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Abstract 
 
The objective of tolerance analysis is to check the extent and nature of variation of an analyzed dimension or 
geometric feature of interest for a given GD & T scheme. The parametric approach to tolerance analysis is 
based on parametric constraint solving. The accuracy of simulation results is dependent on the user-defined 
modeling scheme. Once an accurate CAD model is developed, it is integrated with tolerance synthesis model. 
In order to make it cost competent, it is necessary to obtain the cost-tolerance relationships. The neural net-
work recently has been reported to be an effective statistical tool for determining relationship between input 
factors and output responses. This study deals development of direct constraint model in CAD, which is in-
tegrated to an optimal tolerance design problem. A back-propagation (BP) network is applied to fit the 
cost-tolerance relationship. An optimization method based on Differential Evolution (DE) is then used to 
locate the combination of controllable factors (tolerances) to optimize the output response (manufacturing 
cost plus quality loss) using the equations stemming from the trained network. A tolerance synthesis problem 
for a motor assembly is used to investigate the effectiveness and efficiency of the proposed methodology. 
 
Keywords: Tolerance Analysis, Tolerance Synthesis, CAD Integration, Optimization, Neural Network 

1. Introduction 
 
Tolerance is the allowable range of variation from design 
intent in a dimension. As one of many design variables, 
the role of dimensional tolerances is to restrict the 
amount of size variation in a manufacturing feature while 
ensuring functionality. Although the ideal amount of 
feature variation is zero, it is neither feasible nor eco-
nomical to meet the ideal due to a variety of process fac-
tors including machine tool accuracy, material property 
variation, process effects, etc. Determining the allowable 
amount of dimensional variation at design stage impacts 
the manufacturing costs incurred during the actual proc-
essing of the part. Tolerance analysis involves modeling 
of the relations among variation, tolerance and cost. Tol-
erance analysis is conducted using variation propagation 
models that compute how part, subassembly, and process 
variations propagate to final product variation, which is 
related to product quality. Variations are typically trans- 

lated to tolerances using statistic principles, and analyti-
cal models are then used to estimate cost as a function of 
tolerance. The variation of the analyzed dimension arise 
form the accumulation of dimensional and/or geometric 
variations in the tolerance chain. The analysis include: 1) 
the contributor, i.e., The dimensions or features that 
causes variations in the analyzed dimension, 2) the sensi-
tivities with respect to each contributor, 3) the percent 
contribution to variation from each contributor, and 4) 
worst case variations, statistical distribution, and accep-
tance rates. Analysis approaches can be classified as 1) 
one-dimensional (1D), two-dimensional (2D), and 
three-dimensional (3D), according to dimensionality; 2) 
worst case (i.e., 100% acceptance rate) and statistical 
(i.e., less than 100% acceptance rate), according to 
analysis objective; 3) dimensional and dimensional + 
geometric, according to the type of variation included; or 
4) part level and assembly level, according to the analy-
sis level. Popular analysis methods are manual 1D chart, 
linearized 2D/3D analysis, and the Monte Carlo simula-
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tion. 
At the present time, three different and disconnected 

communities i.e., designers/draftsmen, engineering ana-
lysts, and design researchers are using vastly different 
tools and techniques for tolerance analysis. Cultural and 
educational differences between these communities have 
isolated them from one another and made them unaware 
of the others’ techniques. The draftsmen community uses 
a manual procedure called tolerance charts; but can do 
only worst-case analysis, and is conducted in only one 
direction at a time. Meanwhile, the engineering analysis 
community uses computer-aided tolerancing software 
CATs. These CAT packages can do both worst-case and 
statistical analyses. Many researchers [1-4] provided 
good surveys of GD&T modeling for CATs; Some re-
searcher [5] discussed the simplification of feature based 
models for tolerance analysis, and used the linear pro-
gramming approach to tolerance analysis involving 
geo-metric tolerances [5]; Guilford et al. [2] introduced a 
CAT system using the variation modeling and feasibility 
space approaches. 
 
2. Background 
 
2.1. 1D Tolerance Charts 
 
Tolerance charting is a manual bookkeeping procedure 
for 1D stack calculations. The analyst typically works 
with engineering drawings [6-7]. Since the method is 
limited to worst-case analysis, the analyst positions parts 
in assemblies to yield each of the worst-cases minimum 
or maximum value of the analyzed dimension, i.e., sepa-
rate charts have to be constructed for each worst-case. 
Since no algebraic expression for the analyzed dimension 
in terms of the contributors is generated by this method, 
no statistical analysis can be performed. Also, contribu-
tors not in the direction of analysis are ignored, which 
may yield significant errors in most cases. The limita-
tions associated with this method, as practiced today, are 
as follows. 1) It is done manually, and since each type of 
tolerance is handled differently, the user must remember 
all the rules correctly while constructing the charts to 
obtain correct results, making the process tedious and 
prone to errors. 2) It deals with one direction at a time, 
ignoring possible contributions from other directions, 
which often leads to inaccurate results. 3) The charting 
procedure is only capable of the worst-case analysis only; 
no statistical analysis is available. 4) This method has not 
been widely integrated with existing CAD systems. 
 
2.2. Parametric Tolerance Analysis 
 
Most CAT packages take advantage of the same para-
metric/variational approach used in CAD systems and 

apply the Monte Carlo simulation to tolerance analysis 
[8-10]. This section will give a brief description of pa-
rametric approach to tolerance analysis. In the parametric 
approach, the analyzed dimension is expressed as an al-
gebraic function an equation, or a set of equations that 
relates the analyzed dimension to those on which it de-
pends i.e., contributors. The function is either linearized 
or directly used for the Monte Carlo simulation in the 
nonlinear analysis. Results commonly available are the 
lists of contributors, sensitivities, and percentage contri-
butions, and the tolerance accumulation for worst-case 
and statistical cases. 
 
2.3. Cost Competent Tolerancing 
 
Aspects such as design for quality, quality improvement 
and cost reduction, asymmetric quality losses, charts for 
optimum quality and cost, minimum cost approach, cost 
of assemblies, development of cost tolerance models 
[11-15] have been explored in the quality area of toler-
ance synthesis. Experiments (DOE) approach was used 
in robust tolerance design, the cases of ‘nominal the best’, 
‘smaller the better’, ‘larger the better’, and asymmetric 
loss function, were investigated [16] and allocation of 
tolerances of products with asymmetric quality loss was 
presented [14]. The combined effect of manufacturing 
cost and quality loss was also investigated under the re-
straints of process capability limits, design functionality 
restriction and product quality requirements by using 
tolerance chart optimization for quality and cost [12]. 
Relationships between the product cost and tolerances 
have also been investigated. An analytical method was 
proposed for determining tolerances for mechanical parts 
with objectives of minimizing manufacturing costs [17]. 
Minimizing the cost of assembly was investigated 
mathematically in which it was observed that widening 
the tolerance of more expensive part and a tightening of 
tolerances on cheaper parts could result in major reduc-
tion in cost of the assembly [18]. Exhaustive search, 
zero–one, SQP and Univariate methods were evaluated 
for performing a combined minimum cost tolerance al-
location and process selection [19]. The production cost 
tolerance and hybrid tolerance models based on empiri-
cal cost tolerance data of manufacturing processes like 
punching, turning, milling, grinding and casting were 
introduced [20]. The robust design by tolerance alloca-
tion considering quality and manufacturing cost and op-
timizing tolerance allocation based on manufacturing 
cost were also investigated [21,22]. It involved develop-
ment of relationship between part tolerances and assem-
bly tolerances to provide a quantitative measure of prod-
uct quality using the quality loss function concept intro-
duced by Taguchi. Numerical optimization was used to 
balance manufacturing cost and product quality. The 
possibility of using statistics and probability methods for 
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allocation of tolerances has also been explored with a 
view to developing tools for tolerance synthesis. 

Relationship between function and dimensional varia-
tion on assembly was considered as logical basis for se-
lection of tolerances [23]. A probabilistic model for tol-
erance synthesis was developed [24] in which the reli-
ability indices were associated with either assembly con-
dition or component dimension. Strategies to compute 
small changes or gradient in tolerance values were also 
developed using probability theory [25]. Tolerance cost 
models based on the distribution function zone [26], tol-
erance optimization problem using system of experi-
mental design [27] and using Monte–Carlo simulations 
[28] approaches, were also investigated in application of 
statistical methods for tolerance synthesis. 
 
2.4. Neural Network-Based Cost-Tolerance 

Functions 
 
Neural networks have received a lot of attention in many 
research and application areas. One of the major benefits 
of neural networks is the adaptive ability of their gener-
alization of data from the real world. Exploiting this ad-
vantage, many researchers apply neural networks for 
nonlinear regression analysis and have reported positive 
experimental results in their applications [29]. Recently, 
neural networks have received a great deal of attention in 
manufacturing areas. Zhang and Huang [30] presented an 
extensive review of neural network applications in 
manufacturing. Neural networks are defined by Rumel-
hart and McClelland [31] as massively parallel intercon-
nected networks of simple (usually adaptive) elements 
and their hierarchical organizations which are intended 
to interact with objects of the real world in the same 
way as biological nervous systems do. The approach 
towards constructing the cost tolerance relationships is 
based on a supervised back-propagation (BP) neural 
network. Among several well-known supervised neural 
networks, the BP model is the most extensively used 
and can provide good solutions for much industrial ap-
plication [32]. 

A BP network is a feed-forward network with one or 
more layers of nodes between the input and output nodes. 
An imperative item of the BP network is the iterative 
method that propagates the error terms required to adopt 
weights back from nodes in the output layer to nodes in 
lower layers. The training of a BP network involves three 
stages: the feed forward of the input training pattern, the 
calculation and BP of the associated error, and the ad-
justment of the weights. After the network reaches a sat-
isfactory level of performance, it will learn the relation-
ships between input and output patterns and its weights 
can be used to recognize new input patterns. 

Figure 1 depicts a BP network with one hidden layer. 
The hidden nodes of the hidden layer perform an impor- 

 

Figure 1. Architecture of a three-layer BP network. 
 
tant role in creating internal representation. The follow-
ing nomenclatures are used for describing the BP learn-
ing rule. 

netpi = net input to processing unit i in pattern p (a pat-
tern corresponding to a vector of factors), 

wij = connection weight between processing unit I and 
processing unit j, 

api = activation value of processing unit i in pattern p, 
pi = the effect of a change on the output of unit I in 

pattern p, 
gpi = target value of processing unit i, 
 = learning rate. 
The net inputs and the activation values of the middle 

processing nodes are calculated as follows: 

pi ij pj
j

net w a                  (1) 

 pi

pi

1
a

1 exp net



              (2) 

The net input is the weighed sum of activation values 
of the connected input units plus a bias value. Initially, 
the connection weights are assigned randomly and are 
varied continuously. The activation values are in turn 
used to calculate the net inputs and the activation values 
of the output processing units using the same Equations 
(1) and (2). 

Once the activation values of the output units are cal-
culated, we compare the target value with activation 
value of each output unit. The discrepancy is propagated 
using. 

