
Intelligent Information Management, 2010, 2, 487-497
doi:10.4236/iim.2010.28059 Published Online August 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

Analysis and Design of Distributed Pair Programming
System*

Wanfeng Dou, Yifeng Wang, Sen Luo
School of Computer Science and Technology, Jiangsu Research Center of Information Security & Confidential

Engineering, Nanjing Normal University, Nanjing, China
E-mail: douwanfeng@njnu.edu.cn

Received June 7, 2010; revised July 10, 2010; accepted August 11, 2010

Abstract

Pair Programming (PP) that has gained extensive focus within pedagogical and industrial environments is a
programming practice in which two programmers use the same computer to work together on analysis, de-
sign, and programming of the same segment of code. Distributed Pair Programming (DPP) system is a pro-
gramming system to aid two programmers, the driver and the navigator, to finish a common task such as
analysis, design and programming on the same software from different locations. This paper first reviews the
existing DPP tools and discusses the interaction and coordination mechanism in DPP process. By means of
activity theory and language-action theory, some basic requirements of the DPP system are presented. Then,
a design framework of such system and functions of each sub-system are deeply analyzed. Finally, a system
prototype is implemented by plug-in style in Microsoft Visual Studio environment.

Keywords: Pair Programming, Distributed Pair Programming, Software Engineering, Extreme Programming

1. Introduction

In recent years, agile software methodologies have at-
tracted increasing interest within pedagogical and indus-
trial environments, with extreme programming being
considered the most important of these agile methodolo-
gies [1]. In the agile manifesto, the authors state twelve
general principles that all highlight the importance of
flexibility and collaboration. One of these techniques,
which are being adopted by software development group,
is known as Pair Programming (PP), in which two de-
velopers work side by side, on the same computer, to
collaboratively produce a design, an algorithm, a code,
etc [2]. Taking these principles would imply a distributed
application of agile methods, such as distributed extreme
programming. Although some tools have been developed
to better support distributed agile software development,
there is still a need for additional research on tools and
processes for distributed extreme programming, espe-
cially for solutions that extend the most obvious solution
of providing a shared code editor. As the trend towards
global software development continues, pair program-
ming in which two developers are required to work in
face-to-face interaction don’t meet the need of global

software development. This needs to create computer
programs through pair programming practice where de-
velopers are located in different workstation but they
collaborate simultaneously to solve the same problem.
This approach is called Distributed Pair Programming
(DPP). This paper focuses on reviewing the existing dis-
tributed pair programming systems, and presents system
design and implementation. This paper has six sections.
After this introduction, Section 2 gives a related work
about DPP tools. Section 3 discusses analysis approach
of DPP based on activity theory and language theory.
The requirements of DPP tool are presented in Section 4.
Section 5 describes the design and implementation of
prototype system. Section 6 draws conclusions.

2. Related Work

2.1. Pair Programming

Extreme programming, also known as XP, includes a set
of principles and practices for the rapid development of
high quality software. XP identifies 12 best practices of
software development and takes them to an extreme. Pair
programming originated in industry as a key component
of the XP development methodology. As the name sug-
gests, pair programming involves two programmers

*This project was financed partly by the eleventh five-years plan from
Jiangsu Education Science in 2009, No: D/2009/01/093.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

488

working at the same computer to create code or analyze
requirements and develop design and etc. This provides a
mechanism for real-time problem solving and real-time
quality control [2]. One programmer acts as the driver,
who actively writes code or design document and has
control of the keyboard and mouse. The other partner
acts as the navigator, who helps plan as well as identify
and prevent any syntactic or strategic deficiencies in code
or design document, thinks of alternatives and asks ques-
tions [3]. The collaborator may exchange roles at any
time during the pair programming session, or not at all.

The concepts underlying pair programming are not
new [4,5], but pair programming has only recently at-
tracted significant attention and interest within the soft-
ware industry and academia. Several previous controlled
experiments have concluded that pair programming has
many benefits over solo programming [6]. Pair progra-
mming has significant improvements in code reviewing
and various others measures of quality of the programs
being developed including lower duration with only mi-
nor additional overhead in terms of a measure of cost or
effort [4-5]. But, with respect to time taken and im-
provement of functional correctness of the software
product compared with Solo programming showed no
positive effects of pair programming [7]. The reasons are
the difference in sample populations (e.g., students or
professionals), study settings (e.g., amount of training in
pair programming), lack of power (e.g., few subjects),
and different ways of treating the development variables
(e.g., how correctness was measured and whether meas-
ures of development times also included rework), and
task complexity (e.g., simple dependent tasks, or com-
plicated projects) [8-9].

Pair programming originated in industry as a key com-
ponent of the extreme programming development meth-
odology. As the name suggests, pair programming in-
volves two programmers working at the same computer
to create code or analyze requirements and develop de-
sign and etc. This provides a mechanism for real-time
problem solving and real-time quality control [2]. One
programmer acts as the driver, who actively writes code
or design document and has control of the keyboard and
mouse. The other partner acts as the navigator, who helps
plan as well as identify and prevent any syntactic or stra-
tegic deficiencies in code or design document, thinks of
alternatives, and asks questions. The collaborator may
exchange roles at any time during the pair programming
session, or not at all. Pair programming has been shown
to be an effective pedagogical approach in teaching
courses such as introductory computer science [10-11].
Undergraduate software engineering [12], and graduate
object-oriented software development [13]. Studies have
shown that pair programming creates an environment
conducive to more advanced, active learning and social
interaction, leading to students being less frustrated,

more confident and more interested in IT [14], and also
improve retention of women in computer science [15].
Pair programming encourages students to interact and
cooperate with partners in their classes and laboratories,
or development teams, thereby creating a more collabo-
rative environment in which pairs discuss problems,
brainstorm each other, and share knowledge. Pair pro-
gramming also benefits the teaching staff. A pair of stu-
dents can always analyze and discuss the low-level tech-
nical or procedural questions that typical burden the
teaching staffs in the laboratory, hence there are fewer
questions to be dealt with.

