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Abstract 
This paper presents the use of active disturbance rejection control method 
(ADRC) to synchronize two different chaotic systems. The master system and 
slave systems have uncertainties and external disturbances. The numerical re-
sults are presented for the synchronization between the Duffing-Holmes sys-
tem and the van der pol system. The numerical results presented show the ef-
fectiveness of the proposed method. 
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1. Introduction 

The extreme sensitivity to initial conditions is a fundamental characteristic of a 
chaotic system. The response of a chaotic system depends largely on the initial 
conditions. A small change in the initial conditions can lead to big differences in 
the system states responses. A complete synchronization between two chaotic 
systems is defined as the act of forcing the states of a slave system to track exact-
ly the states of a master system. Chaos synchronization has potential applica-
tions in secure communication and other applications.  

A variety of approaches have been proposed and tested to achieve synchroni-
zation. Based on the Lyapunov method and linear matrix inequality (LMI) me-
thod, the adaptive synchronization of the Genesio-Tesi chaotic systems with 
three uncertain parameters was achieved in [1]. A new passivity-based synchro-
nization method for a general class of chaotic systems was proposed in [2]. A 
control method, which uses an exact robust differentiator combined with a qua-
si-continuous high-order sliding mode-controller, was used in [3]. Adaptive 
feedback control design method, where controller parameters are assumed to be 
unknown and are evolved using adaptation laws so as to achieve synchronization 
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was presented in [4]. The contraction theory for the adaptive synchronization 
was used in [5]. The adaptive synchronization and parameters identification of 
uncertain Rössler hyperchaotic system were presented in [6]. The use of active 
control to chaos synchronization between two different chaotic systems was re-
ported in [7]. A robust indirect model reference fuzzy control scheme for control 
and the synchronization of chaotic nonlinear systems with uncertainties and ex-
ternal disturbances was proposed in [8]. The adaptive control method for syn-
chronization of two Genesio-Tesi chaotic systems with uncertainties and 
dead-zone input was proposed in [9]. The synchronization of two Genesio-Tesi 
systems via single variable feedback controller was proposed in [10]. The syn-
chronization between non-autonomous hyperchaotic systems viz., Liu and 4D 
hyperchaotic non-autonomous systems with parametric uncertainties using ac-
tive control method was reported in [11]. The global asymptotical synchroniza-
tion of chaotic Lur’e systems by using a delayed feedback proportion-
al-derivative (PD) control scheme was reported in [12]. Based on a high order 
sliding-mode observer-identifier and a feedback state controller, the reduced- 
order synchronization problem of two chaotic systems with different dimension 
and relative degree was studied in [13]. In [14], a new surface sliding mode sur-
face was proposed in an active sliding mode to synchronize two chaotic systems 
with parametric uncertainty. The synchronization of coupled unified chaotic 
systems via active control was presented in [15]. The direct adaptive interval 
type-2 fuzzy neural network (FNN) controller in which linguistic fuzzy control 
rules can be directly incorporated into the controller was developed to syn-
chronize chaotic systems in [16]. Adaptive fuzzy logic controller (FLC) equipped 
with an adaptive algorithm to achieve H∞ synchronization performance for un-
certain fractional order chaotic systems was reported in [17]. The chaos syn-
chronization between Genesio chaotic systems with noise perturbation was re-
ported in [18]. 

Most of the studies concerning chaos synchronization assume that all states of 
the systems are totally known and the parameters of the chaotic system are exact, 
which is not the case in practice. Therefore, a chaos synchronization study must 
consider the presence of uncertain parameters and external disturbances. One 
possible and efficient solution of the synchronization problem is to use an ob-
server coupled with a controller. This methodology can be found in the Active 
Disturbance Rejection Control method (or ADRC) proposed in [19] and [20]. 
The ADRC method is based on the use of an extended observer coupled with a 
feedback controller in a closed loop control. The observer estimates all states of 
the system, the uncertainties and the external disturbances (total uncertainty). 
The total uncertainty is extended state of the system. If the estimation of the ob-
server is accurate then the system to be controlled is converted to a simpler 
model, since total uncertainty is canceled in real time. In this way, a mathemati-
cal model of the system is not required. 

In the present paper, the synchronization of different chaotic systems using 
the ADRC is presented. As an example, the synchronization of the Duffing- 
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Holms and the van der Pol systems is considered to verify the proposed metho-
dology.  

2. Synchronization Chaotic Systems  

A second order chaotic system such as the Duffing-Holmes (DHS) system and 
the van der Pol (VdP) systems can be written in the following general form 

( ) ( )
( ) ( ) ( ) ( )

1 2

2 1 2 1 2, , , , m

x t x t

x t f t x x f t x x tδ

=

= + ∆ +





             (1) 

( ) ( )1 2,x t x t  are the states of the master system, ( )1 2, ,f t x x  is the nonlinear 
function of the master system ( )1 2, ,f t x x∆  is the uncertainty and ( )m tδ  is the 
external disturbance. 

