the full-sphere solutions. The behaviors of gas density, component of metric tensor 11g , and component 

44g  in the two examples are given in plots (a, b), (c, d), and (e, f), respectively, in Figure 3. In this figure, 
while the blue, thick, dashed curves illustrate the behavior of given quantity, when the gauging with 1outK > , 
introduced in Paper I, is done, the red, thick, solid curves illustrate the corresponding behavior, when the gaug-
ing with 1mK < , introduced in this paper, is done. The thin, dotted curves of corresponding color in plots (c)-(f), 
which touch the thick curves in their right end-points, illustrate the corresponding behavior of 11g  and 44g  in 
the OSCH solution. 

In both discussed types of gauging, the numerical integration in the first example is started in 1o gr R=


 and 
in the second example in 5o gr R=



. In the earlier type of gauging ( )1outK > , there is put  
,max 0.5Fo F np p m c= =  and in the current type ( )1mK <  ,max 0.5Fo F n mp p m c= = , in both examples. In all 

models, initial ou  is calculated from the condition (1.9) for the local maximum and oν  is found in the 
iteration to link 44g  for the object with that for the OSCH solution. 

In the first example in Figure 3 (plots a, c, e), the classical Schwarzschild gravitational radius, gR , is smaller 
than the object’s outer physical radius, outR , when the internal structure is calculated with the original, non- 
reduced speed limit, c  (the blue, thick, dashed curves). In the second example in Figure 3 (plots b, d, f), there 
is valid opposite relation g outR R> . However, if the speed limit is replaced with m mc K c c= <  (the red, thick, 
solid curves), then the outer radius always exceeds gR . The mass of the object in 1outK >  ( )1mK <  gauging 
is 2.52417 M



 ( )0.75562 M


, in the first example. In the second example, the mass is 7.33272 M


 
( )3.34287 M



, respectively. We note that the numerical value of gR  given in gR


 (as radii outR  are given) 
is the same as the numerical value of M  given in M



. 
In Figure 4, we show the dependence of mass, M , on the input impulse ,maxFo Fp p=  for a series of models 

with 5o gr R=


 in both variants of gauging. In the case of gauging 1mK < , the masses are systematically 
lower, not only in the shown example (The excess is caused, in part, by the fact that the input Fop  in this 
gauging is smaller than the corresponding input Fop  in gauging 1outK > , which occurs because of inequality 
of Fop  units related as n m nm c m c< ). 

To gain a more complex information of how some quantities are mutually related, we construct a set of 
models for all combinations of ,max 0.01Fo Fp p= = , 0.1, 0.3, 0.5,···, 1.7 n mm c  and max 0.2or r= = , 1, 5, 25, 
and 125 gR



 considering the gauging 1mK < . All input values ou  are calculated according to the condition 
(1.9) for maximum τ . Since the neutron is the stable particle only in the environment with density exceeding a 
certain critical limit, cρ  ( 14 34.3 10 kg mcρ

−× ⋅  according to Shapiro and Teukolsky [10]), we use the 
auxiliary parameter SS M M=  to evaluate of how the equation of state for the pure neutron gas is appropriate 
in the given model. Quantity SM  is the mass inside the volume with the density, nE cρ = , larger than cρ . 
We arbitrarily regard the usage of equation of state for neutron gas as appropriate and the given model as 
acceptable, if its 0.9S > . 

In Figure 5, we illustrate the mass of neutron objects, M , as the function of ,maxFp  for various maxor r= . 
The points corresponding to models with 0.9S >  are large and connected with solid lines. The points corres-
ponding to the formally constructed models with 0.9S <  are small and connected with the models in a neigh-
boring phase space of ,maxFp  with dashed lines. This discrimination is also applied in Figure 6. As seen in 
Figure 5, the increase of maxr  results in the increase of M . Requiring 0.9S > , we found that the maximum 
mass can be a little larger than about 100 M