Distributed pair programming is a style of program-
ming in which two programmers who are geographi-
cally-distributed and synchronously collaborating over
the Internet work together on the same software artifact.
Comparing with pair programming, DPP decreases the
scheduling issues that arise for developers trying to
schedule collocated pair programming. Making DPP
technology available to students increases the likelihood
that they will pair program. Trying distributed pair pro-
gramming increases the likelihood that students will pair
program remotely in the future. While DPP has been
shown to be better than distributed non-pair program-
ming, DPP is not perfect. The main reason is to require a
better tool to support the DPP process.

2.2. Tools of Distributed Pair Programming

In pair programming environment, however, obstacles
such as limited facilities, geographic separation, and
scheduling often present challenges to collocated pair
programming. DPP enables students or developers to
collaborate from different locations to work on their pro-
gramming projects remotely. One of the main trends in
software development has been the globalization of the
software industry. Motivating factors behind this trend
include hiring qualified programmers in different cities
and countries for software companies, placing develop-
ment group closer to their client’s location, creating
quickly virtual development groups, and working con-
tinuously on critical projects by working on different
time zones for groups [16].

Researchers have proposed several tools to better sup-
port distributed pair programming [17-22].These existing
tools adopt either an application sharing approach to en-
hance an existing editor suite or provide customized
tools that include various groupware features such shared
awareness [17]. Customized groupware tools do not
support all of the features needed by pair programming
and thus limit partner’s ability to successfully accom-
plish their work. On the other hand, application sharing
solutions lack process support and thus met collaboration
awareness.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

489

2.2.1. Application Sharing Tools
JAZZ system is an example with an application approach
[18]. It is an extension of eclipse that supports the XP
and workflows in asynchronous interaction. JAZZ allows
users to stay aware of co-workers and initiate chat ses-
sions, and be invited to a synchronous pair programming
session using an application sharing system. JAZZ im-
plements a shared editing plug-in that provides a syn-
chronous shared code editor based on operation trans-
formation approach. But this plug-in is not integrated
into the workflow of pair programming, and thus does
not provide awareness and has no explicit switching of
roles.

MILOS is another application sharing system [19]. IT
provides awareness of co-present users and allows users
to initiate pair programming sessions using application
sharing like JAZZ. MILOS makes use of existing IDEs
and integrates single-user development environments
into pair programming settings. But, application sharing
approach does not support flexible pairing such as one-
to-many pairing way, and role switching. TUKAN is a
special purpose groupware for all phrase of the XP proc-
ess [20]. It provides a shared editor for manipulating
code together and users can highlight important code
using a remote selection. Moomba extends the awareness
tools of TUKAN and support Java IDE where the users
can use a shared java editor [21]. However, TUKAN and
Moomba use ENVY environment and are built as a pro-
prietary tool and thereby cannot provide the same do-
main specific tool support as it is present in modern IDEs.
This is one of the reasons why they have not gain high
popularity.

Eclipse is a popular and more open environment that
allows closer coupling of the developing IDEs [4]. Coor-
dination work can be integrated into Eclipse in the inter-
nal browser window or special-purpose planning plug-in.
The Eclipse Communication Framework (ECF) aims at
integration a collaboration infrastructure with the IDE.
Sangam is an Eclipse plug-in for Eclipse users to share
workspace so that developers may work as if they were
using the same computer [22]. Sangam use an event-
driven design for this plug-in. There are three basic com-
ponents in Sangam: event interceptor, message server,
and event reproducer. The responsibility of the event
interceptor is to capture the event when the driver does
something in Eclipse and then send it to the message
server. When the event reproducer receives a message
and interacts with Eclipse to perform the driver’s action.
Saros plug-in supports driver-navigator interaction in
Eclipse in a distributed pair programming session, and
provides awareness on files that are opened at the
driver’s site [4]. Saros includes a shared editor that al-
lows collaborative code creation, and remote selections
that allow the navigator to point at relevant pieces of
code. Xpairtise is an Eclipse plug-in that offers shared
editing, project synchronization, shared program, test

execution, user management, built-in chat communica-
tion, and a shared whiteboard [4].

RIPPLE is a plug-in for the popular Eclipse integrated
development environment in which data on collaborative
programming is collected. RIPPLE is designed for use in
educational setting to facilitate various forms of collabo-
rative programming problem solving including distrib-
uted pair programming and distributed one-to-one tutor-
ing [23]. RIPPLE extends the architecture implemented
in Sangam. Compilation and execution of code, as well
as generation of console message, are performed directly
by Eclipse. However, RIPPLE currently only supports
Java programming because the event-driven behavior of
it requires that language-specific messages be transmit-
ted between users. The textual dialogue of RIPPLE is an
instant-message-style chat program that supports en-
forced turn-taking in dialogue.

