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Abstract 
In the real sound environment, the observation data are usually contaminated 
by additional background noise of arbitrary distribution type. In order to es-
timate several evaluation quantities for specific signal based on the observed 
noisy data, it is fundamental to estimate the fluctuating wave form of the spe-
cific signal. On the other hand, the observation data are very often measured 
in a digital level form at discrete times. This is because some signal processing 
methods by utilizing a digital computer are indispensable for extracting ex-
actly various kinds of statistical evaluation for the specific signal based on the 
quantized level data. In this study, a Bayesian filter matched to the compli-
cated sound environment system is derived. First, in the real situation where 
the sound environment system is affected by background noise of arbitrary 
probability distribution, a stochastic system model with quantized observation 
is established. Next, two types of the recursive algorithm of Bayesian filter to 
estimate the unknown specific signal are theoretically proposed in the quan-
tized level form. Finally, the effectiveness of the proposed theory is experi-
mentally confirmed by applying it to the estimation problem of real sound 
environment.  
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1. Introduction 

In the real sound environment, the observation data are usually contaminated by 
additional external noise (i.e., background noise) of arbitrary distribution type. 
In order to estimate several evaluation quantities for specific signal, like xL  
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((100 x− ) percentile level), eqL  (averaged energy on decibel scale) and peak 
value, based on the observed noisy data, it is fundamental to estimate the mo-
mentarily fluctuating wave form of the specific signal.  

Up to now, many methodological studies have been reported on the state es-
timation for stochastic systems [1] [2] [3]. However, many standard estimation 
methods proposed previously in a study of stochastic systems are restricted only 
to the Gaussian distribution [4] [5]. Several state estimation methods for nonli-
near system have been also proposed by assuming the Gaussian distribution of 
system and observation noises [6] [7] [8] [9] [10]. The real sound environment 
often shows an intricate fluctuation pattern rather than the standard Gaussian 
distribution. In our previous studies [11] [12] [13] [14] [15], several state esti-
mation methods for a sound environment system with non-Gaussian fluctua-
tions have been proposed on the basis of expansion expressions for the probabil-
ity distribution. Furthermore, state estimation methods for stochastic systems 
with complex characteristics and/or unknown structure have been proposed by 
using Bayes theorem on probability distribution [16] [17] [18]. Especially, 
though the unscented Kalman filter (UKF) and particle filter are useful for 
non-linear systems, UKF considers only the mean and variance of variables, and 
the particle filter needs very complicated algorithm based on Monte Carlo simu-
lation [10] [18]. 

On the other hand, in the actual case contaminated by the background noise, 
some signal processing methods utilizing a digital computer are indispensable 
for estimating precisely the latent specific signal based on the noisy observations. 
Therefore, the observed data in an analogue form have to be transformed into a 
digital one at discrete time. However, many standard estimation methods pro-
posed previously in stochastic systems are restricted only to a continuous level 
form of the observation. 

In this study, a state estimation algorithm of an object-oriented type matched 
to the above real problem and the computer technique with successive observa-
tion for the complicated sound environment system is derived. First, in the real 
situation where the sound environment system is affected by background noise 
of arbitrary probability distribution, a stochastic process model with a quantized 
observation is established in Section 2. Next, by considering the linear and high-
er order correlation information between the specific signal and observation, 
two types of the recursive algorithms of Bayesian filter to estimate the unknown 
specific signal are theoretically proposed in the quantized level form matched to 
the signal processing by use of a digital computer. More specifically, in Section 
3.1, an estimation algorithm in functional forms is derived by introducing the 
forward difference operator instead of usual differential operation. Furthermore, 
in Section 3.2, a method combining the analytical formula with Monte Carlo si-
mulation is derived by introducing the idea of particles. Finally, the effectiveness 
of the proposed theory is experimentally confirmed too by applying it to the es-
timation problem of real sound environment in Section 4. 
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2. Formulation of Sound Environment System with  
Quantized Observation 