. The maximum rest mass can also exceed the limit of 100 M


. 
The relative excess of mass M  over rest mass oM , i.e. the quantity ( )o oM M M− , as the function of 
,maxFp  is shown in Figure 6 for the considered variety of maxor r= . We can see, the excess systematically  
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Figure 3. Two examples of behaviors of the density (a), (b) and components g11 (c), (d) and g44 (e), (f) of metric 
tensor inside a compact object described by the concept of hollow sphere (thick curves) and corresponding OSCH 
solutions (thin, dotted curves). The blue, dashed, thick curves, labeled by “1” (red, solid, thick curves labeled by 
“2”), give the behaviors if the OSCH solution is gauged alternatively as in Paper I (if the constants of the internal 
structure are gauged as suggested in this paper). While the outer physical radius of the object in the first example 
(left-hand plots (a), (c), (e)) is larger than the gravitational radius, it is smaller than Rg in the second example 
(right-hand plots (b), (d), (f)), when no alternative gauging is done.                                         

 
increases for the low values of maxr  and converges to practically the same behavior for relatively large maxr . 
The curves for 5or = , 25, and 125 gR



 are almost identical. 
The occupied radial extent, from the inner radius, inR , up to the outer radius, outR , for the neutron objects of 

various masses is shown in Figure 7. Interestingly, the objects with the same maxr  of both relatively small and 
relatively large masses occupy the larger volume (with a larger difference of out inR R− ) than the objects of the 
intermediate masses (with a relatively small out inR R− ). The black, thin, dotted straight line shows the behavior 
of the gravitational radius, gR , corresponding to mass M . We can see that there is valid g outR R<  for all 
presented models. The second gauging assuming 1mK <  obviously also causes that a stable neutron object 
cannot be collapsed below its event horizon regardless to its mass. 
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Figure 4. The comparison of the dependence of the object’s mass, M, on the 
maximum Fermi impulse, ,maxFp , in the case max 5o gr r R= =



. The de- 
pendence is shown for both kinds of gauging, 1outK >  (blue, full squares) as 
well as 1mK <  (red, full circles). Impulse ,maxFp  is given in the unit of 

nm c  ( )n mm c  for the first (second) kind of the gauging.                    
 

 

Figure 5. The dependence of neutron-object mass, M, on the maximum Fermi impulse, ,maxFp . The given curve 

corresponds to the specific distance maxor r= . Its value, in gR


, is indicated in the legend.                       
 

 
Figure 6. The relative excess of the total mass of object, M, over its rest mass, 
Mo, for various Fop  and or .                                          
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Figure 7. The relation between mass of object, M, and its inner ( )inR  and outer ( )outR  physical radius. The 
positions of the radii in the graphs are shown with solid circles and the extent from inR  to outR  with the lines 
linking the corresponding pair of the solid circles. The empty circles show the position of the distance maxr  (given 
in legend in gR



). The black, dashed, straight line shows the behavior of the gravitational radius.                  

6. Linkup at Inner Surface 
It appears that the OSCH solution can be linked also to the NS-body metrics at the non-rotating-NS inner 
surface, when the hollow-sphere model of NS is considered (Our attempt with a linking up the inner Schwar- 
zschild solution did not result in any continuous metrics, with the equal derivatives in inr R= ). This fact is in 
the agreement with the Birkhoff theorem. Of course, we must remember the form of components 11g  and 44g  
written with the gravitational potential, U , in purpose of gauging of the integration constants, which was men- 
tioned in Section 2. Specifically, 2

11 441 1 2g g U c− = = + . Outside the NS, the vector of the gravitational acce- 
leration is oriented inward, therefore 0U <  and hence we re-wrote 22 gU c R r= − . In the region maxr r< , 
we demonstrated, in Section 2, that the vector is oriented outward from the center of considered coordinate 
frame, therefore 0U >  and we have to put 22 gU c R r= +  in the inner empty space bordered by inr R≤ . 

We found that constant Kν  has to be decomposed to the sum of two constants, 1Kν  and 2Kν , i.e. 
1 2K K Kν ν ν= + . We again establish the alternative denotation of the constants: ( ) 2

1exp inK Kν =  and 
( )2exp inK Lν = . With the help of latter, the radial and time components of metric tensor can be written as  

11

2

1 ,
1 g

in

g
R

K r

= −
+

                                    (1.23) 

2 2
44 21 g g

in in in in in
in

R R
g K L K C L

rK r
 

= + = + 
 

                          (1.24) 

for inr R≤ . 
Let us denote the speed limit in the internal empty space by symbol inc . Constant inK  is the transformation 

constant between inc  and c , whereby in inc K c= . And constant inL  characterizes the change of the 
magnitude of gravity. It is apparent from relation (1.24) when we calculate the gravitational acceleration given, 
in the static case, as ( ) ( )2