2.2.2. Customized Tools
COLLECE, developed using Java technology, is a group-
ware system to support synchronous distributed pair pro-
gramming practices. COLLECE provides a set of tools
including editor, session panel, coordination panels, and
structured chat [24]. The editor provides a workspace in
which the driver inserts or modifies the source code of
the program that is being built. The session panel pro-
vides a simple awareness of partner that shows the photo
and name of each pair. The coordination panels include
three coordination tools that allow a collaboration proto-
col to be established: edition coordination panel, compi-
lation coordination panel, and execution coordination
panel. The structured chat is used to express conversa-
tional acts that are usually used during program coding,
compilation and execution.

COPPER is a synchronous source code editor that al-
lows two distributed software engineers to write a pro-
gram using pair programming. Its functions include
communication mechanisms, collaboration awareness,
concurrency control, and a radar view of the documents,
among others. COPPER system is based on the C/S ar-
chitecture. It is composed of three subsystems: collabo-
rative editor, user and document presence, and audio
subsystems. The editor is further decomposed into the
Editor module and the document server. The Editor
module implements a turn-taking synchronous editor and
the document server provides document storage, docu-
ment editing access control, user authentication and per-
missions, and document presence extensions.

However, low display refresh rate can sometimes be
confusing or something significant may be lost in the
remote display. The trace of the mouse pointer is another
problem if both developers use no same resolution for
their monitors. Hence, next-generation tool is still ana-
lyzed and studied in terms of requirements of distributed
pair programming.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

490

3. Analysis and Interaction in DPP System

3.1. Analysis Based on Activity Theory in DPP

System

Activity theory, as a social psychological theory on hu-
man self-regulation, is a well suited epistemological
foundation for design. Activity theory was first used to
design the user interface by Bodker. Later it has been
extended and refined by numerous other authors. In par-
ticular, activity theory is used to understand cooperative
work activities supported by computers [25,26]. Pair
programming is a social activity involved two program-
mers, driver and navigator. This paper use activity theory
as a theoretical basis for understanding the cooperative
work activities in DPP.

Broadly defined, activity theory is a philosophical
framework for studying different forms of human praxis
as development processes, with both individual and so-
cial levels interlinked. Three of the key ideas of activity
theory can be highlighted here: activities as basic unit of
analysis, the historical development of activities and in-
ternal mediation with activities [25]. Activities—an indi-
vidual can participate in several at the same time—have
the following properties: 1) an activity has a material
object; 2) an activity is a collective phenomenon; 3) an
activity has an active subject, who understands the mo-
tive of the activity; 4) an activity exists in a material en-
vironment and transforms it; 5) an activity is a histori-
cally developing phenomenon; 6) contradiction is real-
ized through conscious and purposeful actions by par-
ticipants; 7) the relationships within an activity are cul-
turally mediated.

Y. Engestrom has made an attempt to establish a struc-
tural model of the concept activity and culturally medi-
ated relationships within it (Figure 1). This structure
includes three components, namely subject, object and
community, and forms three relationships: subject-object,
subject-community and object-community.

This activity model contains three mutual relationships
between subject, object and community: the relationship
between subject and object is mediated by tools, that
between subject and community is mediated by rules and
that between object and community is mediated by the
division of labor. Each of the mediating terms is histori-
cally formed and opens to further development. In this
activity model, four subsystems are formed: production
subsystem, communication subsystem, assignment sub-
system and consumption subsystem.

The production subsystem is used by the subject (e.g.,
driver and navigator) to manipulate the object into out-
come (e.g., analysis, design or programming for a code).
In Figure 1, the production subsystem involves three
components: subject, object and tool. In DPP, this sub-
system is a shared editor that can support the synchro-

nous editing, role switching, test execution and file shar-
ing, etc.

Communication subsystem, in Figure 1, involves also
three components: subject, community and rule. For in-
stance, In DPP, the driver and navigator use this subsys-
tem to communicate each other so as to solve the prob-
lems met during pair programming. The driver and
navigator as a community should stand by rules. For
example, a partner as a role of driver, another must be a
navigator. They switch role at intervals. The communi-
cation subsystem that includes the relationship and in-
teraction between subject and community should provide
chat session, whiteboard and audio or video communica-
tion. The communication subsystem must be designed
for users to easy discussion on problems and suggestions
on their task and further focus on the shared code.

Assignment subsystem builds the relationship between
object and community through establishment of the divi-
sion of labor, that is to say, it assign activity according to
social rules and expectation. In DPP, the pair with a
driver role is responsible for writing the code using key-
board and mouse, and the other with a navigator role is
responsible for reviewing the code written by the partner
and gives some suggestions. During DPP, they should
switch the role at intervals.

Consumption subsystem describes how subject and
community to cooperate to act on object. Consumption
process stands for the inherent contradictions of activity
system. Although the goal of the production subsystem is
to transform the object into outcome, it also consumes
the energy and resources of subject and community. The
consumption subsystem may plan arrangement and pro-
vide the resources for DPP.

In Figure 1, the emphasis of analysis of activity sys-
tem is production subsystem. The production of object is
leaded by the results or intention of activity system. For
example, the activities of DPP lead to produce the code
with high quality. Production subsystem is usually con-
sidered to be the most important subsystem. Hence, un-
derstanding the production subsystem will be a good
start for design of DPP system.