   '
pi pi pi i piδ g a f net             (3) 

For the hidden processing units in which the target 
values are unknown, instead of Equation (3), the follow-
ing equation is used to calculate the discrepancy. It takes 
the form 

 '
pi i pi pk ki

k

δ f net δ w             (4) 

From the results of Equations (3) and (4), the weights 
between processing units are adjusted using 

ij pi pjw εδ a                 (5) 
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2.5. Differential Evolution (DE) 
 
Differential Evolution is an improved version of Genetic 
Algorithm for faster optimization [33]. Unlike simple 
GA that uses binary coding for representing problem 
parameters, Differential Evolution (DE) uses real coding 
of floating point numbers. Among the DE’s advantages 
are its simple structure, ease of use, speed and robust-
ness. 
The simple adaptive scheme used by DE ensures that 

the mutation increments are automatically scaled to the 
correct magnitude. Similarly DE uses a non-uniform 
crossover in that the parameter values of the child vector 
are inherited in unequal proportions from the parent vec-
tors. For reproduction, DE uses a tournament selection 
where the child vector competes against one of its par-
ents. The overall structure of the DE algorithm resembles 
that of most other population based searches. The paral-
lel version of DE maintains two arrays, each of which 
holds a population of NP, D-dimensional, real valued 
vectors. The primary array holds the current vector 
population, while the secondary array accumulates vec-
tors that are selected for the next generation. In each 
generation, NP competitions are held to determine the 
composition of the next generation. Every pair of vectors 
(Xa, Xb) defines a vector differential: Xa – Xb. When Xa 
and Xb are chosen randomly, their weighted differential 
is used to perturb another randomly chosen vector Xc. 
This process can be mathematically written as X’c = Xc 
+ F (Xa – Xb). The scaling factor F is a user supplied 
constant in the range (0 < F < 1.2). The optimal value of 
F for most of the functions lies in the range of 0.4 to 1.0 
[33]. Then in every generation, each primary array vector, 
Xi is targeted for crossover with a vector like X’c to pro-
duce a trial vector Xt. Thus the trial vector is the child of 
two parents, a noisy random vector and the target vector 
against which it must compete. The non-uniform cross-
over is used with a crossover constant CR, in the range 0 
< CR < 1. CR actually represents the probability that the 
child vector inherits the parameter values from the noisy 
random vector. When CR = 1, for example, every trial 
vector parameter is certain to come from X’c. If, on the 
other hand, CR = 0, all but one trial vector parameter 
comes from the target vector. To ensure that Xt differs 
from Xi by at least one parameter, the final trial vector 
parameter always comes from the noisy random vector, 
even when CR = 0. Then the cost of the trial vector is 
compared with that of the target vector, and the vector 
that has the lowest cost of the two would survive for the 
next generation. In all, just three factors control evolu-
tion under DE, the population size, NP; the weight ap-
plied to the random differential, F; and the crossover 
constant, CR. 

The general convention used is DE/x/y/z. DE stands 
for Differential Evolution, x represents a string denoting 

the vector to be perturbed, y is the number of difference 
vectors considered for perturbation of x, and z stands for 
the type of crossover being used (exp:exponential; bin: 
binomial). Thus, the working algorithm outlined above is 
the strategy of DE, i.e..DE/rand/1/bin. Hence the pertur-
bation can be either in the best vector of the previous 
generation or in any randomly chosen vector. Similarly 
for perturbation either single or two vector differences 
can be used. For perturbation with a single vector differ-
ence, out of the three distinct randomly chosen vectors, 
the weighted vector differential of any two vectors is 
added to the third one. Similarly for perturbation with 
two vector differences, five distinct vectors, other than the 
target vector are chosen randomly from the current popu-
lation. Out of these, the weighted vector difference of each 
pair of any four vectors is added to the fifth one for per-
turbation. In binomial crossover, the crossover is per-
formed on each of the D variables whenever a randomly 
picked number between 0 and 1 is within the CR value. 
 
2.5.1. Pseudo Code for DE 
The pseudo code of DE used in the present study is given 
below: 
· Choose a seed for the random number generator. 
· Initialize the values of D, NP, CR, F and MAXGEN 
(maximum generation). 
· Initialize all the vectors of the population randomly. 
The variables are normalized within the bounds. Hence 
generate a random number between 0 and 1 for all the 
design variables for initialization. 
 for i = 1 to NP 
{ for j = 1 to D 
Xi, j = Lower bound + random number *( upper bound - 
lower bound)} 
· All the vectors generated should satisfy the constraints. 
Penalty function approach, i.e., penalizing the vector by 
giving it a large value, is followed only for those vectors, 
which do not satisfy the constraints. 
· Evaluate the objective function of each vector. Here is 
the value of the objective function to be minimized cal-
culated by a separate function defunct. objective () 
for i = 1 to NP 
Ci = defunct. objective () 
· Find out the vector with the minimum objective value 
i.e. the best vector so far. 
Cmin = C1 and best = 1 
for i = 2 to NP 
{ if (Ci < Cmin) 
then Cmin = Ci and best = i } 
· Perform mutation, crossover, selection and evaluation 
of the objective function for a 
specified number of generations. 
While (gen < MAXGEN) 
{ for i = 1 to NP 
{ 
· For each vector Xi (target vector), select three distinct 
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vectors Xa, Xb and Xc (select five, if two vector differ-
ences are to be used) randomly from the current popula-
tion (primary array) other than the vector Xi 
do 
{ r1 = random number * NP 
r2 = random number * NP 
r3 = random number * NP 
} while 
(r1 = i) OR (r2 = i) OR (r3 = i) OR (r1 = r2) OR (r2 = r3) 
OR (r1 = r3) 
· Perform crossover for each target vector Xi with its 
noisy vector Xn,i and create a trial vector, Xt, i. Per-
forming mutation creates the noisy vector. 
· If CR = 0 inherit all the parameters from the target 
vector Xi, except one which should be from Xn, i. 
·  for binomial crossover 
{ p = random number 
for n = 1 to D 
{if ( p < CR ) 
Xn, i = Xa, i + F (Xb, i - Xc, i) 
Xt, i = Xn, i 
} else Xt, i = Xi, j 
} 
· Again, the NP noisy random vectors that are generated 
should satisfy the constraint and the penalty function 
approach is followed as mentioned above. 
· Perform selection for each target vector, Xi by com-
paring its objective value with that of the trial vector, Xt, i; 
whichever has the minimum objective will survive for the 
next generation. 
Ct, i = defunct. Objective () 
if (Ct, i < Ci ) 
new Xi = Xt, i 
else new Xi = Xi} 
/* for i = 1 to NP */ 
} 
· Print the results (after the stopping criteria is met). 

The stopping criterion is maximum number of genera-
tions. 
 
3. Parametric Approach Using Direct CAD 
 
In the parametric approach, the analyzed dimension is 
expressed as an algebraic function an equation, or a set 
of equations that relates the analyzed dimension to those 
on which it depends, i.e., contributors. The function is 
either linearized or directly used for the Monte Carlo 
simulation in the nonlinear analysis. Results commonly 
available are the lists of contributors, sensitivities, and 
percentage contributions, and the tolerance accumulation 
for worst-case and statistical cases. 
 
3.1. Linearized Tolerance Analysis 
 
In this type of analysis, partial derivatives are calculated 

for each contributor; the derivatives give the sensitivity 
for each contributor from which worst case and variance 
can be determined. In general, the dimension to be ana-
lyzed, A, can be expressed as a function of independent 
variables (contributors), di, i.e., 

 1 2 nA f d ,d ,.......,d              (6) 

To perform a linearized tolerance analysis, this func-
tion f, usually called the design function, is linearized 
about the variables nominal values id , using the Tay-
lor’s series expansion, as follows: 

 
n

1 n i
i 1 i

f
A  f d ,....,d d

d

 
    

         (7) 

After linearization, both worst-case and statistical 
analyses can be performed. For worst-case analysis, the 
mean and worst-case variance of A are computed from 
equation below 

1 2 n
1 2 n

f f f
A d d ..... d

d d d

  
   
  

        (8) 

1 2 n
1 2 n

f f f
A d d ..... d

d d d

  
       

  
      (9) 

For statistical analysis, the mean of A is computed us-
ing the same equation as (8), but statistical variance of A 
is obtained from this equation 

2 2 2

2 2 2
A d1 d2 dn

1 2 n

f f f
....

d d d
   

       
               

 (10) 

The percentage contribution of di is computed as 

2

i i
i

A

S
C 100%




 
  
 

           (11) 

The acceptance rate can also be computed if the cor-
responding design limits of A are supplied. In the earlier 

equations,  i i n iS f d ,....d d    is the sensitivity of A 

to the contributor di, and  i i id d d    represents the 

contributors’ perturbation ranges (tolerances) about their 
respective nominal values. Tolerance sensitivity is an 
essential aspect of tolerance analysis for mechanical as-
semblies in 2D and 3D space while the sensitivity is 
nonzero constants (usually 1.0) for 1D analysis. The 
contributors’ tolerances are usually assumed to corre-
spond to n sigma standard deviations (typically n = 6, i.e., 

d 6  ) in statistical analysis. Si and Ci are useful 
measures for redesign. 
 
3.2. Direct Constraint Model in CAD 
 
In parametric CAD systems, constraint equations based 
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on geometric and dimensional relations are used to 
model a design. By perturbing the variables in these 
equations, some kind of sensitivity and tolerance analysis 
can be performed [32]. The design process using such a 
system is as follows. 1) First, create the nominal topol-
ogy to obtain a model exhibiting the desired geometric 
elements and connectivity between the elements, but 
without the dimensions. 2) Next, describe the required 
properties between the model entities in terms of geo-
metric constraints, which define the desired mathemati-
cal relationships between the numerical variables of the 
model entities. 3) Third, the modeling system applies a 
general solution procedure to the constraints, resulting in 
an evaluated model where the declared constraints are 
satisfied. 4) Create variants of the model by changing the 
values of the constrained variables. After each change, a 
new instance of the model is created by re-executing the 
constraint solution procedure. 

As can be seen from the earlier process, if the user 
specifies the dimension of interest, the system solution 
procedure can also obtain that value for a specific in-
stance of the model. If one variable is perturbed at a time, 
this variable’s sensitivity can be studied by comparing 
this perturbation’s effect on the dimension of interest. 
With the sensitivities of each variable and their perturba-
tion ranges tolerances, both linearized and non-linearized 
analyses can be performed. Therefore, tolerance analysis 
functionality is just an extension or by-product of para-
metric solid modeling. 
 
4. An Application 
 
In this study, the Pro/E wildfire version 3.0 parametric 
modeling software package is used to develop the direct 
constraint model. Linear tolerance analysis (statistical 
analysis) is carried out for the problem, in which partial 
derivatives are calculated for each contributor and the 
derivatives give the sensitivity for each contributor from 
which variance can be determined. The response variable 
in this study is Total cost which is sum of manufacturing 
cost and quality losses and it is expressed as 

   
m2 2

i j ij j ij M ik
j 1 k 1

TC k U T C t
q


 

            (12) 

where m is the total number of components from q as-
sembly dimensions in a finished product, Kj the cost co-
efficient of the jth resultant dimension for quadratic loss 
function, Uij the jth resultant dimension from the ith ex-
perimental results, ij the jth resultant variance of statis-
tical data from the ith experimental results, Tj the design 
nominal value for the jth assembly dimension, tik the 
tolerance established in the ith experiment for the kth 
component, and CM(tik) the manufacturing cost for the 
tolerance tik. 

This application is related to motor assembly [13] 

which consists of an x-base, crank, shaft and motor base. 
Figures 2-7 are graphic representation of the motor as-
sembly with dimensioning and tolerancing schemes. Ta-
ble 1 provides some relevant information for these fig-
ures. The ordering number in the first row of Table 1 is 
also given in Figures 3-7 for the purpose of easy asso-
ciation. The objective is to determine an appropriate tol-
erance allocation so that there is sufficient clearance be-
tween the crank and x-base. 
 

 

Figure 2. A motor assembly drawing (Jeang, 1999). 
 

 

Figure 3. X-base. 
 

 

Figure 4. X-base. 
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Table 1. Dimensioning and tolerancing schemes for motor assembly. 

Tolerance 
and size no. 

1 2 3 4 5 6 7 8 9 10 

Component X-base motor base motor base motor shaft motor shaft motor shaft motor motor crank crank 

Geometry 
feature 

flatness profile flatness size 
perpendicular-

ity 
profile size position size 

Perpendicu-
larity 

Illustration 
Surface on 

X-base 
Surface on 
motor base

Surface on 
the bottom of 
motor base 

Size of the 
shaft (with 
target value 

2.0cm) 

Perpendicular-
ity of shaft

Profile 
of shaft 

Hole 
size of 
motor 

Hole posi-
tion of mo-

tor 

Hole size  
of crank 

Hole perpen-
dicularity of 

crank 

Possible 
tolerance 

levels 

0.050 
0.075 
0.100 

– 
0.040 
0.060 
0.080 

0.100 
0.150 
0.200 

0.050 
0.075 

0.1 
– – – – – 

Influence on 
clearance? 

yes no yes yes yes no no no no no 

 

 

Figure 5. Motor base. 
 

 

Figure 6. Shaft. 

 

Figure 7. Crank. 
 