Let us consider an arbitrary stochastic environment system with the power state 
variables of arbitrary distribution type, and express the system equation as: 

1k k kx Fx Gu+ = +                          (1) 

where kx  denotes the specific signal at a discrete time k, ku  is the random 
input with known statistics. Here, kx  and ku  are statistically independent of 
each other. Two parameters F and G are estimated by using an auto-correlation 
technique [1]. Furthermore, the observation model is established by considering 
the additive property of power variables and the quantized observation in deci-
bel scale, as follows: 

( ){ }12
1010 log 10k k ky x v −= +                     (2) 

( ) ( )k k k kz Q y g x v= ≡ +                        (3) 

where ky  is the noisy observation contaminated by the additive background 
noise kv . Though ky  is decibel variable with continuous level, the observation 
data are measured in a quantized level form suitable for the signal processing by 
use of a digital computer through A/D converter. The function ( )kQ y  denotes 
a nonlinear function expressing the quantization mechanism and kz  is the 
quantized observation. Therefore, ( )g v  denotes a nonlinear function com-
bining the nonlinearity of decibel observation with the quantized observation 
mechanism. In this study, a Bayesian filter to estimate the specific signal kx  is 
proposed on the basis of the quantized observation contaminated by the back-
ground noise kv . 

3. Establishment of Bayesian Filter with Quantized  
Observation 

3.1. General Expression of Bayesian Filter in Expansion Series  
Form 

In order to express explicitly the effect of successive observation kz  on the es-
timated probability density function ( )|k kP x Z  by use of various types of li-
near and/or nonlinear correlation between kx  and kz , the well-known Bayes’ 
theorem is introduced. 

( ) ( ) ( )1 1| , | |k k k k k k kP x Z P x z Z P z Z− −=                 (4) 

where { }( )1 2, , ,k kZ z z z≡ �  is a set of observation data up to time k. By ex-
panding the conditional probability density function ( )|k kP x Z  in a statistical 
orthogonal expansion series on the basis of the well-known standard probability 
distributions describing the dominant part of the actual fluctuation, the follow-
ing expression is derived [11] [12]. 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2
0 1

0 0

2
0

0

|
|

k k mn m k n k
m n

k k

n n k
n

P x Z A x z
P x Z

A z

φ φ

φ

∞ ∞

−
= =

∞

=

=
∑∑

∑
            (5) 
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with 
( ) ( ) ( ) ( ) 1
1 2

m n kn kkm xA z Zφ φ −≡                        (6) 

The above two functions ( ) ( )1
m kxφ  and ( ) ( )2

n kzφ  are orthonormal polyno-
mials of degrees m and n with weighting functions ( )0 1|k kP x Z −  and  

( )0 1|k kP z Z − . Based on Equation (5), the estimate of the polynomial function 
( )M kf x  of kx  with Mth order can be derived as follows. 

( ) ( )
( ) ( ) ( ) ( )2 2

0
0 0 0

ˆ
M k M k k

M

Mm mn n k n n k
m n n

f x f x Z

C A z A zφ φ
∞ ∞

= = =

≡

= ∑∑ ∑
              (7) 

where MmC  is an appropriate constant satisfying the following equality: 

( ) ( ) ( )1

0

M

M k Mm m k
m

f x C xφ
=

= ∑                        (8) 

3.2. Estimation Algorithm by Introducing Difference Operation 

In order to make the general theory for estimation algorithm more concrete, 
Gaussian distribution is considered as an example of standard probability func-
tions for the specific signal: 

( ) ( )*
0 1| ; ,

kk k k k xP x Z N x x− = Γ  

( ) ( )2
2

22

1; , exp
22π

x
N x

µ
µ σ

σσ

 − ≡ − 
  

, 

*
1kk kxx Z −≡ , ( )2*

1kx k k kx x Z −Γ ≡ −               (9) 