Subject Object

Community

Tools

Rules
Division of

labour

Outcome

Production
subsystem

Consumption
subsystem Communi-

cation
subsystem

Assignment
subsystem

Figure 1. Basic structure of an activity.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

491

3.2. Conversation Model of DPP

In a DPP system, two programmers, the driver and the
navigator, work commonly on the same task such as a
code, or a design, or an analysis by network and related
tools. In order to the efficiency of their programming, the
communication of pairs is important to effective coop-
eration for them. When the driver is editing, the naviga-
tor may observe the code or design remotely and at any
moment to give suggestions about it, or think about op-
tional solution or strategy. In other one, the driver may
request acknowledgement of the pair to it during he/she
writes the code. The conversation model is to describe
the communicating process between the driver and the
navigator so that we clarify how to communicate be-
tween them during pair programming. In follow section,
we construct a conversation model of DPP by means of
language-action theory.

In designing a DPP system for practical situations, we
need to consciously focus on the context and application.
The structure of the system determines the possibilities
for action by the people who use it, and it is this action
structure that is ultimately important. Design is onto-
logical. That is what we are participating in the larger
design of the organization and collection of practices in
which it plays a role. In describing or constructing any
system, we are guided by a perspective. This perspective
determines the kinds of questions that will be raised and
the kinds of solution that will be sought. One can con-
sciously apply a perspective as a guide to design. It will
not provide answers to all of the specific design ques-
tions, but serves to generate the question that will de-
mand answers.

The language/action perspective is one of the relevant
theoretical contributions that have appeared within co-
operative work. Cooperative work is coordinated by the
performance of language actions, in which the partner
become mutually convinced to the performance of future
actions and they make declarations creating social struc-
tures in which those acts are gathered and interpreted
[27]. The language/action perspective has had a signifi-
cant role with computer supported cooperative work. The
PP or DPP is a cooperative activity with two actors,
which can be modeled by language/action perspective.

The language/action perspective emphasis pragmatics,
not the form of language, but what people do with it. The
language/action has five fundamental illocutionary points
—things you can do with an utterance [27]: 1) Assertive
that commits the speaker to something being the case –to
the truth of the expressed proposition; and 2) Directive
that attempts to get the header to do something; and 3)
Commission that commits the speaker to future course of
action; and 4) Declaration that brings about the corres-
pondence between the propositional content of the speech
act and reality; and 5) Expressive that expresses a psy-
chological state about a state of affairs.

The need of supporting DPP with suitable computer
based tools implies the investigation of the deep aspects
of cooperation and clarification. Cooperation clarifica-
tion, to the extent that is made up of communication and
negotiation, can be fully characterized under the assump-
tion that the DPP can be viewed as a special linguistic
action game between the driver and the navigator, con-
stituted by asset of rules defining the conversations pos-
sible within it. The results of conceptual and experimen-
tal research motive the following answer: the driver and
navigator spend their time taking commitments for future
activities each other, coordinating the programming work,
switching role according to the situation, explaining the
problems they encounter during pair programming, re-
viewing the code. This needs to precisely develop con-
versation between the driver and navigator in order to
take commitments for an effective negotiation and coor-
dination of the activities.

A conversation between the driver and the navigator
during a DPP process is a sequence of related utterances.
The utterance within a conversation can be classified
from the pragmatic point of view in some basic catego-
ries of speech acts on the basis of their illocutionary
point namely, directives (e.g., Request, Acceptance or
Rejecting of a promise), commission (e.g., Promise,
Count-offer, Acceptance or Rejecting of a commitment,
Declaring of commitment fulfillment). Each conversa-
tion involves two actors in the DPP: the driver and the
navigator, and follows the pattern which defines the pos-
sible sequences of speech acts characterizing the specific
type of conversation. In accordance with language/action
theory, there are also three main types of conversation
occurring in any PP. The first is the conversation for ac-
tion, characterized by the definition of a commitment for
doing an action. The driver in the PP can recognize, e.g.,
the conversations opened by a request, where the driver
opening the conversation asks the partner for some ac-
tivities; the conversation by a promise, where the navi-
gator agrees and provides the support for its fulfillment.
The second is the conversation for possibilities, where
the pairs discuss a new possibility for the code, in terms
of requirements, code structure, language and related
knowledge these conversations, when successful and
devoted to topics under the competence of the pair, end
with a declaration explaining the concept and agreeing
with the code. The third is the conversation for clarifica-
tion, where the pairs cope with or anticipate breakdowns
concerning interpretations of conditions of satisfaction
for action. The conditions are always interpreted with
request to an implicit shared background, but sharing is
partial and needs to be negotiated. There is no sharp line
between them, but they are accompanied by different
moods.

The PP is characterized by a specific organizational
rule, which define the roles of pair programming, role
switching and compatibility of pairs. These rules can be

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

492

expressed in terms of conversation possibilities open to
that role. For example, two roles are defined in pair pro-
gramming mode, the driver and navigator. The driver is
responsible for writing the code by the mouse and key-
board and the navigator can view and test the code, and
think about the structure and some strategies. The navi-
gator cannot enter any code but can point out the existing
problems and request the discussion with the driver. If
possible, the pairs can periodically switch role.