A parametric model of motor assembly is created in 
order to develop constraint equations based on geometric 
and dimensional relations (Figure 8). The direct con-
straint model in CAD is created as follows. 1) First, a 
nominal topology to obtain a model exhibiting the de-
sired geometric elements and connectivity between the 
elements is created, but without the dimensions. 2) Next, 
the required properties between the model entities is de-
scribed in terms of geometric constraints, which define 
the desired mathematical relationships between the nu-
merical variables of the model entities. 3) Thirdly, a 
general solution procedure is applied to the constraints, 
which results in an evaluated model where the declared 
constraints are satisfied. 4) Finally, more variants of the 
model are created by changing the values of the con-
strained variables. After each change, a new instance of 
the model is created by re-executing the constraint solu-
tion procedure.  
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Once the constraint equation is developed (Equation 
13), sensitivity and tolerance analysis can be performed 
by perturbing the variables in that equation. Then, the 
user has to specify the dimension of interest; the system 
solution procedure will obtain that value for the specific 
instance of the model. In this application the dimension 
of interest is clearance between the crank and x-base 
which is 0.89 cm (Figure 9). The variables are X1 (motor 
shaft size), X2 (motor shaft perpendicularity), X3 (x-base) 
and X4 (motor base flatness). The number of levels for 
each variable is three. Table 3 shows the variables and 
levels of experiment with 27 runs. Each variable’s sensi-
tivity can be studied by comparing this perturbation’s 
effect on the dimension of interest by perturbing that 
variable alone. After determining the sensitivities of each 
variable and their perturbation ranges tolerances, both 
linearized analyses can be performed. Thus the tolerance 
analysis functionality is found to be an extension or by- 
product of parametric solid modeling.  

   

   

2
1

3 4

X Sin 0.5771
X Sin 0.5771 +

2
X Sin 0.99369 X Sin 0.99369

2 2
0.116084




 
 



   (13) 

Then neural network model of cost-tolerance function 
is developed as follows. The 2/3rd of experimental results 
drawn randomly from Table 3 are used to train the neu-
ral network. Before applying the neural network for 
modeling, the architecture of the network has been de-
cided; i.e. the number of hidden layers and the number of 
neurons in each layer. As there are 4 inputs and 1 output, 
the number of neurons in the input and output layer has 
to be set to 4 and 1 respectively. Also, the back propaga-
tion architecture with one hidden layer is enough for 
majority of the applications. Hence only one hidden layer 
has been adopted. A procedure was employed to opti-
mize the number of neurons in the hidden layer. Accord-
ingly, an experimental approach was adopted, which 
involves testing the trained neural networks against the 
remaining 1/3rd of experimental results. Experimental 
and predicted outputs for different number of neurons 
have been compared. The regression statistics for differ-
ent architecture are determined and listed in Table 4 and 
the same have been plotted against the number of neu-
rons as shown in Figure 10. It is observed that the re-
gression statistics were minimized with 7 neurons.  

Hence, 4-7-1 is the most suitable network for the task 
under consideration. The training function used in this 
research is Gradient descent with momentum back- 
propagation. The transfer function used in this research is  

 

 

 

Figure 8. Motor assembly (Pro/E Wildfire 3.0 model). 
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Figure 9. Motor assembly–Value of Clearance. 
 

 

Figure 10. Error versus the number of neurons in a hidden 
layer. 
 

Table 2. Tolerance costs for each factor at various levels. 

 Lower level Middle level Upper level 

x1 $18.07 $13.63 $12.82 

x2 $35.18 $24.68 $21.90 

x3 $279.61 $170.39 $108.57 

x4 $29.87 $19.62 $17.98 

tan-sigmoid and gradient. Descent w/momentum weight/ 
bias learning function has been used. Figure 11 shows 
the schematic diagram of the neural network. The learning 
rate = 0.7, momentum = 0.65 and training epochs = 2000. 
The weights (and biases) are randomly initialized be-
tween –0.5 and 0.5.Once the neural network gets trained, 
it can provide the result for any arbitrary value of input 
data set. Table 5 shows the experimental result and the 
model prediction. It is observed that the prediction based 
on an ANN model is quite close to the experimental ob-
servation.  
 

 

Figure 11. Schematic diagram of the neural network.  
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Table 3. Experiment design. 

Experiment 
number  

X-Base Flatness 
(x1) 

Motor base 
Flatness (x2)

Motor shaft size 
(x3) 

Motor shaft perpen-
dicularity (x4) 

Total cost in 
$ TC(X) 

1 0.15 0.075 0.1 0.08 228.9 

2 0.15 0.075 0.1 0.04 239.5 

3 0.15 0.075 0.05 0.08 361.3 

4 0.15 0.075 0.05 0.04 373.0 

5 0.15 0.1 0.075 0.08 266.1 

6 0.15 0.1 0.075 0.04 277.6 

7 0.15 0.05 0.075 0.08 277.2 

8 0.15 0.05 0.075 0.04 289.0 

9 0.15 0.1 0.1 0.06 228.4 

10 0.15 0.1 0.05 0.06 361.1 

11 0.15 0.05 0.1 0.06 240.8 

12 0.15 0.05 0.05 0.06 372.5 

13 0.2 0.075 0.075 0.08 274.6 

14 0.2 0.075 0.075 0.04 286.3 

15 0.1 0.075 0.075 0.08 267.0 

16 0.1 0.075 0.075 0.04 278.7 

17 0.2 0.075 0.1 0.06 236.3 

18 0.2 0.075 0.05 0.06 369.9 

19 0.1 0.075 0.1 0.06 228.6 

20 0.1 0.075 0.05 0.06 362.0 

21 0.2 0.1 0.075 0.06 274.6 

22 0.2 0.05 0.075 0.06 290.9 

23 0.1 0.1 0.075 0.06 266.7 

24 0.1 0.05 0.075 0.06 278.3 

25 0.15 0.075 0.075 0.06 271.2 

26 0.15 0.075 0.075 0.06 268.4 

27 0.15 0.075 0.075 0.06 269.9 

 
The neural network model for the above problem is 

developed as per the approach discussed previously. 
Based on those discussions, the BP network of 4-7-1 
architecture produces the best performance (refer Table 
4) and the same is adopted to generate the neural net-
work based cost-tolerance function under this case study.  

At this point, the relationship between input factors  
X = (x1, x2, x3, x4) = (x-base flatness, motor base flat-
ness, motor shaft size, motor shaft perpendicularity), and 
output response F(X) (total cost defined by Equation 12) 
can be revealed from the constructed neural network. 

The solution of the motor assembly case can be found by 
solving the following mathematical models: 

   1 2 3 4

1

2

3

4

MaximizeF X F x , x , x , x

subject to  0.1 x 0.2,

                 0.05 x 0.1,

                 0.05 x 0.1,

                 0.04 x 0.08



 
 
 

 

      (14) 

A clearance of 0.89 cm has to be maintained between  
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Table 4. Regression statistics for each network architecture. 

Network 
architecture 

Mean Prediction 
error % 

R square 
value 

Standard 
error 

4-4-1 4.498492501 0.943112 12.06117 

4-5-1 2.035675506 0.987509 6.426893 

4-6-1 4.100965211 0.902752 16.94439 

4-7-1 1.735294596 0.989658 5.608395 

4-8-1 3.495912167 0.96686 10.32931 

4-9-1 5.935647182 0.725488 33.33576 

4-10-1 4.749441739 0.850217 22.10918 

 
Table 5. Comparison of experimental results with the ANN 
model prediction. 

Total cost in $ 
TC(X) Experimen-

tal results 

Predicted values by 
ANN 

Prediction error 
(%) 

239.517 233.5125993 2.506878729 

373.02 370.1791799 0.761573146 

228.449 229.8694101 0.621762439 

361.1 353.4342438 2.12289012 

266.993 269.1789878 0.818743499 

236.277 234.1075089 0.918198157 

274.648 270.9355255 1.351720937 

266.679 251.1227928 5.833307915 

271.192 269.3409074 0.682576422 

Maximum prediction error for each output 
in this row in % 

5.833307915 

Minimum prediction error for each output in 
this row in % 

0.621762439 

Mean prediction error for each output in this 
row in % 

1.735294596 

 
Table 6. The DE specific data. 

Variable type Real variable 

Population size 100 

Cross over type binomial 

No of difference vector 1 

Vector to be perturbed random 

Total no of generation 100 

No of variables 4 

motor base and crank. The functional constraint is the 
constraint equation developed using the parametric 
model (Equation 13). The Problem (14) is solved by the 
proposed Differential evolution discussed in the previous 
section. The outline of the proposed optimization strat-
egy is shown in Figure 12. 

The optimization strategy is explained as follows. Ini-
tially the cost-tolerance function is established by the 
neural network model. Once the neural network based 
cost–tolerance function is established, and then optimi-
zation of the problem (Equation 14) is carried out using 
Differential evolution (DE). The DE optimization pro-
gram determines the set of tolerance with minimum cost. 
Those tolerance values are assigned to the Direct con-
straint model in CAD and the clearance value is deter-
mined. If the clearance value is less than the desired one,  
 

Start 

Set initial population of tolerance 

Clearance is less than 

the desired one 

End 

N 

Y

Find the set of tolerance with minimum cost 

Improve population using DE 

Evaluate the Neural network based cost-tolerance 
function 

Determine the clearance value from the CAD 
model 

 

 

Figure 12. The outline of the proposed optimization strategy. 
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the process terminates, otherwise the process is repeated 
from the beginning.  

The least cost is found to be $232.1907; the solution 
converges in the 49th generation (Figure 13). The value 
of cost obtained by this method is lesser than that of the 
value obtained by response surface methodology [13] 
which was $238.5191 and the constraint equation pro-
vided, ensures that the values of variables satisfies the 
functional constraint. The values of the variables are as 
follows. x-base flatness, x1 = 0.1, motor base flatness, x2 

= 0.081125, motor shaft size, x3 = 0.1, and the motor 
shaft perpendicularity, x4 = 0.07799. It is fond that the 
proposed hybrid methodology with BP and DE can solve 
tolerance synthesis problem effectively. 
 
5. Discussion 
 
Many products are now routinely designed with the aid 
of computer modeling. With an input consisting of de-
signable engineering parameters and parameters repre-
senting manufacturing process conditions, computer 
simulation generates an output, which is the product’s 
quality characteristic. Then a standard statistical analysis 
is performed based on this output. The finite element 
analysis of mechanical components and the design of 
electronic circuits are two important application areas 
where computer modeling is widely used. With the cur-
rent development of computer aided tolerancing software 
(CATS) it becomes possible to put tolerance design via 
computer modeling into practical use. Major CATs use 
the abstracted feature-parameter model for the Monte 
Carlo simulation based tolerance analysis. The major 
problems with these CAT packages are as follows: 1) 
Cumbersome work is needed in model creation. First, 
parametric CAD uses a combination of 2D constraint 
solving with 3D sweep and loft operations; this con-
straint model is not suitable for tolerance analysis. Sec-
ond, STEP standards for tolerances exist but vendors do 
not provide translators, so importing a CAD model with 
GD & T is only partially achieved, i.e., the GD & T and 
assembly constraint information is lost after importing. 
Therefore, the user must recreate the tolerance specs in 
CATs manually using CAD entities. 2) There is a lack of 
an underlying mathematical model for geometric varia-
tions. First, the quality of the analysis depends on the 
expertise of the person creating the CATS model; this is 
a problem. The results should depend on the GD & T 
scheme only and not by trial and error or any “tricks”. 
Second, the Monte Carlo simulation does not produce a 
closed form solution; the solution changes with the 
number of simulations performed; one can never be sure 
of the worst-case results. Third, since the dependent di-
mensions cannot be expressed explicitly by one equation 
in terms of all contributors, the contributors and sensi-  

 

Figure 13. Solution history. 
 
tivities are determined numerically by trial and error. In 
this study, a parametric analysis method based on direct 
constraint model is proposed which addresses the above 
problems in using CATs packages. First, the parametric 
tolerance analysis borrows its concept from the mature 
parametric CAD; there by it can be easily integrated with 
CAD system. Second, a constraint equation is developed 
after developing the direct constraint model, which en-
sures that dependent dimension can be expressed explic-
itly in terms of contributors. The constraint equation is 
then used as a functional constraint in the optimization 
method. Due to the above reasons, parametric tolerance 
analysis based on direct constraint model in CAD is 
more suitable for tolerance analysis of simple problems 
than that of CATs package.  
 