441 2ga c g r= − ∂ ∂  (e.g., [11]). The derivative of the first term in (1.24), i.e. 
( )2

in inK L r∂ ∂ , is zero, therefore the value of constant inK  does not influence the acceleration (Analogous 
constant outK , considered in the first alternative gauging with 1outK >  described in Paper I, also does not 
influence the gravitational acceleration in region outr R> ). However, constant inL  also figures in the second 
term of (1.24), therefore ga  is the product of the classical gravitational acceleration and constant inL , which is 
empirically found 1inL < . The product of inL κ  can, likely, be regarded as the modified gravitational constant 
for the region inr R≤  (since there is no analogous constant outL , or we could put 1outL = , in the region 

outr R≥ , the gravity is the same in this region regardless we make or not make an alternative gauging of the 
speed limit). 
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Constant inK  can be again found from the requirement of the identity of 11g  determining both NS-body 
metrics and its OSCH-solution counterpart in inR , i.e. from the equation  

( ) ( )21 1 2 1 1in in g in inu R R K R − − = − +   (we denoted ( )in inu R u= ). Hence,  

2 .
2

g
in

in

R
K

u
= −                                   (1.25) 

Since it always appears that 0inu < , form ( )2 0g inR u− >  and constant inK  remains the real-valued 
constant. 

Let us denote ( )in inRν ν=  and ( )out outRν ν= . Component 44g  is linked up in inR  if ( )exp inν  is equal 
to the function given by relation (1.24) for this distance. From the equality, the constant inL  can be calculated 
as  

22
2

e e .
1

in in

in
gg

inin
inin in

L
RR

KK
RK R

ν ν

= =
 

++ 
 

                          (1.26) 

Or, the equality can be divided by analogous equality which is set by the requirement of the linkup in outR , 
i.e. we divide ( ) ( )2exp 1in in in g inK L R Rν = +  with ( ) ( )2exp 1out out g outK R Rν = − . From the equation occurring 
as the result of the division, we can derive  

1
2 2e e .

e e1
22

in in

out out

g g out

out out in out
in

g g inout

inin in

R R R
u R R u

L
R R RR

uu R

ν ν

ν ν

− −
= =

−− +
                       (1.27) 

We empirically found that there is valid, at least in our toy model with the constant mc  considered, that 
in outν ν= . It enables to omit the fraction ( ) ( )exp expin outν ν  in relation (1.27). So, we can calculate inL  

without knowing inν . (In practice, we need not to perform the iteration to find the appropriate input value oν  
before the calculation of inL .) 

An example of the successful linkup of metrics in both physical surfaces of a hollow-sphere NS is shown in 
Figure 8. 

In Figure 9, we show the dependence of velocity mc  (plot a) and mc  (plot b) on ,maxFp  for various maxr . 
Velocity mc  anti correlates with maxr . While always mc c<  as expected, the velocity inc  can be as smaller 
as larger than c  in our models with the constant mc . For some values of maxr , it is possible to find that 

inc c= . If we consider the reasonable interval of ,maxFp  ranging from zero to 3 nm c  (which corresponds to 
the energy per particle equal to twice the rest energy) and accept only the objects satisfying our arbitrary 
criterion 0.9S > , equality inc c=  can be found for maxr  ranging from about 0.7 to about 66 gR



. It 
corresponds to the neutron object’s masses from about 1.05 to about 10.8 M



. 

7. Conclusion Remarks 
When we consider a particle inside the compact, relativistic object, the material layers situated above the particle 
attract it outward from the center if the flat metrics is not postulated in the interior of a spherically symmetric 
distribution of matter. Such the attraction is a qualitative difference from the Newtonian physics with the zero 
net gravity of the upper layers. In the compact object, there can, consequently, be such an object-centric distance, 

maxr , in which the net gravity of lower layers is balanced by the net gravity of upper layers and, further, the 
vector of gravitational acceleration is oriented outward in distances maxr r< . 