The conversation for action forms the central fabric of
a DPP. In a simple conversation for action, the driver (A)
in a pair programming makes a request to the navigator
(B). The request is interpreted as having certain condi-
tions of satisfaction, which characterize a future course
of action by B. After the initial utterance (the request), B
can accept (satisfaction for action); reject (end of the
conversation); or counter-offer with alternative condi-
tions. Each of these in turn has its own possible con-
tinuations (e.g., after a counter offer by B, A can accept,
reject, or counter-offer again).

The meaning of a language/action exists in the inter-
pretations of a driver and a navigator in a particular situ-
ation with their particular backgrounds. The request is an
initial utterance, for the driver there are several kinds of
request: 1) Help (request for collection of some materials
or testing for the codes); and 2) Negotiation (request for
clarification of some problems; and 3) Question (request
for the design of programming).

Reducing the complexity of a work process and of
communicative mode going on within it is that they need
to be supported in copying with that complexity [28].
This means that any tools supporting practices of a con-
versation must broaden and not restrict the range of all
kinds of possibilities of its participants. The relationship
between conversation and commitments is not a one-to-
one one. Making a commitment explicit is sometimes
very useful, in particular when we must ensure that it
will be completed satisfactorily. Considering a conversa-
tion as a sequence of communication events to which can
be attached not only documents of any types but also any
numbers of commitment negotiations. A DPP procedure
includes a set of conversations. Each conversation with a
commitment and a title includes a set of events. Each
event is a structured message characterized by its com-
pletion time, content, associated code, attached docu-
ments, its sender and its receiver.

In a DPP procedure, there are a lot of conversation
occurring between the driver and navigator. For example,
the driver may request a help for some materials with the
code from the navigator, or hope to discuss some uncer-
tain programming problems. In some time the driver may
request the navigator to test the code written by him/her.
The navigator can point out the existing problems during
reviewing the code.

A support system of commitment negotiation is re-
quired to help the user to understand the context where

he/she is negotiating each other, as well as the state of
the negotiation. The goal of this conversation model is to
develop a theoretical framework for understanding com-
munication within a DPP process.

Conversations are just sequences of communicative
events involving two participants, driver and navigator in
PP, where each participant is free to be as creative as
he/she wants. Conversations can be supported by a sys-
tem making accessible the sequence of records of the
communicative events, together with the documents gen-
erated and/or exchanged and with the commitment nego-
tiations steps which occurred during them. Within this
model a commitment may be viewed as the respective
negotiation steps performed within a conversation by the
driver and navigator and by the documents that are at-
tached to them. Any negotiation step of a commitment is
characterized by its object, its time and its state. Com-
mitment negotiations are therefore fully transparent to
their actors within conversations without imposing any
normative constraints upon them comparing to fully sch-
eduleed model of conversation.

4. Requirements of DPP System

Distributed pair programming means that two developers
synchronously collaborate on the same design or code
from different locations. The results of experiments in-
dicate that DPP is competitive with collocated pair pro-
gramming in terms of software quality and development
time [13], and it is feasible and effective to develop
software code using distributed pair programming [29].
Considering the trend of globalization in software de-
velopment we have aimed at finding out how program-
mers could effectively apply DPP technique with the use
of appropriate groupware tools, and what would be the
requirements of such tools. For this purpose we defined a
set of requirements of distributed pair programming tool
in terms of the analysis of the existing groupware tools
and DPP tools [16,22-24], and features of pair program-
ming. According to the technology of Computer Sup-
ported Cooperative Work (CSCW) we have identified
the following requirements of the DPP tool.

4.1. Shared Editing Integrating Existing Editor

As a source code editor it should highlight keywords
based on the programming language being used and not
only provide conventional editing tools such as: Cut,
Copy, Paste, Find, and Replace, but also the options of
compilation and execution of the source code being ed-
ited and should notify the users of the error messages
reported by the compiler. On the other hand, the existing
editors with the integration of developing environment
supporting a specific language have very powerful func-
tionalities. Moreover, developers hope to use their fa-

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

493

miliar editor or integrating development environment to
pair programming, and for some language, for example
Java language has several editors or developing envi-
ronment support editing and compiling source code such
as Eclipse, JDK, JBuilder, Visual Café, and etc. It is re-
quired that collaborative pair programming tool can in-
tegrate these editors or developing environments. How-
ever, there are some problems to be solved when paring
developers use different editors or developing environ-
ments. For example, interoperation is one of the main
problems in information exchange between two different
editors with the same language due to the differences of
their format of editing commands and the parameter op-
tions of compiling and executing the source code.

4.2. Shared File Repository

The source code files and related documents being edited
should be controlled at the repository. These files and
documents should be shared among all members of the
development team. Furthermore, configuration manage-
ment tools are available to control the version change of
code flies and documents. Mechanisms to request and
obtain shared resources need to be provided so that de-
velopers invite their partner for pair programming.

In the DPP setting, users hope to share intermediate
results by passing to one or more users. A shared file
repository is provided for users to place and retrieve files.
Users can browser files and pars on these files. The
shared file repository allows users to organize the files in
folders.

Pair programming tool should support text and audio
or video-based communication so that the pairs discuss
questions and selection of solutions or know the part-
ner’s sensibility and intention through these communi-
cating tools.