6. Conclusions 
 
In this research, the parametric tolerance analysis of 
given application problem is performed by developing a 
direct constraint model in CAD. This method is found to 
be more suitable for tolerance analysis of simple prob-
lems than that of CATs package. And the proposed op-
timization strategy is found to provide better formulation 
of cost–tolerance relationships for empirical data. BP 
network architecture of configuration 4-7-1 generates a 
suitable model for cost-tolerance relationship of R2 value 
0.99993, there by eliminating errors due to curve fitting 
in case of regression fitting. And it also generates more 
robust outcomes of tolerance synthesis. The proposed 
optimization strategy obtains an optimal solution better 
than that of Response surface methodology (RSM) 
(Jeang, 1999). The CAD model developed ensures that 
the values of variables satisfy the functional constraint. 
This study proposes a parametric tolerance analysis of 
mechanical assembly by developing direct constraint 
model in cad and cost competent tolerance synthesis 
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based on BP learning and DE based optimization algo-
rithm. The constraint equation developed ensures that the 
proposed values of controllable factors (tolerances) sat-
isfy the assembly constraint, even before the start of 
manufacturing process. There by reducing scrap and re-
work cost. 
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Abstract 
 
This paper shows how mathematical methods can be implemented to formulate guidelines for clinical testing 
and monitoring of HIV/AIDS disease. First, a mathematical model for HIV infection is presented which the 
measurement of the CD4+T cells and the viral load counts are needed to estimate all its parameters. Next, 
through an analysis of model properties, the minimal number of measurement samples is obtained. In the 
sequel, the effect of Reverse Transcriptase enzyme Inhibitor (RTI) on HIV progression is demonstrated by 
using a control function. Also the total cost of treatment by this kind of drugs has been minimized. The nu-
merical results are obtained by a numerical method in discretization issue, called AVK. 
 
Keywords: HIV/AIDS, Mathematical Modeling, System Identification, Control Theory, Immunotherapy 

1. Introduction 
 
Despite tremendous effort for mathematical modeling of 
HIV/AIDS (for example, see [1-4]), estimation of model 
parameters has not been attended a lot. For example, in 
[2,5,6], only the virus clearance rate and the death rate of 
infected CD4+T cells have been estimated. The impor-
tance of parameter estimation in models, is due to pre-
dicting “set-points” in the early infection stage for mak-
ing the desired treatment decisions (See [7]). 

One of the objectives of this paper is presenting a re-
alistic model, i.e. the basic model of HIV, and estimating 
all its parameters. It is necessary to mention that one can 
identify all of the model parameters by using measured 
output (For more details see [4]). 

Another objective is to add a control function to the 
identified basic model which plays the role of reverse 
transcriptase enzyme inhibitor drug in disease progres-
sion. 

In the sequel, the optimal control model of HIV will 
be solved by a method in discretization issue, called 
AVK. 

Numerical results are obtained using mathematical 
softwares, LINGO and MATLAB. 

2. Translating Biological Knowledge to  
Ordinary Differential Equations (ODE) 

 
To make ODE’s from biological knowledge, first we 
need some syntax. For example, if we denote the count 
of uninfected and infected CD4+T helper cells, with a  
and b , respectively, the syntax “ 0a  ” can be used to 
present this biological descriptions: “Uninfected CD4+T 
cells die” and the syntax “ a b b b   ” can present: 
“The reaction between two infected and uninfected CD4+T 
cells produces two infected CD4+T cells”. Now, for 
translating these syntaxes to the corresponding ODE’s, 
we use Mass action law. This law says: “The rate of 
change of products is proportional to the product of re-
actants concentration”. So if the syntax “ a b c  ” is 
obtained, according to the mass action law, we can write 

c kab , for k > 0, where 
dc

dt
 is denoted by c . Two 

other reactions in the previous syntax is dying a  and 
b  reactants, while producing c . So we have also these 

two ODE's as: a kab   and b kab  , for k > 0. Fi-
nally, the desired ODE, corresponding to the syntax 
“ a b c  ” is 
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,

,

.

c kab

a kab

b kab


 

 





 

Obviously, the rate of change of a product is the sum 
of changes from all reactions. 
 
3. HIV Basic Model 
 
The target cells of HIV infection are lymphocyte helper 
cells, specially CD4+T cells. These cells become infected 
and begin to produce free virions. The main fact about 
HIV infection, is reducing the count of CD4+T cells, 
which have an essential role in protecting body against 
different pathogens. So it is important to understand the 
dynamics of CD4+T cell count as a function of time. In 
HIV infection basic model, three groups of molecules are 
considered; Uninfected CD4+T cells (T), infected CD4+T 
cells (I) and viral load (V). Biological descriptions, tran- 
slation to reactions and corresponding ODE’s are pre-
sented in Table 1. 

Now, according to Table 1 and Section 2, the com-
plete ODE model, which is sum of contributions from all 
reactions, is as follows: 

,

,

.

T s dT TV

I TV I

V kI cV



 

  

 

 





              (1) 

 
4. Properties of HIV Basic Model 
 
There are two advantages to show the virous propagation 
in HIV disease, by the basic model (1). 

1) From medical point of view, one important subject 
is the relative steady viral level during the asymptomatic 
stage of an HIV infection. This level is called “set-point”. 
When body reaches this level, immune system develops 
HIV antibodies and begins to attempt to fight the virus. 
The higher the viral load of the set point, the faster the 

virus will progress to full blown AIDS (See [8]). 
It can be shown that set-point is the amount of V, in 

the equilibrium of virus depicted by the model (1), that is 

* .
ks d

V
c 

   

2) It can be seen that a model of such a simple nature 
is able to adequately reflect the disease progression from 
the initial infection to an asymptomatic stage after the 
set-point is reached (See [9]). 
 
5. Estimation of Models Parameters Using 

Discretization 
 
In this section, our aim is to estimate all parameters of 
HIV basic model (1). Clinically all six variables in model 
(1), can be measured. Since the cost of quantifying the 
infected cells is much higher, we are going to omit vari-
able I, initially. For this, let 1y T  and 2y V . After 

some calculations, model (1) can be changed to: 

1 1 2 1 3 1 2y y y y                  (2) 

2 4 2 5 2 6 1 2y y y y y                 (3) 

where 

2

3

4

5

6

1 s

d

c

c

k



 


 
 
 

   
      
   

    
    

   
   

     

. 

The vector   defines a one-to-one map for 0   

and c  . Therefore the identification of the original 

parameters of (1) is equivalent to the identification of  . 
It is known that for most HIV patients, 0   and 

c   (See [7]). In this case, the following inverse map 

can be defined: 
 

Table 1. HIV basic model interactions. 

Biological description Translation to reactions Reaction rate Translation to ODE 

CD4+T cells production 0 T  s  T s  

CD4+T cells natural death 0T   d  T dT   

CD4+T cells become infected by virus T V I V      
T TV

I TV





 




  

Infected CD4+T cells death 0I     I I   

Virus replication in infected CD4+T cells I I V   k  V kI  

Virus natural death 0V   c V cV   
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1

2

3

2
4 4 5

2
4 4 5

6

3

4

2

4

2

s

d

c

k





  


  




 
                                  
 
  

.          (4) 

Since there are three unknown parameters in each of 
Equation (2) and (3), it is necessary to generate at least 
two other equations based on each of them. This will be 
achieved by differentiating (2) and (3) more times, and 
produce upper derivatives of 1y  and 2y . So one can 

concludes that at least four measurements of 1y , CD4+T 

cell count, and five measurements of 2y , viral load, are 

needed for a complete determination of model (1) pa-
rameters (See [7]). 

Assume that the following measurements are avail-
able. 

By discretization of Equations (2) and (3), and substi-
tuting the approximated values of first derivative of 1y  

and the first and second derivatives of 2y , we found that 

1
1 1

1 1 2 1 2 3
1

, 0,1, 2
i i

i i i

i

y y
y y y i

d
  






          (5) 

1
2 2

4 2 5 1 2 6
1

2 1 1
2 2 2 2

1 2 1

1
, 0,1, 2

i i
i i i

i

i i i i

i i i

y y
y y y

d

y y y y
i

d d d

  




  

  

 
 
 


  

 
 

    (6) 

Or in matrix form, we have 
1 0

1 1

10 0 0
1 1 2 1 2 1
1 1 1 1 1

1 1 2 2
22 2 2

1 1 2 3 3 2
1 1

3

1

1

1

y y

d
y y y

y y
y y y

d
y y y

y y

d





 
 
                         
  

 

Similar matrix form can be obtained from (6). Thus, 
the variables i , i = 1, 2, ..., 6 and then from (4), all of 

the basic model parameters can be calculated. As an 
example, we considered the basic model (1), where the 
following estimated parameters are as Xia [7]. 

7, 0.007, 0.00000042163,

0.0999, 0.2, 90.67 .

s d

c k



  
  

      (7) 

Table 2. Available measurements for the count of CD4+T 
cells and viral load. 

Time ( t ) CD4+T cell count ( 1y ) Viral load ( 2y )

0t  0
1y  0

2y  

0 1t d  1
1y  1

2y  

0 1 2t d d   2
1y  2

2y  

0 1 2 3t d d d    3
1y  3

2y  

0 1 2 3 4t d d d d    – 4
2y  

 
The solution of model (1) for [0,1000]t , with the 

initial values 0 1000T  , 0 0I   and 0 7000V  , can 

be determined using the well-known numerical methods 
like RK4. The graphs of the propagation of healthy 
CD4+T cells, infected CD4+T cells and virous loads, re-
spectively, are shown in Figure 1. 
 
6. HIV Infection Optimal Control Model 
 
There are three convenient groups of drugs for AIDS 
retroviral therapy; Reverse transcriptase, Protease, and 
Integrase enzyme inhibitors. In this section, we study the 
role of reverse transcriptase inhibitors. The main action 
of this kind of drugs is preventing uninfected lymphocyte 
cells, to be infected by viral load. According to Table 1, 
 

 

Figure 1. The solution of basic model of HIV, model (1). 
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this action is equivalent to the reaction T V I V   . 
So we control the first equation to prevent the transmis-
sion of uninfected cells to infected ones. This control 
function is called ( )u t , where 0 ( ) 1u t  . The most 

drug efficiency is in the case 1u   which means CD4+T 
cells are not infected by viral load anymore. At the other 
side, 0u   is the case which the drug does not change 
the disease progression. By above argument, the control 
system is as: 

(1 ),

(1 ) ,

.

T s dT TV u

I TV u I

V kI cV



 

   

  

 





          (8) 

Using [10], consider the objective functional to be de-
fined as: 

   
0

21
, ( )

2
ft

t
J T u T t u t dt            (9) 

where 110  . Our goal is maximizing the objective 
functional (9) subject to the control system (8); that is, 
maximizing the total count of CD4+T cells and minimiz-
ing the costs of treatment by applying some RTI drugs. 

The solution of this optimal control problem should be 
calculated by numerical methods. We have used a special 
discretization method, called AVK. 

For a detailed explanation of this method, see [11]. 
In AVK method, for solving the optimal control prob-

lem, 

      
0

Min , , ,ft

t
J x u g x t u t t dt        (10) 

Subject to: 

      
   

0

0 0

, , , ,

,

f

f f

x t f x t u t t t t t

x t x x t x

 








    (11) 

the following steps should be applied: 
Step 1. Form the total error function 1E  as: 

        
0

1 , , ,ft

t
E x u x t f x t u t t dt    

Step 2. Combine the total error function with the ob-
jective functional (10) as follows: 

    
       
   

0
1

2

0 0

Min , ,

, ,

subject to : ,

ft

t

f f

g x t u t t

x t f x t u t t dt

x t x x t x



 

 


    (12) 

where nonnegative numbers 1  and 2  are two given 

weights and 1 2 1   . 