Furthermore, as the fundamental probability function on the level-quantized 
observation, the generalized binomial distribution [19] with level difference in-
terval zh  can be chosen: 

( ) ( )0 1

!
| 1

! !

k M k k
z z

k M
z z N z

z h hk k k k
k M k k

z z

N z
h

P z Z p p
z z N z

h h

− −

−

 −
 
 = −

   − −
   
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*
k M

k
k M

z zp
N z

−
≡

−
, 

( )
( )
* *

*
k

k

k M z k M z
k

k M z z

z z h z z
N

z z h

− − Ω
≡

− −Ω
 

*
1k k kz z Z −≡ , ( )2*

1kz k k kz z Z −Ω ≡ −              (10) 

where Mz  is the minimum level of observations. The orthonormal polynomials 
with two weighting probability distributions in Equations (9) and (10) can be 
determined as 

( ) ( )
*

1 1
!

k

k k
m k m

x

x xx H
m

φ
 − =
 Γ 

                    (11) 

https://doi.org/10.4236/iim.2018.103007


H. Orimoto, A. Ikuta 
 

 

DOI: 10.4236/iim.2018.103007 91 Intelligent Information Management 

 

( ) ( )
( )

( ) ( )( ) ( )( )

1 2 2
2
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1 1!

1
1

nn
k M k

n k n
z k z

n j
n n j jn j k

k k k M
j k

N z pz n
h p h

n p N z z z
j p

φ

−

−
−−

=

    − − =     
     

  
⋅ − − −   −   
∑

      (12) 

where ( )mH ⋅  denotes the Hermite polynomial with mth order, and ( )jz  is the 
jth order factorial function defined by [19] 

( ) ( ) ( ) ( )( ) ( )02 1 , 1n
z z zz z z h z h z n h z= − − ⋅⋅ ⋅ − − =            (13) 

Since the function ( )g ⋅  in Equation (3) is not differentiable in general, the 
following expansion expression of discrete type is introduced with two arbitrary 
constants vd  and vh . 

( ) ( ) ( )
0

1
!

n
n nv

n v

dg x v x g v
n h

∞

=

 
+ = ∆ 

 
∑                  (14) 

where ∆ is the forward difference operator defined as: 

( ) ( ) ( ){ }1
v

v

g v g v h g v
d

∆ ≡ + −                   (15) 

After substituting Equations (2) and (3) into the definition of two parameters 
of kz  and 

kzΩ  in Equation (10), by applying Equation (14), the following ex-
pressions can be derived (in the case of v vd h= ). 

( )

( ) ( ) ( ) ( )

*
1

2
1

1
2

k k k k

k k k k k v k k

z g x v Z

g v x g v x x h g v Z

−

−

= +

= + ∆ + − ∆ + ⋅⋅ ⋅
        (16) 

( ){ }

( ) ( ) ( ) ( )

2*
1

2
2 *

1
1
2

kz k k k k

k k k k k v k k k

g x v z Z

g v x g v x x h g v Z z

−

−

Ω = + −

 = + ∆ + − ∆ + ⋅⋅ ⋅ − 
 

    (17) 

Furthermore, the expansion coefficients defined by Equation (6) can be ex-
pressed as follows: 

( )

( )

( )( )( ) ( )( )( )

1 2 2
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1 1! ! 1
1
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      − −   = −         −        

 − ⋅ − + + −
 Γ 

∑
     (18) 

The above Equations (16)-(18) can be obtained from the statistics of the 
background noise kv  and the predictions of kx  at a discrete time 1k − ; i.e., 
the expectation values of arbitrary functions of kx  conditioned by 1kZ − . 