4.3. Activity Indicator

Users need time to perform a task but only the results are
shared among them. In the DPP setting, users need to be
aware of other user’s activities, which can use a periph-
eral place. The interface of the DPP also should support
the presence of the role state of pairs and the function of
role exchange.

4.4. Role Switch and Concurrent Control

When a navigator wants to own the role of driver and
write the code the system should support to apply for and
release the token. Once there is the occurrence of role
exchange, the DPP tool should support the file locking to
control the change of the code.

Concurrent operations to shared artifacts can lead to
conflicting actions that confuse the interacting users and

result in inconsistency on the artifacts, make interaction
difficult. By means of a token and only let user holding
the token modify or access the shared resources. In DPP
setting, the user with the driver role can hold a token and
allow modifying the code, and the user with a navigator
role only browser the code written by the partner. Role
switch can allow them switch the role each other and
change the token holder.

4.5. DPP Communication Session

Pair programming process is a negotiation process for
programming problems such as design strategy, code
specification, and collaborative testing. Its goal is to im-
prove code quality and increase programming efficiency.
Hence, distributed pair programming tool should support
free and natural problem negotiations with a set of com-
municative events associated a conversation.

For distributed interaction, communication between
pairs poses an important role in DPP. There are all kinds
of communication channels, such as text chat, white-
board, remote selection, and audio or video channel. The
text chat is a simplest communication style in which us-
ers can send short text messages and distribute these
messages at the pair’s site. The driver or navigator initi-
ates a conversation at any time aiming at a code segment
or a design. The conversation with a title is composed of
events. Those events are mutually related to the same
conversation with a sequence of occurring of them. Each
event is represented a message format organized with
complete time, content, sender, receiver, and optional
code segment and attached documents. But the disad-
vantage of textual chat communication for a DPP is that
the driver needs his or her hands to produce code. Nor-
mally, coding and talking goes hand in hand. Thus, the
textual chat will not be the most important communica-
tion medium [4]. Whiteboard chat is similar to textual
chat, but the only difference is that whiteboard uses
graphical object to support their interaction. Whiteboard
is usually used to discuss design problems of software.
For example, pairs in DPP use UML (Unified Modeling
Language) to finish the design and analysis of the soft-
ware.

As an alternative or addition to the communication
functionality an audio or video channel can be embedded
in the DPP. An audio or video channel supports parallel
communication and coding. But the disadvantages of
these channels are that they will consume too much net-
work bandwidth, not be stable enough, and establishing
connections will not be quick and easy.

Remote selection shows remote user’s selection to a
local user. Make sure that other pair is aware of his or
her partner who has selected the object or edited the
code.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

494

5. Design of DPP System

The goal of distributed pair programming system be-
tween heterogeneous code editors or developing envi-
ronments is to enhance pair programming ability and
cooperation capacity among partners. As a result of pro-
grammers daily use different kinds of single-user code
editors or developing environments during their design-
ing or programming task, the functions of existing dis-
tributed pair programming system is inferior to the one
of the commercial or open-source single-user code edi-
tors or developing environments.

Figure 2 shows a framework of distributed pair pro-
gramming system with the same or different code editors
or environments, compatible to the specific program lan-
guage, between driver and navigator. The system is im-
plemented by the client/server architecture. The com-
munication management module is responsible for trans-
ferring of operation information and event or message
between the driver and navigator.

5.1. Collaborative Editing Subsystem

Moreover, the existing code editors or environments lack
good compatibility with the commercial single-user sys-
tems, and its usability is poor. It is impossible for pro-
grammers to accept these systems to support their de-
velopment task concurrently. In order to solve this prob-
lem, the collaboration transparency technology emerges
as the times require. Collaboration transparency tech-
nology causes group of users to be possible of no revi-
sion to the single-user code editors or developing envi-
ronments, allows them directly to use familiar single-
user code editors or developing environments for distrib-
uted pair programming tasks, thus the research of col-
laboration transparency technology has a vital value.

In Figure 2, the driver can select any code editors or
developing environments that support a specific program
language. The Code Adapter component can capture any
local operations from the driver, filter any inessential
information, and recombine into useful operation infor-
mation in a common or standard format. Similarly, the
navigator can select the same or different editor with the
driver. This is due to the like or experiments of the navi-
gator. The Code Adapter component also transforms the
operation information received by Information transfer
component into suitable format according to the re-
quirements of local editor, and executes it to the local
editor.

In server site, the Central repository server is a re-
source repository. These resources include source code
files, design documents, users, pair information. The
design of Central repository operates on the client/server
architecture. The clients reveal these resources, and the
server is responsible for updating of them. In a one-to-
many pair mode, the core programmer needs to know

Code

Editor 1

Code
Adapter

Driver

Navigator

Communication management module

Local/remote
operation

Event/
Message

Event encoded by XML

Code
file set

Conversation
negotiation

Central repository
server

Conversation negotiation
server

Data file

Conversation
sequence

Server

Figure 2. A framework of DPP system.

new changes to the code when he/she switches to previ-
ous partner.

5.2. Conversation Negotiation Subsystem

The conversation for negotiation subsystem is responsi-
ble for the initiating, maintenance, organization, and
storage of conversation. The messages of conversation
are transferred by specific format between the driver and
navigator. Its role is to aid pairs to communication and
negotiation for some coding or design problem. Each
conversation corresponds to a commitment.