Step 3. In order to control the error, add the following 
constraint, 

 1 ,E x u    

to the optimal control problem in Step 2. So the modified 
optimal control problem (10)-(11) can be formulated as: 

    
       

      
   

0

0

1

2

0 0

Min , ,

, ,

subject to :

, ,

,

f

f

t

t

t

t

f f

g x t u t t

x t f x t u t t dt

x t f x t u t t dt

x t x x t x



 

 

 







 

   (13) 

Step 4. Calculate  iu t  by minimizing the optimal 

control problem (13) using discretization method. 
For example, if the norm function . , is norm 1, then 

one can solve the following optimization problem: 

    

 

   0

1

2 1

0

1
0

1

1
0

Min , , , ,

subject to : , ,

,

n

i i i i i i i
h

n

i i i i
h

f f

h g x u t x f x u t

h x

x t x x t

u

x

f x t

 








 



 









    (14) 

where 0ft t
h

n


 , 0it t ih  , ( )i ix x t , ( )i iu u t  

and 1( ) i i
i i

x x
x x t

h
 

    for 0,1,., 1i n   and n . 

Step 5. By the means of ( )iu t  for every it , from 

(11), it is easy to find ( )ix t , for any i , 0,1,., 1i n  . 

We use this technique to solve the control problem (8) 
with the objective functional (9). The parameters used in 
the basic control model (8) are exactly as (7). Assume 
that the treatment begins when CD4+T cells reach their 
minimum count, in the absence of drug. 

According to Figure 1, (129) 363T   is the mini-

mum count of CD4+T cells. So the treatment interval is 
[129, 1000] day. Also, note that by Figure 1, at t = 129, 
we have (129) 57I   and (129) 28860V  . 

Now, we divide [129, 1000] into n  parts with length 
h . The discretization form of (14) is: 

  
  

  

1
2

1
0

2

0 0 0

1
Max

2

1

1

subject to : , , 0, 0 1, 0,1, 2,...,

363, 57, 28860

n

i i
h

i i i i i

i i i i i

i i i

i i i i

h T u

T s dT TV u

I TV u I

V kI cV

T I V u i n

T I V

 

 

 





     
    

   

   
    

  








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Figure 1. The solution of optimal control problem (8)-(9), 
using AVK method. 
 

where assumed 1 2

1

2
   . 

The results of this optimization problem which ob-
tained by LINGO and MATLAB softwares for 200n   

and 610 , are depicted in Figure 2. 

 
7. Conclusions 
 
In this paper, the parameter of the basic model of HIV/ 
AIDS is estimated only by measurement of the CD4+T 
cells and the viral load count. Since the suggested mod-
els for HIV, or infectious diseases like consumption, 
cholera, influenza and etc., have unknown parameters 
which should be estimated, one can use the proposed 
method in this paper to estimate the parameters of such 
models. 

One of the most important kinds of drug treatments for 

HIV immunotherapy is assumed. One can investigate the 
effects of other drugs, like Protease enzyme inhibitors in 
preventing AIDS progression. In these cases, one can use 
the described discretization method for solving such op-
timal control problems. 
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Abstract 
 
This research focuses on how to control the robot easily and how to generate the better trajectories of the ro-
bot with multiple joints to implement weightlifting motion. The purpose of this research is to develop a 
multi-joint robot can stand up successfully with an object. This research requires the operations with two 
items. First, when the object is lifted up slowly, the robot could stand up as easily as possible and does not 
tumble down. Second, the load applied on each joint should be as small as possible. In this article, a motion 
control method is proposed to evaluate the variations of the load torque and rotated angle of each joint with 
the geometrical constraints in the procedure and find the best algorithm to generate the trajectory of a 
weightlifting motion by a stance robot with repeatedly direct kinematics. 
 
Keywords: Weightlifting, Trajectory Generation, Load Torque, Repeatedly Direct Kinematics 

1. Introduction 
 
In resent years, robots that are able to perform work in 
human daily environment have been successfully devel-
oped. Furthermore more and more multi-joint robots 
have been used to meet the needs of the people and in-
dustry in daily. For instant, humanoid robots are placed 
in dangerous work in some fields such as in medical 
treatment, architecture, manufacture, and researched in 
science fields, because the configuration is in similitude 
of human being. 

Today, about 60% of the working population in the 
world, based on statistics, suffered from different kinds 
of arthritis, 30% suffer from different kinds of arthrosis, 
and when it comes to muscle, joint or rheumatic pain, 
practically every person is familiar with them. Arthralgia 
is an ailment that lots of teenagers suffer from. Adults 
also suffer from arthralgia caused by injuries [1]. These 
situations make us think about that how to reduce the 
load on the joints to keep away from the arthralgia. 
Weightlifting is a common action to every person in 
daily lives, which is hardly avoidable. In this paper, the 
research is developed, which focuses on how to generate 
a better trajectory of the robot with multiple joints to 
simulate human being to realize the weightlifting motion 
[2].  

Regarding trajectory generation, there are two aspects 
to be considered usually. One is the aim you will achieve. 

What a kind of trajectory is generated? Is it collision-free 
or time-optimal or energy-optimal? The other one is the 
constraint existing in the process of the trajectory gen-
eration [3]. Sometime we want the humanoid robot to 
work as workhorse without damage. But the joints are 
the parts, which are easy to damage. So how to make the 
load on each joint minimum is that we need to consider. 

In the following, we try to generate a trajectory that 
consists of many link postures, each of which makes the 
load torque of all the joints as low as possible without the 
dangerousness of tumbling down. Based on the idea 
above, the algorithm is proposed, and simulations are 
provided. The trajectories of weightlifting motion for a 
multi-joint robot with an object are generated, the preci-
sion of which depends on the specified motion increment 
of each link in the calculation. 

 
2. Model and Calculations 
 
In this paper, we assume that the system is symmetric 
during the procedure. Hence from a complicated human-
oid robot model with many degrees of freedom, we sim-
plify it to a 5-dof model with 6 links [4], which can move 
along the horizontal direction. As shown in Figure 1, we 
set the coordinate system so that x-axis is on the floor 
and z-axis passes through the ankle joint. 

Here Ji represents the joint i, θi represents the angle  

 



J. LIU  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  ICA 

21

 

Figure 1. Model of the robot and its geometric parameters. 
 
between the link i and the link i-1, a represents the length 
from the ankle joint to the heel (point A), b represents 
the length from the ankle joint to the tiptoe (point B), Li 
represents the length of the link, and Lgi represents the 
distance from the CoM (Centre of Mass) of the link to 
the beginning point of the link. The mass of a link is 
noted as mi, and the object’s mass is given when a simu-
lation is implemented. The position of the CoM of the 
elbow link follows the mass of the object. Furthermore, g 
denotes the gravity acceleration. The centre of mass of 
the object is located at the middle point of the object. 

As showed in Table 1 below, the geometric parame-
ters are properly given to estimate the effectiveness of 
the algorithm applied on the trajectory generation of the 
robot’s weightlifting motion. 

We usually research about the robots under dynamic 
conditions, but which makes the research complicated. 
The joints of robot are mostly drove by reducers in fact, 
and the motion of the links is very tiny in this paper, so 
the static effect is first considered that the dynamic per-
formances could be neglected, Only considering the 
static influences under some limitations here [5]. The 
detailed analysis of this matter under a dynamic envi-
ronment is future works. 

To implement the weightlifting motion successfully 
for a multi-joint robot, the following two requirements or 

constraints must be satisfied in this procedure. 
First, the robot must maintain its stability or keep its 

balance so that it will not tumble down, which is called 
the balance constraint here. To satisfy this condition, the 
ZMP (Zero Moment Point) or the projection of the CoM 
of the robot onto the ground must remain within the pre-
defined stability region, that is, it should move between 
the tiptoe and the heel. Because the dynamic perform-
ances are neglected, we do not consider the inertial force 
and influence from external forces. As mentioned above, 
when the robot is static, the ZMP coincides with the pro-
jection point of the CoM on the ground. 

Second, the load torque of all the joints must be as low 
as possible, which is called the load constraint here [6]. 
When the robot carries an object, generally higher joint- 
torques is needed, because the object is carried far away 
from the floor or the base of the robot. Those may cause 
a saturation of joint-torque to the torque limitation. Since 
the robot could not avoid withstanding the load of the 
object, we should make the robot’s joints keep away 
from the torque limits to protect the relatively frailest 
joint among all the joints. The torque limitations are 
shown in Table 1. The torque limitations of the wrist and 
the elbow are quite smaller than that of other parts of the 
model, which is similar to human beings. The multi-joint 
robots usually have many degrees of freedom. Although 
we have simplified the complicated humanoid (a 3D 
model) to the robot model in this paper, which has 5 de-
grees of freedom, there are still 35 options to each pos-
ture in the weightlifting motion procedure. So how to 
choose an optimal option from these 35 options becomes 
a question we have to face. To satisfy the load constraint, 
the one is considered among those options, in which the 
output of the relatively frailest joint is a minimum, com-
paring with other options’.  

According to the model, the load torque of each joint 
(T1, T2, T3, T4, T5) and reaction force (RA, RB) are indi-
cated in the equations below. 

 5 5 5 1 2 3 4 5cosgT m L g                 (1) 

 4 4 4 5 4 1 2 3 4 5( ) cosgT m L m L g T            (2) 

 3 3 3 5 4 3 1 2 3 4[ ( ) ] cosgT m L m m L g T           (3) 

 
Table 1. Geometric parameters of the model. 

Joint 
1 

ankle
2 

knee 
3 

waist 
4 

shoulder
5 

elbow

m (kg) 9.6 14.4 36 8.5 8.5 

L (mm) 463 450 416 300 320 

Lg (mm) 180 252 392 162 x 

Timax (Nm) 600 500 550 400 400 

Timin (Nm) –600 –500 –550 –400 –400 
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 2 2 2 5 4 3 2 1 2 3[ ( ) ] cosgT m L m m m L g T         (4) 

1 1 1 5 4 3 2 1 1 2[ ( ) ] cosgT m L m m m m L g T          (5) 

 1 1 2 3 4 5
A

T m m m m m gb
R

a b

    



       (6) 

 1 2 3 4 5 1
B

m m m m m ga T
R

a b

    



       (7) 

To satisfy the balance constraint, RA and RB must be 
both positive. So according to (6) and (7), the load torque 
of ankle joint T1 has another limitation, which is called 
balance limitation here. 

1 2 3 4 5 1

1 2 3 4 5

( )

( )

b m m m m m g T

a m m m m m g

     

    
        (8) 

The balance limitation is different with the torque 
limitations initialized in Table 1, which avoid the joints 
overloading to be damaged. Therefore, (9) is provided. 

min

max

100% ( 0)

100% ( 0)
i

i
i

i
T

i
i

i

T
T

T
H

T
T

T

  
 
  


         (9) 

where HTi is the output of the torque, which must be less 
than 1, if each joint of the robot does not overload. The 
parameter HTi can help us analysis the situations that the 
joint is withstanding the load of the object in the weight-
lifting motion procedure. As we known, the knee joint 
and the waist joint often suffer a pain to the aged, so this 
parameter is available to be used to reduce the load ap-
plied on the joints. Considering the conditions above, the 
following algorithm is proposed to simplify and facilitate 
the analysis in Section 3. 
 
3. Algorithm for Trajectory Generation 
 
The weightlifting motion can be obtained by an approx- 
imated optimal algorithm. In this paper, the algorithm is 
developed, based on the RDK (Repeatedly Direct Kine-
matics) method for the robot, which is introduced into 
applying on the trajectory generation of the standing up 
movements that is a series of motions from an initial 
posture to the erect posture [7]. In the task, a small in-
crement is given to each joint of the model. Moreover, 
there are three motion options, + rotation, – rotation and 
no rotation, to the five joints (J1, J2, J3, J4, J5) and the 
model could place the soles backward and forward to 
keep the ZMP away from the unstable area when the 
model robot will tumble down. So according to the RDK 
method, each posture has 35 options in the weightlifting 
motion procedure and the option that satisfies the aim 
and the constraint mentioned in Section 2 is selected as 
the result of this posture at this time. Such procedure is 

reiterated until the erect posture is reached. 
The algorithm of the trajectory generation is elabo-

rated as following: 
1) Initialize the parameters in Table 1 and give an ini-

tial posture to the robot model. 
2) After given an initial posture, if each joint does not 

overload, give a small increment and then choose the 
options that the object is lifted from 35 options of each 
posture, else the weightlifting motion could not be real-
ized as a result of a bad initial posture or the object’s 
heavy mass. 