Therefore, the estimation algorithm in Equation (7) can be expressed explicit-
ly as follows: 
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( )
( )

( ) ( )( ) ( )( )
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  
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with 
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  
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        (20) 

Especially, the estimates for mean and variance can be obtained as follows: 

( )

( ) ( )( ) ( )( )
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≡

    − − =     
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  
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= = Γ
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      (21) 
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= =
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=
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    − − =     
     

  
⋅ − − −   −   

= Γ + − = Γ − = Γ

∑∑

∑

    (22) 

3.3. Estimation Algorithm by Introducing Particles 

Though the particle filter is useful for the state estimation problem of non-linear 
systems, this filter needs very complicated algorithm and a large number of 
computational times based on Monte Carlo simulation and the resampling pro-
cedure [16]. In this section, a hybrid algorithm combining the analytical formula 
for state estimation with Monte Carlo simulation by use of particles is proposed.  

The well-known Gaussian distribution is adopted as ( )0 1|k kP x Z −  and 
( )0 1|k kP z Z − , because this probability density function is the most standard one. 

( ) ( )*
0 1| ; ,

kk k k k xP x Z N x x− = Γ , ( ) ( )*
0 1| ; ,

kk k k k zP z Z N z z− = Ω     (23) 

Then, the orthonormal functions with two weighting probability density func-
tions in (23) can be given in the Hermite polynomial: 
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( ) ( )
*

1 1
!

k

k k
m k m

x

x xx H
m

φ
 − =
 Γ 

, ( ) ( )
*

2 1
!

k
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z

z zz H
n

φ
 − =
 Ω 

         (24) 

Accordingly, the estimation algorithm of the specific signal in Equation (7) 
can be given by 

( )
*

0 0

1ˆ
!
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M
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M k Mm mn n
m n z

z zf x C A H J
n

∞

= =

 − =
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∑∑             (25) 

with 

*

0
0

1
!

k

k k
n n

n z

z zJ A H
n

∞

=

 − =
 Ω 

∑                     (26) 

Furthermore, the estimates for mean and variance can be obtained as follows: 
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∞

= =

 − =
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k m mn n

m n z

z zP C A H J
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∞

= =

 − =
 Ω 

∑∑                (28) 

Thus, two parameters *
kz , 

kzΩ  and the expansion coefficients mnA  are ex-
pressed as follows: 

( )
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Ω = + −

= + −∫∫
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−
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   + −−   =
   Γ Ω   

∫∫
 

(31) 

The integrals in Equations (29)-(31) are evaluated by use of particles with 
mean *

kx , variance Γ
kx , higher order statistics 0mA  and statistics of the back-

ground noise. 

3.4. Prediction Algorithm 

By considering Equation (1), the prediction step essential to perform the recur-
rence estimation can be given by 

*
1 1 ˆk k k k kx x Z Fx G u+ +≡ = +                  (32) 
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( ) ( )1

2 2* 2 2
1 1kx k k k k k kx x Z F P G u u

+ + +Γ ≡ − = + −         (33) 

By replacing k with 1k + , the recurrence estimation can be achieved. 

4. Application to Sound Environment 

In order to examine the practical usefulness of the proposed Bayesian filter based 
on the quantized observation, the proposed method is applied to the actual 
sound environmental data. The road traffic noise is adopted as an example of a 
specific signal with a complex fluctuation form. Applying the proposed estima-
tion method to actually observed data contaminated by background noise and 
quantized with 2 dB width roughly, the fluctuation wave form of the specific 
signal is estimated. The statistics of the specific signal and the background noise 
used in the experiment are shown in Table 1 and Table 2 respectively. 

Figure 1 and Figure 2 show the estimation results of the fluctuation wave 
form of the specific signal for Data 1 and Data 2 by applying the algorithm pro-
posed in Secttion 3.2. In this estimation, the finite number of expansion  
 

 
Figure 1. Estimation results for Data 1 of the specific signal by applying the proposed 
method in Section 3.2 based on the quantized observation data with 2 dB width. 
 
Table 1. Mean and standard deviation of the specific signal (in W/m2). 