In DPP procedure, there are a lot of conversations oc-
curring between the driver and navigator. For example,
the driver may request a help for some materials with the
code from the navigator, or hope to discuss some uncer-
tain programming problems. In some time the driver may
request the navigator to test the code written by him/her.
On the other hand, the navigator may point out the exist-
ing problems by conversation negotiations during re-
viewing the code.

Each conversation is associated a sequence of message
which is composed of title, time, source, destination,
content, attached documents, associated code segments.
Figure 3 shows the model of conversation for the DPP
process. The conversation negotiation server is responsi-
ble for recording all conversation information between
the driver and the navigator so as to querying and index-
ing for later usage.

5.3. A DPP System Prototype

We have implemented a preliminary prototype system
which adopts the client/server architecture. The system

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

495

can provide the basic functions of distributed pair pro-
gramming in plug-in form integrated MS Visual Sudio
environment. The XPPlugin based on client/server ar-
chitecture consists of three subsystems: real-time com-
munication, code synchronization and pairing manage-
ment. In client site, communication and code synchroni-
zation are implemented in MS Visual studio plug-in style.
In server site, all management tasks of DPP are finished
by a solo program. The network communication between
client and server is implemented by a XMPP (Extensible
Messaging and Presence Protocol) which is an open in-
stant-massage protocol based on XML (Extensible Mark-
up Language). This prototype uses open source software,
agsXMPP, under .net environment to support the interac-
tion between pairs.

The client program exists in plug-in form which con-
forms to the specification of MS Visual Studio plug-in.
Figure 4 shows the window of our prototype system.
The window consists of three sub-windows: code sharing
and editing window, communication window and role
switching and control window.

The system architecture, as showed in Figure 5, is di-
vided into four layers:
 User interface layer provides the functionalities such

as login in, text chat, code control and role switch.
User interface is implemented by using LoginForm,
chatControl, CodeMonitorcontrol class.

 Middle layer is decided by MS Visual Studio. Only
using this layer, the XPplugin can support the tool
window pane as a visual studio standard tool pane
to be used freely. The goal of design is that DPP
tools are allowed to be embedded in visual studio

environment, thus increase the efficiency of the pro-
totype system.

 Interaction layer implements interaction between
the XPPlugin and internal data of visual studio, in-
cluding XPPluginPachage and SccService class.
XPPluginPackage inherits Package class to allow the
whole program as a plug-in to be loaded into Visual
studio environment. SccService implements the ma-
nagement of code encapsulated as a service which
can be freely called by either internal of the program
or other plug-in or programs of Visual studio.

 Network interface layer encapsulates a network
communication class using a XMPP protocol to
implement the interaction between client and server.
Datahandler is an instance of such network com-
munication class.

6. Conclusions

In this paper, we have reviewed the features of the exist-

Conversation* Commitment

Message*

Time Content Source Destination

Pair programming process

Associated code segments Documents

Title

Figure 3. Model of conversation for the DPP process.

Figure 4. Main window of prototype system.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

496

User
interface
layer

Middle
layer

Interaction
layer

Network
communicat
ion layer

Figure 5. Layered structure of prototype system.

ing distributed pair programming tools, analyzed their
advantages and disadvantages. An activity theory is in-
troduced to analyze the process model of DPP and the
related main subsystem. A conversation model with co-
mmitments is presented based on language/action per-
spective as a framework for understanding communica-
tion within DPP processes. We have analyzed the re-
quirements of distributed pair programming system, pre-
sented four important aspects in designing distributed
pair programming system: 1) interoperation between
heterogeneous editors corresponding to the same lan-
guage; 2) file sharing at the repository and awareness of
pair programming information; 3) role switch and control,
and 4) conversation pattern with negotiation. Finally, we
have presented a framework supporting distributed pair
programming with heterogeneous editors or developing
environments. In the future, we will improve our current
preliminary system with new collaborative tools to sup-
port communication with audio and video channels. We
also hope to integrate the existing developing environ-
ment, such as J++, JBuilder, Visual Cafe, which is rela-
tive to Java language, into our system.

7. References

[1] R. Duque and C. Bravo, “Analyzing Work Productivity

and Program Quality in Collaborative Programming,”
The 3rd International Conference on Software Engineer-
ing Advances, Sliema, 2008, pp. 270-276.

[2] D. Preston, “Using Collaborative Learning Research to
Enhance Pair Programming Pedagogy,” ACM SIGITE
Newsletter, Vol. 3, No. 1, January 2006, pp. 16-21.

[3] L. Williams, R. Kessler, W. Cunningham and R. Jefferies,
“Strengthening the Case for Pair Programming,” IEEE
Software, Vol. 17, No. 11, 2000, pp. 19-21.

[4] T. Schummer and S. Lukosch, “Understanding Tools and
Practices for Distributed Pair Programming,” Journal of
Universal Computer Sciences, Vol. 15, No. 16, 2009, pp.
3101-3125.

[5] M. M. Muller, “Two Controlled Experiments Concerning
the Comparison of Pair Programming to Peer Review,”
Journal of Systems and Software, Vol. 78, No. 2, 2005,
pp. 166-179.

[6] L. Williams, R. R. Kessler, W. Cuningham and R.
Jeffries, “Strengthening the Case for Pair Programming,”
IEEE Software, Vol. 17, No. 4, 2000, pp. 19-25.