3) Choose the options that the object is lifted and the 
robot will not tumble down. If RA × RB <0 in all the op-
tions, the ZMP will move out of the predefined stability 
region. To keep the balance, we should choose the option 
that the reaction force Rj (j = A or B) is increased which 
is negative. That means the robot model will walk for-
ward or backward. At this time, the object is tried to be 
held without motion. Go back to Step 2. 

4) Choose the options that RA and RB are positive. 
Calculate the output of each joint of the chosen options. 

5) Compare the outputs of the five joints of each one 
of the chosen options to memory the joint that has maxi-
mum output of each chosen option. This joint is the one 
we called the relatively frailest joint. 

6) Compare the output of the relatively frailest joint of 
each chosen option, the option that has the minimum 
output of the relatively frailest joint is the result we need. 
Memory this posture and give it a same increment. Go 
back to Step 2. 

7) If the object could not reach a higher position, end 
the program. 

The operations are implemented iteratively until the 
object could not be held at a higher position. The weight-
lifting motion is finished and the simulations for the tra-
jectory generations are provided in Section 4. 
 
4. Simulations for Algorithm Proposed 
 
To evaluate the effectiveness of the algorithm proposed 
above, the following simulations are provided, where the 
motion trajectories are showed with every 20 postures. 
When lifting an object to the top, the robot always stands 
up completely at last as we known. So a criterion that the 
increase of the height of the object in the z-direction 
must be first satisfied is defined to make sure the robot 
can implement the standing up motion to the last. The 
wrist point (the middle of the object) is chosen as the 
datum of the weightlifting motion. 

Figure 2 shows Simulation 1 in the case that the mass 
of the 20 kg’s object is held. As shown in the graph (c), 
the robot has no motion in the x-direction, because the 
ZMP moves within the predefined stability region be-
tween the tiptoe (200 mm) and the heel (–60 mm), in the 
graph (d). 
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(a) 

 

(b)

(c)

(d)

(e)

(f)

(g)  

Figure 2. Simulation 1 of weightlifting. 

 
(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g)  

Figure 3. Simulation 2 of weightlifting. 
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(a) 

 

(b)

(c)

(d)

(e)

(f)

(g)  

Figure 4. Simulation 3 of weightlifting. 

 
(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g)  

Figure 5. Simulation 4 of weightlifting. 
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 (a) 

 

(b)

(c)

(d)

(e)

(f)

(g)  

Figure 6. Simulation 5 of weightlifting. 

 
(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g)  

Figure 7. Simulation 6 of weightlifting. 
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The graph (b) shows the change of the joint angle with 
the posture. According to graph (b), we can obtain that 
when the object is lifted to the top, the robot has stood up 
completely and stretched its arm, where the angle of the 
ankle joint approximates to 90°, the ones of other joints 
approximate to 0°, just like human being. The reaction 
forces are always positive in the graph (e) indicates that 
the robot is stable without no displacement in each direc-
tion, just as shown in the graph (c), which is satisfying 
the balance constraint. The graph (f) shows the change of 
the joint torque with the posture. We can see in the graph 
(g) that the outputs of all joints are within the limits, 
meaning that it never reaches saturation when lifting the 
object. Here, we want to explain that the output of the 
ankle joint is calculated for the balance limitation, when 
it is bigger than the load limitation. Finally, the weight-
lifting motion is finished successfully. 

Simulation 2 has a same initial posture with the Simu-
lation 1, but the mass of the object is different, 45 kg. 
Because of the initial condition, as shown in the graph (d) 
of Figure 3, in the beginning stage, the ZMP is in front 
of the tiptoe (200 mm). So the robot moves forward (in 
the graph (c)) to avoid tumbling until the position of the 
ZMP enters into the stability region. At this time, the 
value of the reaction force RA changes from negative to 
positive in the graph (e). The graph (f) shows the change 
of the joint torque with the posture. In the graph (g), we 
can see that the output of the ankle joint is more than 1 at 
the beginning, meaning that the robot will tumble down. 
After ZMP entering into the stable area, the weightlifting 
motion is finished. 

Simulation 3 has a different initial posture from the 
Simulation 1, but the mass of the object is same. Because 
of the initial condition, as shown in the graph (d) of Fig-
ure 3, in the beginning stage, the ZMP is behind the heel 
(–60 mm), meaning that the ZMP moves out of the pre-
defined stability region. So the robot moves backward (in 
the graph (c)) to avoiding tumbling backward until the 
position of the ZMP enters into the stability region. 
Meanwhile, the value of the reaction force RB changes 
from negative to positive in the graph (e). The graph (f) 
shows the change of the joint torque with the posture. In 
the graph (g), we can see that the output of the ankle 
joint is more than 1 at the beginning, meaning that the 
load torque that the ankle joint withstands has exceeded 
the balance torque limitation. After ZMP entering into 
the stable area, the weightlifting motion is finished. 

With the same algorithm, the Simulation 4~6 are pro-
vided that we choose the shoulder joint as the datum to 
evaluate the whole weightlifting motion, where the rise 
of the shoulder must be first considered. In these simula-
tions, we still take the load constraint and balance con-
straint into account to implement the weightlifting mo-
tion. 

Figure 5 shows Simulation 4 in the case that the mass 
of the 20 kg’s object is held. The robot has no motion in 

the x-direction, because the ZMP moves within the pre-
defined stability region. Finally, the trajectory of the mo-
tion is generated where the object is held around the 
waist joint, like a person lifting up a water bucket. Al-
though Simulation 5 and Simulation 3 are implemented 
under a same initial condition, the trajectory generations 
are different because of the different datum. And the end 
position of the object is not always located on the top. 
Simulation 6 and Simulation 2 are implemented under a 
same initial condition, even though the trajectory genera-
tions are different, we still realize the weightlifting mo-
tion to hold the object at the highest spot. 

It is similar with human being that the robot cannot 
always lift up any object, if the object is too heavy for 
the robot. For example, in the Simulation 1, the robot can 
lift up 20 kg’s object easily. But in the Simulation 2, the 
robot has to move forward not to tumble with 45 kg’s 
object, and if the mass of the object is more than 50 kg, 
the robot cannot implement the weightlifting motion. At 
this time, the load torque of the knee joint exceeds the 
torque limitation showed in Table 1, so the robot cannot 
stand up with the object as usual, unless the torque limi-
tation of the knee joint is enlarged. 

All these results show that our proposed algorithm of 
weightlifting motion is effective. 
 
5. Conclusions 
 
In this paper, we realized the weightlifting motion suc-
cessfully with the multi-joint robot model under some 
predefined conditions. The trajectory of a lift-up motion 
for a stance robot is also generated by RDK method. We 
proposed the algorithm with considering the output of 
the joint to reduce the load on the joint to protect the 
relatively frailest joint. According to simulations, we 
verified the rationality and the effectiveness of the pro-
posed algorithm. We also hope that this paper can con-
tribute the research about the configuration of humanoid 
robot or human being and helping the aged and the 
handicapped in daily. 

This method based on RDK method is used to obtain a 
continuous trajectory generation, which is under the 
static environment. In the future, the dynamic influence 
will be considered. 
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Abstract 
 
In this paper, we propose a new method which based on the nonmonotone line search technique for solving 
symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm 
function. Under suitable conditions, the global convergence of the method is proved. Numerical results show 
that the presented method is practicable for the test problems. 
 
Keywords: Nonmonotone Line Search, Symmetric Equations, Global Convergence 

1. Introduction 
 
Consider the following nonlinear equations: 

  0, ng x x R                 (1) 

where : n ng R R  be continuously differentiable and 

its Jacobian ( )g x  is symmetric for all nx R . This 

problem can come from unconstrained optimization 
problems, a saddle point problem, and equality con-
strained problems [the detail see [1]]. Let ( )x  be the 

norm function defined by 
21

( ) ( )
2

x g x  . Then the 

nonlinear equation problem (1) is equivalent to the fol-
lowing global optimization problem 

 min ,  nx x R                (2) 

The following iterative formula is often used to solve 
(1) and (2): 

1k k k kx x d    

where k is a steplength, and kd  is one search direc-

tion. To begin with, we briefly review some methods for 
(1) and (2) by line search technique. First, we give some 
techniques for k . Li and Fukashima [1] proposed an 

approximate monotone line search technique to obtain 
the step-size k satisfying: 

   
2 2 2

1 2

k k k

k k k k k k

x d x

d g g

  

    

 

   
       (3) 

where 1 0   and 2 0   are positive constants, ki
k r  , 

(0,1), kr i  is the smallest nonnegative integer i such 

that (3), and k  satisfies 
0

k
k






  . Combining the 

line search (3) with one special BFGS update formula, 
they got some better results (see [1]). Inspired by their 
idea, Wei [2] and Yuan [3] made a further study. Brown 
and Saad [4] proposed the following line search method 
to obtain the stepsize 

     Tk k k k k k kx d x x d             (4) 

where (0,1).   Based on this technique, Zhu [5] gave 

the nonmonotone line search technique: 

     ( )

T

k k k l k k k kx d x x d            (5) 

where  ( )
0 ( )
max ,  0,1,2, ,l k k j

j n k
k   

   ( ) min{ , }n k M k , 

and 0M   is an integer constant. From these two tech-
niques (4) and (5), it is easy to see that the Jacobian ma-
tric ( )g x  must be computed at every iteration, which 

will increase the workload especially for large-scale 
problems or this matric is expensive. Considering these 
points, we [6] presented a new backtracking inexact 
technique to obtain the stepsize k  

*This work is supported by China NSF grands 10761001, the Scientific 
Research Foundation of Guangxi University (Grant No. X081082), and 
Guangxi SF grands 0991028. 
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     2 2 2

k

T

k k k k k kg x d g x g x d        (6) 

where (0,1)   Second, we present some techniques 

for kd . One of the most effective methods is Newton 

method. It normally requires a fewest number of function 
evaluations, and it is very good at handling ill-condi-
tioning. However, its efficiency largely depends on the 
possibility to efficiently solve a linear system which 
arises when computing the search kd  at each iteration 

   k k kg x d g x               (7) 

Moreover, the exact solution of the system (7) could 
be too burdensome, or it is not necessary when kd  is 

far from a solution [7]. Inexact Newton methods [5,7] 
represent the basic approach underlying most of the 
Newton-type large-scale algorithms. At each iteration, 
the current estimate of the solution is updated by ap-
proximately solving the linear system (7) using an itera-
tive algorithm. The inner iteration is typically “trun-
cated” before the solution to the linear system is obtained. 
Griewank [8] firstly proposed the Broyden’s rank one 
method for nonlinear equations and obtained the global 
convergence. At present, a lot of algorithms have been 
proposed for solving these two problems (1) and (2) (see 
[9-15]). The famous BFGS formula is one of the most 
effective quasi-Newton methods, where the kd  is the 

solution of the system of linear equations 

0k k kB d g                  (8) 

where kB  is generated by the following BFGS update 

formula 

1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s s y             (9) 

where 1k k ks x x  and 1( ) ( ).k k ky g x g x   Recently, 

there are some results on nonlinear equations can be 
found at [6,17-20]. 

Zhang and Hager [21] present a nonmonotone line 
search technique for unconstrained optimization problem 
min ( )

nx R
f x


, where the nonmonotone line search technique 

is defined by 

   
   

,
T

k k k k k k k

T T

k k k k k k

f x d C f x d

f x d d f x d

 

 

   

   

 

where 

 
 

0 0 0

1 1
1

0 1, , 1,

1, k k k k k k
k k k k

k

C f x Q

Q C f x d
Q Q C

Q

 

 
 



    

 
  

 

min max[ , ],k    and min max0 1    . They proved 

the global convergence for nonconvex, smooth functions, 
and R-linear convergence for strongly convex functions. 
Numerical results show that this method is more effec-
tive than other similar methods. Motivated by their tech-
nique, we propose a new nonmonotone line search tech-
nique which can ensure the descent search direction on 
the norm function for solving symmetric nonlinear Equa-
tions (1) and prove the global convergence of our method. 
The numerical results are reported too. Here and 
throughout this paper, ||.|| denote the Euclidian norm of 
vectors or its induced matrix norm. 