If the numerical integration of the equations to describe the internal structure of compact pure-neutron object 
starts in an object-centric distance larger than zero, then we can demonstrate that it never provides any model in 
the form of exact full sphere. At the present, all models of the NSs are constrained to be the full spheres by a 
postulate. In the general relativity deliberated from such the postulate, there are also possible the NS models as 
the hollow spheres. In the model of this kind, the energy density and pressure reach the maximum values at the 
non-zero object-centric radial distance maxr . And the object is bordered not only by the outer physical surface, 
but by the inner physical surface as well. 
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Figure 8. The example of behaviors of the components g11 (a) and g44 (b) of metric tensor inside the hollow-sphere 
compact object (thick red curves) and corresponding OSCH solutions (thin, dotted curves) in both inner and outer empty 
space (blue and green thin dotted curves).                                                                    

 

 
Figure 9. The relation between the velocity of light, cm, inside the neutron object (a) as well as the velocity of light, cin, in 
the vacuum in region inr R<  (b) and the maximum Fermi impulse, ,maxFp , for a series of values of the distance 

maxor r= , in which this impulse occurs. Each curve is for a single value of rmax which is indicated in the legend in plot (b).   
 

Distance maxr  and the radius of the inner surface, inR , can be arbitrarily small, therefore an approximation 
of the corresponding pure-neutron hollow sphere with a full sphere is possible. However, we do not know any 
reason in physics why maxr  (and inR  if exists) should be limited only to small, zero-approaching values. 

In this paper, we demonstrated that the physically acceptable, continuous linkup of metrics is possible also in 
the concept of unique relativistic speed limit in the vacuum outside the material objects, in the interstellar and 
intergalactic space. If this value of the speed limit is the maximum limit of velocity of any entity motion, then 
the velocity of light inside the compact neutron objects has to be reduced to achieve the continuous linkup. The 
reduction has, however, an impact on the total mass of the objects, which subsequently appears to be relatively 
lower. 

If we consider the neutron object as the hollow sphere and allow the distances inR  and maxr  to acquire 
whatever real value, the mass of the pure neutron object is constrained only by the fact that neutron is unstable 
particle in a relatively low-density environment. Considering our simple models with constant light velocity 

mc c< , we estimated the maximum mass of the neutron object to be a little higher than 100 M


 . (So, it is a 
much smaller value than that in the case of the first gauging described in Paper I, where this limit was estimated 
to be from several ten thousand to few hundred thousand solar masses.) If the compact object consists of other 
kind of gas or plasma, the maximum mass can obviously acquire a much higher value. A preliminary modeling 
of hollow-sphere compact objects with masses of several million solar masses occurs to be viable when we 
consider an iron plasma, the state of which is described by the polytropic equation of state. At these objects, we 
can furthermore expect an atmosphere containing many chemical elements. Consequently, a wide variety of 
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spectral lines can be observed (one can deduce the state properties of the internal matter that imply a runaway 
thermonuclear burning during a certain period after the formation of the objects of this kind. Hence, a lot of hea- 
vy chemical elements have to occur inside). 

If the spacetime of vacuum below the inner surface of compact hollow sphere is again described with the 
OSCH solution of the Einstein field equations, as demanded due to the Birkhoff theorem, then this metrics can 
be successfully linked up to the NS-body metrics also in the inner physical surface of radius inR . The metrics 
within the sphere of radius inR  has to be gauged in a little different way than in the region outside the NS. 
Namely, the size of the relative scale between the spatial components ( ( )exp λ− , 2r− , and 2 2sinr ϑ− ) and the 
time component ( )( )exp ν  of the metric tensor has to be changed by the factor of inL . Consequently, the 
gravitational constant is changed by this factor. The specific value of inL  is implied by the structural properties 
of the object wrapping the region inr R< . In the models with the constant mc , we empirically found that 
inequality 1inL <  is always valid. 

We believe that the concept of hollow sphere, with the perfectly continuous behavior of spacetime metrics, 
will be further developed and used to construct the models of real compact objects. Because the outer surfaces of 
the compact objects with the continuous behavior of metrics are always situated above the event horizon (re- 
gardless the objects are hollow or full spheres), the advanced realistic models will have to deal with an atmos- 
phere, magnetic field, and a variety of local phenomena, which can be potentially observed at the outer surface. 
So, there is a lot of work for a number of another researchers who will, let us hope, also join this interesting, 
new stream in the astrophysics of relativistic compact objects. 
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