[7] J. Ncwroclci and A. Wojciechowski, “Experimental Eva-
luation of Pair Programming,” Proceedings of European
Software Control and Metrics Conference, London, 2001.

[8] E. Arishoim, H. Gallis, T. Dyba and D. I. K. Sjoberg,
“Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise,” IEEE Transac-
tions on Software Engineering, Vol. 33, No. 2, 2007, pp.
65-86.

[9] H. Gallis, E. Arishoim and T. Dyba, “An Initial Frame-
work for Research on Pair Programming,” Proceedings of
the 2003 ACM-IEEE International Symposium on Empi-
rical Software Engineering, Toronto, 2003, pp. 132-142.

[10] C. McDowell, L. Werner, H. Bullock and J. Fernald,
“The Effects of Pair Programming on Performance in an
Introductory Programming Course,” Proceedings of the
33rd Technical Symposium on Computer Science Educa-
tion, Cincinnati, 2002, pp. 38-42.

[11] N. Nagappan, L. Williams, et al., “Improving the CS1
Experience with Pair Programming,” Proceedings of the
34rd Technical Symposium on Computer Science Educa-
tion, Reno, 2003, pp. 359-362.

[12] L. Williams and R. L. Upchurch, “In Support of Student
Pair Programming,” Proceedings of the 32nd Technical
Symposium on Computer Science Education, Charlotte,
2001, pp. 327-331.

[13] P. Baheti, E. Gehringer and D. Stotts, “Exploring the
Efficacy of Distributed Pair Programming,” Proceedings
of XP Universe, Springer-Verlag, Chicago, 2002, pp.
208-220.

[14] L. Williams, D. M. Scott, L. Layman and K. Hussein,
“Eleven Guidelines for Implementing Pair Programming
in the Classroom,” Agile 2008 Conference, Kopaonik,
2008, pp. 445-451.

[15] L. Werner, B. Hanks and C. McDowell, “Pair Program-
ming Helps Female Computer Science Students,” ACM
Journal of Education Resources in Computing, Vol. 4,
No. 1, 2004, pp. 1-8.

[16] H. Natsu, J. Favela, et al., “Distributed Pair Programming
on the Web,” Proceedings of the 4th Mexican Interna-
tional Conference on Computer Science, Los Alamitos,
2003, pp. 81-88.

[17] B. Hanks, “Tool Support for Distributed Pair Program-
ming: An Empirical Study,” Proceedings of Conference
Extreme Programming and Agile Methods, Calgary, 2004,
pp. 1-18.

[18] S. Hupfer, L. T. Cheng, S. Ross and J. Patterson, “Intro-
duction Collaboration into an Application Development
Environment,” Proceedings of the Computer Supported
Cooperative Work, ACM Press, New York, 2004, pp.
21-24.

W. F. DOU ET AL.

Copyright © 2010 SciRes. IIM

497

[19] F. Maurer, “Supporting Distributed Extreme Program-
ming,” Proceedings of Conference on Extreme Progra-
mming and Agile Methods, Springer Verlag, London,
2002, pp. 13-22.

[20] T. Schummer and J. Schummer, “Support for Distributed
Teams in Extreme Programming,” In: G. Succi and M.
Marchesi, Eds., Extreme Programming Examined, Addi-
son Wesley, Boston, 2001, pp. 355-377.

[21] M. Reeves and J. Zhu, “Moomba: A Collaborative Envi-
ronment for Supported Extreme Programming in Global
Software Development,” In: Lecture Notes in Computer
Science: Extreme Programming and Agile Process in
Software Engineering, Springer, London, 2004, pp. 38-50.

[22] C. W. Ho, S. Raha, E. Gehringer and L. William, “San-
gam: A Distributed Pair Programming Plug-in for
Eclipse,” Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology Exchange, New York, 2004, pp. 73-
77.

[23] K. Elizabeth, A. Dwight, et al., “A Development Envi-
ronment for Distributed Synchronous Collaborative Pro-
gramming,” Proceedings of the 13th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education, Madrid, 2008, pp. 158-162.

[24] R. Duque and C. Bravo, “Analyzing Work Productivity
and Program Quality in Collaborative Programming,”
The 3rd International Conference on Software Engineer-
ing Advances, 2008, pp. 270-276.

[25] K. Kuutti, “The Concept of Activity as a Basic Unit for
CSCW Research,” In: L. J. Bannon, M. Robinson and K.
Schmid, Eds., Proceedings of the 2nd ECSCW, Kluwer
Academical, Amsterdam, 1991, pp. 249-264.

[26] K. Kuutti, “Identifying Potential CSCW Applications by
Means of Activity Theory Concepts: A Case Example,”
Proceedings of CSCW, ACM Press, New York, 1992, pp.
233-240.

[27] T. Winograd, “A Language/Action Perspective on the
Design of Cooperative Work,” Human Computer and In-
teraction, Vol. 3, No. 30, 1998, pp. 203-220.

[28] G. D. Michelis and M. A. Grasso, “Situation Conversa-
tions within the Language/Action Perspective: The Milan
Conversation Model,” Proceedings of the 5th Conference
on CSCW, Chapel hill, North Carolina, 1994, pp. 1-12.

[29] P. Baheti, L. Williams, et al., “Exploring Pair Program-
ming in Distributed Object-Oriented Team Projects,”
Proceedings of OOPSLA Educators Symposium, Seattle,
2002, pp. 1-6.