This paper is organized as follows. In the next section, 
we will give our algorithm for (2). The global conver-
gence and the numerical result are established in Section 
3 and in Section 4, respectively. 
 
2. The Algorithm 
 
Precisely, our algorithm is stated as follows. 

Algorithm 1. 

Step 0: Choose an initial point 0 ,nx R  an initial sy- 

mmetric positive definite matrix 0
n nB R  , and constants 

2

1 2 1 0 0 0(0,1),0 1,0 1, , 1r J g E          , and 

0;k    

Step 1: If 0;kg   then stop; Otherwise, solving the 

following linear Equations (10) to obtain kd and go to 

step 2; 
0k k kB d g                  (10) 

Step 2: Let ki  be the smallest nonnegative integer i 

such that 

     2 2 2

k

T

k k k k k kg x d g x g x d       (11) 

holds for .ir   Let ki
k r  ; 

Step 3: Let 1 ,k k k kx x d    1k k ks x x   and 

   1 .k k ky g x g x   If 0,
k

T
ky s   update kB  to 

generate 1kB   by the BFGS Formula (9). Otherwise, let 

1 ;k kB B   

Step 4: Choose [0,1],k   and set 

  2

1

1 1
1

1,
k k k k

k k k k
k

E J g x
E E J

E


 

 



     (12) 

Step 5: Let k: = k + 1, go to Step 1. 
Remark 1: 1) By the technique of the step 3 in the 

algorithm [see [1]], we deduce that 1kB   can inherits the 

positive and symmetric properties of kB . Then, it is not 

difficult to get 0.
k

T
kd g   
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2) It is easy to know that 1kJ   is a convex combina-

tion of kJ  and 
2

1( ) .kg x   By 
2

0 0 ,J g it follows 

that kJ is a convex combination of function values 
2 22

0 1, , , .kg g g  The choice of k  controls the 

degree of nonmonotonicity. If 0k   for each k, then 

the line search is the usual monotone line search. If 

1k   for each k, then 
2

0

1

1

k

k i
i

V g
k 


  , ,k kJ V  

where is the average function value. 
3) By (9), we have 1 1 1k k k k k k kB s y g g g s        

1
,

k

T
kg s


  this means that 1kB   approximate to 1kg   

along .ks  

 
3. The Global Convergence Analysis of  

Algorithm 1 
 
In this section, we establish global convergence for Al-
gorithm 1. The level set   is defined by 

 0| ( ) ( ) .nx R g x g x     

Assumption A. The Jaconbian of g is symmetric and 
there exists a constant 0M   holds  

   k kg x g x M x x            (13) 

for .x  
Since kB  approximates kg  along direction ks , 

we can give the following assumption. 
Assumption B. kB  is a good approximation to kg , 

i.e.,  

  k k k kg x B d g             (14) 

where (0,1)  is a small quantity. 

Assumption C. There exist positive constants 1b  and 

2b  satisfy  

2

1
T
k k kg d b g                (15) 

and  

2k kd b g                (16) 

for all sufficiently large k.. 
By (10) and Assumption C, we have 

1 2k k kb g d b g             (17) 

Lemma 3.1. Let Assumption B hold and 1{ , ,k k kd x  , 

1}.kg  be generated by Algorithm 1. Then kd  is descent 

direction for ( )x  at kx , i.e.,  

  0
T

k kx d                (18) 

Proof. By (10), we have  

   
 

k k

k k

T T T
k k k k k k k k k

T T
k k k k k

x d g g d g g d B d g

g g d B d g g

         
   

 

(19) 

Using (14) and taking the norm in the right-hand-side 
of (19), we get  

   

 

2

2
1

k

T T
k k k k k k k

k

x d g g d B d g

g





    

  
   (20) 

Therefore, for (0,1),   we get the lemma. 

By the above lemma, we know that the norm function 
( )x  is descent along kd , then 1k kg g   holds. 

Lemma 3.2. Let Assumption B hold and 1{ , ,k k kd x  , 

1}kg   be generated by Algorithm 1. Then { } .kx    

Moreover, { }kg  converges. 

Proof. By Lemma 3.1, we get 1k kg g  . Then, we 

conclude that { }kg  converges. Moreover, we have for 

all k 

1 0 .k kg g g     

Which means that { } .kx    

The next lemma will show that for any choice of 

[0,1),k kJ   lies between 
2

kg and .kV  

Lemma 3.3. Let 1 1{ , , , }k k k kd x g    be generated by 

Algorithm 1, we have 
2

1,k k k k kg J V J J    for 

each k. 
Proof. We will prove the lower bound for kJ  by in-

duction. For k = 0, by the initialization 
2

0 0 ,J g  this 

holds. Now we assume that 
2

i iJ g  holds for all 

0 .i k   By (2.3) and 
2 2

1 ,i ig g   we have 

2 2 2

1 1
1

1 1

2 2
21 1

1
1

i i i i i i i i
i

i i

i i i i
i

i

E J g E g g
J

E E

E g g
g

E

 



 


 

 




 
 


 

    (21) 

where 1 1i i iE E   . Now we prove that 1k kJ J   is 

true. By (12) again, and using 
2 2

1k kg g  , we obtain 

2

1 1
1

1 1

.k k k k k k k k
k

k k

E J g E J J
J

E E

  


 

 
   
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Which means that 1k kJ J   for all k is satisfied. 

Then we have 
2

1k k kg J J                (22) 

Let :kL R R be defined by 

 
2

1 ,
1

k k
k

tJ g
L t

t
 




 

we can get 

 
 

2

1

2
.

1

k k
k

J g
L t

t

  


 

By 
2

1 ,k kJ g   we obtain '( ) 0kL t   for all 0t  . 

Then, kL  is nondecreasing, and 
2

(0) ( )k k kg L L t   

for all 0t  . Now we prove the upper bound k kJ V  

by induction. For k = 0, by the initialization 
2

0 0J g , 

this holds. Now assume that j jJ V  hold for all 

0 j k  . By using 0 1E  , (12), and [0,1]k  , we 

obtain 

1
0 0

1 2
j i

j j p
i p

E j 
 

             (23) 

Denote that kL  is monotone nondecreasing, (23) im-

plies that 

     1 1 1k k k k k kJ L E L E L k          (24) 

Using the induction step, we have 

 
2 2

1 1

1 1
k k k k

k k

kJ g kV g
L k V

k k
  

  
 

   (25) 

Combining (24) and (25) implies the upper bound of 

kJ  in this lemma. Therefore, we get the result of this 

lemma. 
The following lemma implies that the line search tech-

nique is well-defined. 
Lemma 3.4. Let Assumption A, B and C hold. Then 

Algorithm 1 will produce an iterate 1k k k kx x d    in 

a finite number of backtracking steps. 
Proof. From Lemma 3.8 in [4] we have that in a finite 

number of backtracking steps, k  must satisfy 

     2 2 T

k k k k k k k kg x d g x g x g d       (26) 

where (0,1)  . By (20) and (15), we get 

   

   

2

2

1

1

1
1 1

T

k k k k k k

T
Tk k

k k k k kT
k k

g x g d g

g d
g g d

bg d

  

   

   

    
   (27) 

Using (0,1)k  , we obtain 

   

 
1

2

1

1
1

1
1

T T
k k k k k k k

T
k k k

g x g d g d
b

g d
b

  

 

  

 
     (28) 

So let  1
1

1
0,min 1, 1

b
  

  
      

. By Lemma 3.3, 

we know 
2

.k kg J  Therefore, we get the line search 

(11). The proof is complete. 
Lemma 3.5. Let Assumption A, B and C hold. Then 

we have the following estimate for k , when k suffi-

ciently large:  

0 0k b                   (29) 

Proof. Assuming the step-size k  such that (11). 

Then 1
k

k
    does not satisfy (11), i.e., 

   
2

2
1

T

k k k k k k kg x d J g x d       

By 
2

k kg J , we get 

 
   

2
2

2
2

1

k k k k

T

k k k k k k k

g x d g

g x d J g x d



  

 

    
 

Which implies that 

    2 22
1

T

k k k k k k kg x d g x d g            (30) 

By Taylor formula, (19), (20), and (17), we get 

 
     
   

2
2

2 2 22 2

2 22
2
2

2

1

1
1

T
k k k k k k k k

k k k k k k

k k k k

g x d g g g d

O d g O d

d O d
b

 

   

  

     

    

   

 (31) 

Using (15), (17), (30), and (31) we obtain 

 

 

 

 
   

22
12

12

2 22 2
12

12

22 2
12

2

2
2

2 22
2
2

1 1
2 1

1 1
2 1

1
2 1

1
1

k k

k k k k

T
k k k k k

k k k k

k k k k

d
bb

d d
bb

d g d
b

g x d g

d O d
b

  

   

   



  

 
   
 

   

   

  

   

     (32) 
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which implies when k sufficiently large, 

 
 

1

2
1 2 1

1
.

2 1k

b

b b




 
 

 
 

Let 

 
 

1
0 2

1 2 1

1
0, .

2 1

b
b

b b


 

 
    

 The proof is complete. 

In the following, we give the global convergence theo-
rem. 

Theorem 3.1. Let 1 1{ , , , }k k k kd x g    be generated by 

Algorithm 1, Assumption A, B, and C hold, and 
2

kg  

be bounded from below. Then 

lim inf 0k
k

g


               (33) 

Moreover, if 2 1,   then 

lim 0k
k

g


                (34) 

Therefore, every convergent subsequence approaches 

to a point * ,x  where *( ) 0.g x   

Proof. By (11), (15), (16), and (19), we have  
2 2

1 1 1 1

2

0 1 1

T
k k k k k k k k

k k

g J d g J b g

J b b g

   



    

 
  (35) 

Let 1 0 1.b b   Combining (12) and the upper bound 

of (35), we get 
2 2

1
1

1 1

2

1

1

k k k k k k k k k
k

k k

k
k

k

E J g E J J g
J

E E

g
J

E

  






 





  
 

 

  (36) 

Since 
2

kg  is bounded from below and 
2

k kg J  

for all k, we can conclude that kJ  is bounded from be-

low. Then, using (36), we obtain 
2

0 1

k

k k

g

E



 

                 (37) 

By (23), we get  

1 2kE k                   (38) 

If 
2

kg were bounded away from 0, then (37) would 

violate (38). Hence, (33) holds. If 2 1  , by (23), we 

have 

1
1 2

0 00

2
0 2

1 1

1

1

jk k
j

k k i
j ji

k

j

E  





 

 



   

 


 


   (39) 

Then, (37) implies (34). The proof is complete. 
 
4. Numerical Results 
 
In this section, we report the results of some numerical 
experiments with the proposed method. 

Problem 1. The discretized two-point boundary value 
problem is the same to the problem in [22] 

 
 

 2

1

1
g x Ax F x

n
 


, 

where A is the n n  tridiagonal matrix given by 

4 1

1 4 1

1

1 4

A

 
   
 
 

 
  

  
 

 

and         1 2, ,
T

nF x F x F x F x  , with  iF x   

sin 1,  i 1,2,ix n   . 

Problem 2. Unconstrained optimization problem 

min ( ), nf x x R , with Engval function [23] defined by 

   22 2
1 1

2

4 3
n

i i i
i

f x x x x 


        

The related symmetric nonlinear equation is  

   1
4g x f x   

where         1 2, , ,
T

ng x g x g x g x   with 

   
   
   

2 2
1 1 1 2

2 2 2
1 1

2 2
1

1

2 1, 2,3, , 1i i i i i

n n n n

g x x x x

g x x x x x i n

g x x x x

 



  

     

 

  

In the experiments, the parameters in Algorithm 1 
were chosen as 1 00.1, 0.001, 0.8,kr B    is unit 

matrix. The program was coded in MATLAB 6.1. We 

stopped the iteration when the condition 
2 6( ) 10g x   

was satisfied. Tables 1 and 2 show the performance of 
the method need to solve the Problem 1. Tables 3 and 4 
show the performance of the method need to solve the 
Problem 2. The columns of the tables have the following 
meaning:  

Dim: the dimension of the problem. 
NI: the total number of iterations. 
NG: the number of the function evaluations. 
GG: the function evaluations. 
From the above tabulars, we can see that the numerical  
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Test Result for the Problem 1 

Table 1. Small-scale. 