Data Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 2.23 × 10−4 3.44 × 10−4 3.25 × 10−4 3.82 × 10−4 3.71 × 10−4 

Standard Deviation 1.47 × 10−4 2.13 × 10−4 2.65 × 10−4 3.19 × 10−4 3.56 × 10−4 

 
Table 2. Mean and standard deviation of the background noise (in W/m2). 

Data Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 2.50 × 10−4 2.49 × 10−4 2.44 × 10−4 2.47 × 10−4 2.48 × 10−4 

Standard Deviation 1.08 × 10−5 9.61 × 10−6 9.49 × 10−6 1.05 × 10−5 9.26 × 10−6 
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Figure 2. Estimation results for Data 2 of the specific signal by applying the proposed 
method in Section 3.2 based on the quantized observation data with 2 dB width. 
 
coefficients ( ), 2mnA m n ≤  is used for the simplification of the estimation algo-
rithm. In these figures, the horizontal axis shows the discrete time k, of the esti-
mation process, and the vertical axis expresses the sound level taking a logarith-
mic transformation of power-scaled variables, because the actual sound envi-
ronment usually is evaluated on dB scale. For comparison, the estimation results 
calculated by using the usual method are also shown in these figures. Since Kal-
man’s filtering theory is widely used in the field of stochastic system [11] [12], 
the extended Kalman filter is also applied to the observation data as a trail by in-
troducing the following observation model.  

( ) 12
1010 log 10k k k kz x v ε−= + +               (34) 

where kε  denotes the quantized noise and a uniform distribution within 
[ ]2, 2q q−  (q: the quantized width) is assumed as the probability distribution 
of kε . The results estimated by the proposed method show good agreement 
with the true values. On the other hand, there are great discrepancies between 
the estimates based on the standard type dynamical estimation method (i.e., ex-
tended Kalman filter), particularly in the estimation of the lower level values of 
the fluctuation. 

Furthermore, the estimation algorithm proposed in Section 3.3 is applied to 
the observation data. The estimated results of two cases by applying the pro-
posed algorithm to the quantized data with 2 dB width are shown in Figure 3 
and Figure 4 respectively. 

The squared sums of the estimation error are shown in Table 3. It can be 
found numerically that the proposed method is more useful than the extended 
Kalman filter. 

5. Conclusions 

In this study, state estimation method for sound environment system with  
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Figure 3. Estimation results for Data 1 of the specific signal by applying the proposed 
method in Section 3.3 based on the quantized observation data with 2 dB width. 
 

 
Figure 4. Estimation results for Data 2 of the specific signal by applying the proposed 
method in Section 3.3 based on the quantized observation data with 2 dB width. 
 
Table 3. Comparison between the proposed method and the extended Kalman filter for 
root-mean squared error of the estimation based on the quantized observation data with 
2 dB width (in dB). 

Data Data 1 Data 2 Data 3 Data 4 Data 5 

Proposed Method in Section 3.2 2.06 1.73 2.14 2.08 2.67 

Proposed Method in Section 3.3 1.39 1.09 1.81 1.87 2.24 

Extended Kalman Filter 2.96 1.75 1.88 2.23 3.36 
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quantized level observation has been theoretically proposed on the basis of 
Bayes’ theorem. More specifically, two types of the recursive algorithm of Baye-
sian filter to estimate the specific unknown signal have been derived based on 
the quantized level observation matched for the signal processing by use of a 
digital computer. Furthermore, the validity and effectiveness of the proposed 
theory have been experimentally confirmed by applying it to the real environ-
mental noise data in sound environment. 

The proposed approach is still at the early of study, and there are left a num-
ber of practical problems to be continued in the future. For example, the pro-
posed method has to be applied to many other actual data of sound environ-
ment. Furthermore, the proposed theory has to be extended to more compli-
cated situations involving multi-signal sources, and an optimal number of ex-
pansion terms in the proposed estimation algorithm of expansion type has to be 
found. 
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