A salve system can be written as:  

( ) ( )
( ) ( ) ( ) ( )

1 2

2 1 2 1 2, , , , .s

y t y t

y t g t y y g t y y u tδ

=

= + ∆ + +
          (2) 

( )1y t  and ( )2y t  are the states of the slave system, ( )1 2, ,g x x t  is the non-
linear function of the slave system ( )1 2, ,g x x t∆  is the uncertainty and ( )s tδ  
is the external disturbance, and ( )u t  is the control input. 

A totally unknown total disturbance can be defined as 

( ) ( ) ( ) ( )1 2 1 2 1 2, , , , Δ , , .sy y t g y y t g y y t tσ δ= + +          (3) 

The controlled slave system can be written as: 

( ) ( )
( ) ( ) ( )

1 2

2 1 2, , .

y t y t

y t t y y u tσ

=

= +
                 (4) 

The unknown total disturbance ( ), ,x y tσ  is a bounded continuous and dif-
ferentiable function with respect to time: 

( ) ( )1 2, , , , .x y t D x y t Dσ σ≤ ≤                 (5) 

The synchronization error between the slave system (2) and the master system 
(1) is defined as follows: 

.i i ie y x= −                         (6) 

A complete synchronization is to find a controller u(t) so that the error states 

1e  and 2e  converge to zero in finite time. In mathematical form 

( )limt T e t−                        (7) 

where T is a finite and ⋅  is the Euclidean norm. 

3. ADRC Synchronization of Two Chaotic Systems 

The synchronization of two chaotic systems is considered as a tracking control 
problem. A tracking control problem can be formulated as: for the bounded 
states of the master system (1) design a controller ( )1 2, , ,u t e e σ  that forces the 
states of the slave system 1y  and 2y  to track the states of the master system 

1x  and 2x  in finite time. To solve this problem, the ADRC method is used as 
described below. 
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3.1. Extended States Observer 

To design a controller based on the measurement of the first state of the slave 
system, the errors 1 2,e e  and σ  must be available. One possible way to con-
struct them is to use an extended observer (ESO) which is the main part of the 
ADRC. The main advantage of ESO is its ability to simultaneously estimate the 
total uncertainties online without the knowledge of an accurate mathematical 
model of the system. The ESO treats the total uncertainties as new state. An ESO 
for the slave system (4) is constructed as follows [20]: 

( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )

1 2 1 1 1 1

2 3 2 2 1 1

3 3 3 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ .

y y t l y t y t

y y l y t y t u

y t l y t y t

α

α

α

= − −

= − − +

= − −







                  (8) 

The observer provides an estimate of the states of the slave system 1 2ˆ ˆ,y y . The 
third state 3ŷ  of the observer approximates ( )1 2, ,t y yσ . Here, 1 2,l l  and 3l  
are nonlinear function and iα  are tuning parameters. Using a constant high 
gain 1−  with linear gain function the ESO can be written as: 

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

1
1 2 1 1

2
2 3 1 12

3
3 1 12

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ .

y y t y t y t

y y y t y t u

y t y t y t

α
ε

α
ε

α
ε

= + −

= + − +

= −







                  (9) 

The tuning parameters iα  can be determined by using the pole placement 
method. Once the pole locations are chosen, the observer gains are obtained as 
follows [21]. 

The characteristic polynomial is calculated as: 

( ) 2 2
1 2 3.s s s sλ α α α= + + +                   (10) 

Placing all the observers poles in the left half plane at 0ω−  to make the cha-
racteristic polynomial Hurwitz.  

( ) ( )3
0 .G s s ω= +                        (11) 

Setting the above two equations equal and solving results in the following ob-
server gains: 

2 3
0 0 03 3 .α ω ω ω =    

0ω  is called the observer bandwidth and it is the only tuning parameter. If the 
observer tuning procedure is adequate, the observer states converge to the sys-
tem states 1 1ŷ y→ , 2 2ŷ y→ , and 3ˆ ˆy σ→ .  

3.2. Controller Design 

The control objective is to cancel the total disturbance and in the same time sa-
tisfying the tracking task. The ADRC controller is defined as follows: 

3 0ˆ .u uy= − +                          (12) 
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An example of such 0u  is a control signal from a feedback controller. Subs-
tituting (12) in (4) and assuming an accurate estimation of the total disturbance, 
the controlled slave system becomes:  

( )2 1 2 3 0 0, ˆ, .y t y y y u uσ= − + ≈                 (13) 

The slave system is reduced to just a double integrator, which can be con-
trolled with any classical controller design. If a linear proportional and deriva-
tive (PD) controller is used, then the following control law can be obtained: 

( ) ( )0 1 1 2 2ˆ ˆp du yk kyx x= − − −                 (14) 

where 1 2,x x  are the states of the master system and 1 2ˆ , ˆy y  are the estimated 
states of the slave system. One possible way to simplify the tuning of the con-
troller is to set 2d ck ω=  and 2

p ck ω= , where the cω  is the closed-loop band-
width of the controller. The methodology applied is represented in Figure 1. 

4. Numerical Simulation 

As an example, the synchronization of the DHS and the VdP chaotic systems is 
considered. The DHS system is the master system and VdP system is the slave 
system. The DHS equation describes the dynamics of nonlinear mechanical os-
cillator. This system has a cubic stiffness term to describe the hardening spring 
effect observed in many mechanical systems. The Duffing-Holmes is given by 
the following second order equation: 

( )3
0 1 2 cosmx p x p x p x q tω+ + + =                (15) 

where x is the oscillation displacement, p0 is the damping constant, p1 is the li-
near stiffness constant, p2 is the cubic stiffness constant, q is the excitation am-
plitude, and ω is excitation frequency. Equation (15) can be rewritten as two- 
first order ordinary differential equations: 

( ) ( ) ( ) ( )
1 2

3
2 0 1 1 2 2 1 cos .

x x

x p x t p x t p x t q tω

=

= − − +





          (16) 

To show the behavior of uncontrolled DHS, the following values of parame-
ters are assumed: 0 1 21, 0.25, 1, 0.3p p p q= = = =  and 1.2 rad secω = .  

Figure 2 shows the response of DHS system and the phase plot for the initial 
conditions 
 

 
Figure 1. Closed loop control scheme for a master-slave synchronization using ADRC. 
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(a)                                  (b) 

Figure 2. (a) The response of uncontrolled DHS; (b) The phase plot. 
 

10 202, 3.x x= − =  

The slave system is the Van der Pol system. 

( ) ( )21 2sin 0.1πy y y y tµ− − + =                (17) 

where 0µ >  is a scalar parameter. Equation (17) can be rewritten as two-first 
order ordinary differential equations: 

( ) ( )
1 2

2
2 1 1 22 3 1 2sin 0.1π .

y y

y y y y t

=

= − + − +





           (18) 

To show the behavior of uncontrolled vdp system, its response to the initial 
conditions 10 0.8x =  and 20 0.5x =  is depicted in Figure 3. 

The chaos synchronization based on the methodology described in Section 3 
is presented. Simulations are run for 50 seconds with a step size of 0.01. The ini-
tial conditions for the two systems are the same as in the uncontrolled cases.  

The following bounded external disturbance ( )m tδ  is added to the master 
system: 

( ) ( )0.1sin .m t tδ =                      (19) 

To the slave system a bounded uncertainty ( )1 2Δ , ,f y y t  for simulation pur-
poses is added as: 

( ) ( ) 2 2
1 2 1 2, , 0.1sinf y y t t y y∆ = +               (20) 

and the external disturbance is given by: 

( ) ( ) ( )2sin 0.1π 3sin 0.2 1 .s t t tδ = + +              (21) 

The controller parameter is 10cω = . The extended observer parameter is se-
lected as 0 200ω = . 
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From Figure 4 and Figure 5, it is clear that the states of the slave system 
completely track the states of the master system in very short time. Figure 6 
shows the errors 1e  and 2e  as function of time, which shows that the syn-
chronization error is tending to zero. It means that the slave systems can be 
synchronized successfully to the master systems. The control signal is shown in 
Figure 7. From Figure 8 it is clear how fast the observer estimates the states of 
the nonlinear function, external disturbances. 
 

 
(a)                                  (b) 

Figure 3. (a) The response of uncontrolled VdP system; (b) The phase plot. 
 

 
Figure 4. Synchronization of y1 to x1. 
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Figure 5. Synchronization of y2 to x2. 

 

 
Figure 6. The errors as function of time. 

 

 
Figure 7. Control signal u(t). 
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Figure 8. Estimation errors as a function of time (a) 2 1 1ˆe y y= −  (b) 2 2 1ˆe y y= −  and (c) 

3 3ˆe y σ= − . 

5. Conclusion 

In this paper, the active disturbance rejection control methodology is used to 
synchronize two different chaotic systems. The idea of the ADRC is the use of a 
feedback controller coupled with an extended observer. The performance of the 
controller was verified through the numerical simulation. The results verified the 
performance of the controller in providing the convergence of error in a very 
short time. From the simulation results, it is concluded that the suggested 
method can be effectively used to synchronize chaotic systems in the presence of 
disturbances and uncertainties. 
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