0x  (4, ..., 4) (20, ..., 20) (100, ..., 100) (-4, ..., -4) (-20, ..., -20) (-100, ..., -100) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 10 16/22/3.714814e-7 16/20/2.650667e-7 16/20/4.014933e-7 16/22/3.723721e-7 16/20/2.643713e-7 16/20/4.013770e-7

n = 50 44/47/1.388672e-7 44/47/6.929395e 46/49/3.713174e-8 44/47/1.388793e-7 44/47/6.929516e-7 46/49/3.726373e-8

n = 100 68/71/5.905592e-7 70/73/8.759459e 72/75/3.125373e-7 68/71/5.905724e-7 70/73/8.759500e-7 72/75/3.125382e-7

0x  (4, .0, ...,) (20, 0, ..., 20) (100, .0, ...,) (-4, .0, ...,) (-20, .0, ...,) (-100, .0, ...,) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 10 21/23/1.297275e-9 21/23/5.577021e-9 1/23/9.029402e-9 1/23/1.208563e-9 1/23/4.707707e-9 21/23/1.061736e-8

n = 50 63/65/8.204623e-7 67/69/9.997988e-7 9/71/4.511023e-7 3/65/8.204744e-7 7/69/9.997996e-7 69/71/4.511007e-7

n = 100 65/67/6.046233e-7 69/71/7.845951e-7 1/73/6.996085e-7 65/67/6.046254e-7 9/71/7.845962e-7 71/73/6.996092e-7

 
Table 2. Large-scale. 

0x  (4, ..., 4) (20, ..., 20) (30, ..., 30) (-4, ..., -4) (-20, ..., -20) (-30, ..., -30) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 300 70/73/7.844778e-7 76/79/7.741702e-7 8/81/6.759628e-7 0/73/7.844800e-7 6/79/7.741706e-7 78/81/6.759631e-7

n = 500 70/73/8.547195e-7 76/79/8.435874e-7 8/81/7.366072e-7 0/73/8.547204e-7 6/79/8.435876e-7 78/81/7.366073e-7

n = 800 68/70/6.505423e-7 74/76/6.414077e-7 4/76/9.621120e-7 8/70/6.505425e-7 4/76/6.414078e-7 74/76/9.621120e-7

0x  (4, .0, ...,) (20, 0, ..., 20) (30, .0, ...,) (-4, .0, ...,) (-20, .0, ...,) (-30, .0, ...,) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 300 67/69/5.896038e-7 71/73/9.997625e-7 3/75/8.731533e-7 67/69/5.896038e-7 71/73/9.997625e-7 73/75/8.731533e-7

n = 500 67/69/7.145027e-7 73/75/7.057076e-7 5/77/6.163480e-7 7/69/7.145024e-7 73/75/7.057075e-7 75/77/6.163479e-7

n = 800 69/71/6.188110e-7 75/77/6.115054e-7 5/77/9.172559e-7 9/71/6.188106e-7 5/77/6.115053e-7 75/77/9.172558e-7

 
Test Result for the Problem 2 

Table 3. Small-scale. 

0x  (1, ..., 1) (3, ..., 3) (4, ..., 4) (1, 0, ...,) (3, 0, , ...,) (4, 0, ...,) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 10 20/22/3.007469e-7 38/47/6.088293e-7 44/48/4.898591e-7 0/23/3.452856e-7 5/41/5.833715e-7 29/34/4.338894e-7

n = 50 36/38/6.966974e-7 76/88/6.845101e-7 99/114/8.556270e-7 6/39/7.812438e-7 9/77/4.466497e-7 67/75/4.681269e-7

n = 100 36/38/7.207203e-7 6/109/4.173166e-7 0/87/7.911692e-7 6/39/8.220367e-7 9/92/8.640158e-7 69/76/8.515673e-7
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Table 4. Large-scale. 

0x  (1, ..., 1) (3, ..., 3) (4, ..., 4) (1, 0, ...,) (3, 0, ...,) (4, 0, ...,) 

Dim NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG NI/NG/GG 

n = 300 40/42/4.452904e-7 4/106/6.146797e-7 63/68/4.232021e-7 0/43/9.348673e-7 6/72/7.638011e-7 92/106/9.095927e-7

n = 500 44/46/9.611950e-7 9/171/4.445314e-7 18/133/7.054347-7e 2/45/8.280486e-7 3/79/7.159029e-7 85/98/4.229872e-7

n = 800 41/43/4.510999e-7 7/185/5.274922e-7 74/198/4.239839e-7 1/44/9.502624e-7 2/77/6.117626e-7 93/106/8.797380e-7

 
results are quite well for the test Problems with the pro-
posed method. The initial points and the dimension don’t 
influence the performance of the algorithm 1 very much. 
However, we find the started points will influence the 
result for the problem 2 a little in our experiment. In one 
word, the numerical are attractively. The method can be 
used to the system of nonlinear equations whose Jaco-
bian is not symmetric. 
 
5. Conclusions 
 
In this paper, we propose a new nonmonotone line search 
method for symmetric nonlinear equations. The global 
convergence is proved and the numerical results show 
that this technique is interesting. The reason is that the 
new nonmonotone line search algorithm used fewer 
function and gradient evaluations, on average, than either 
the monotone or the traditional nonmonotone scheme. 
We hope the method will be a further topic for symmet-
ric nonlinear equations. 
 
6. Acknowledgements 
 
We would like to thank these referees for giving us many 
valuable suggestions and comments that improve this 
paper greatly. 
 
7. References 
 
[1] D. Li and M. Fukushima, “A Global And Superlinear 

Convergent Gauss-Newton-based BFGS Method for 
Symmetric Nonlinear Equations,” SIAM Journal on Nu-
merical Analysis, Vol. 37, No. 1, 1999, pp. 152-172. 

[2] Z. Wei, G. Yuan and Z. Lian, “An Approximate Gauss- 
Newton-Based BFGS Method for Solving Symmetric 
Nonlinear Equations,” Guangxi Sciences, Vol. 11, No. 2, 
2004, pp. 91-99. 

[3] G. Yuan and X. Li, “An Approximate Gauss-Newton- 
based BFGS Method with Descent Directions for Solving 
Symmetric Nonlinear Equations,” OR Transactions, Vol. 
8, No. 4, 2004, pp. 10-26. 

[4] P. N. Brown and Y. Saad, “Convergence Theory of 

Nonlinear Newton-Krylov Algorithms,” SIAM Journal on 
Optimization, Vol. 4, 1994, pp. 297-330. 

[5] D. Zhu, “Nonmonotone Backtracking Inexact Quasi-New-
ton Algorithms for Solving Smooth Nonlinear Equa-
tions,” Applied Mathematics and Computation, Vol. 161, 
No. 3, 2005, pp. 875-895. 

[6] G. Yuan and X. Lu, “A New Backtracking Inexact BFGS 
Method for Symmetric Nonlinear Equations,” Computers 
and Mathematics with Applications, Vol. 55, No. 1, 2008, 
pp. 116-129. 

[7] S. G. Nash, “A Survey of Truncated-Newton Methods,” 
Journal of Computational and Applied Mathematics, Vol. 
124, No. 1-2, 2000, pp. 45-59. 

[8] A. Griewank, “The ‘Global’ Convergence of Broyden- 
Like Methods with a Suitable Line Search,” Journal of 
the Australian Mathematical Society Series B, Vol. 28, 
No. 1, 1986, pp. 75-92. 

[9] A. R. Conn, N. I. M. Gould and P. L. Toint, “Trust Re-
gion Method,” Society for Industrial and Applied Mathe- 
matics, Philadelphia, 2000. 

[10] J. E. Dennis and R. B. Schnabel, “Numerical Methods for 
Unconstrained Optimization and Nonlinear Equations,” 
Englewood Cliffs, Prentice-Hall, 1983. 

[11] K. Levenberg, “A Method for The Solution of Certain 
Nonlinear Problem in Least Squares,” Quarterly of Ap-
plied Mathematics, Vol. 2, 1944, pp. 164-166. 

[12] D. W. Marquardt, An algorithm for least-squares estima-
tion of nonlinear inequalities, SIAM Journal on Applied 
Mathematics, Vol. 11, 1963, pp. 431-441. 

[13] J. Nocedal and S. J. Wright, “Numerical Optimization,” 
Springer, New York, 1999. 

[14] N. Yamashita and M. Fukushima, “On the Rate of Con-
vergence of the Levenberg-Marquardt Method,” Com-
puting, Vol. 15, No. Suppl, 2001, pp. 239-249. 

[15] Y. Yuan and W. Sun, “Optimization Theory and Algo-
rithm,” Scientific Publisher House, Beijing, 1997. 

[16] G. Yuan and X. Li, “A Rank-One Fitting Method for 
Solving Symmetric Nonlinear Equations,” Journal of Ap-
plied Functional Analysis, Vol. 5, No. 4, 2010, pp. 389- 
407. 

[17] G. Yuan, X. Lu and Z. Wei, “BFGS Trust-Region 
Method for Symmetric Nonlinear Equations,” Journal of 
Computational and Applied Mathematics, Vol. 230, No. 1, 
2009, pp. 44-58. 



G. L. YUAN  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  ICA 

35

[18] G. Yuan, S. Meng and Z. Wei, “A Trust-Region-Based 
BFGS Method with Line Search Technique for Symmet-
ric Nonlinear Equations,” Advances in Operations Re-
search, Vol. 2009, 2009, pp. 1-20. 

[19] G. Yuan, Z. Wang and Z. Wei, “A Rank-One Fitting 
Method with Descent Direction for Solving Symmetric 
Nonlinear Equations,” International Journal of Commu-
nications, Network and System Sciences, Vol. 2, No. 6, 
2009, pp. 555-561. 

[20] G. Yuan, Z. Wei and X. Lu, “A Nonmonotone Trust Re-
gion Method for Solving Symmetric Nonlinear Equa-
tions,” Chinese Quarterly Journal of Mathematics, Vol. 
24, No. 4, 2009, pp. 574-584. 

[21] H. Zhang and W. Hager, “A Nonmonotone Line Search 
Technique and Its Application to Unconstrained Optimi-
zation,” SIAM Journal on Optimization, Vol. 14, No. 4, 
2004, pp. 1043-1056. 

[22] J. M. Ortega and W. C. Rheinboldt, “Iterative Solution of 
Nonlinear Equations in Several Variables,” Academic 
Press, New York, 1970. 

[23] E. Yamakawa and M. Fukushima, “Testing Parallel Bari-
able Transformation,” Computational Optimization and 
Applications, Vol. 13, 1999, pp. 253-274. 

 



Intelligent Control and Automation, 2010, 1, 36-47 
doi:10.4236/ica.2010.11005 Published Online August 2010 (http://www.SciRP.org/journal/ica) 

Copyright © 2010 SciRes.                                                                                  ICA 

Stability Analysis and Hadamard Synergic Control for a 
Class of Dynamical Networks* 

Xinjin Liu, Yun Zou 
School of Automation, Nanjing University of Science and Technology, Nanjing, China 

E-mail: liuxinjin2006@163.com, zouyun@vip.163.com 
Received February 9, 2010; revised March 21, 2010; accepted June 28, 2010 

Abstract 
 
Hadamard synergic control is a new kind of control problem which is achieved via a composite strategy of 
the state feedback control and the direct regulation of the part of connection coefficients of system state 
variables. Such a control is actually used very often in the practical areas. In this paper, we discuss Ha-
damard synergic stabilization problem for a class of dynamical networks. We analyze three cases: 1) Syner-
gic stabilization problem for the general two-node-network. 2) Synergic stabilization problem for a special 
kind of networks. 3) Synergic stabilization problem for special kind of networks with communication 
time-delays. The mechanism of the synergic action between two control strategies: feedback control and the 
connection coefficients regulations are presented. 
 
Keywords: Hadamard Synergic Control, Algebraically Graph Theory, Decentralized Feedback Control, 

Connection Coefficient Gain Matrix 

1. Introduction 
 
Complex networks of dynamic agents have attracted 
great interesting in recently years. This is partly due to 
broad applications of multiagent systems in many areas 
including physicists, biologists, social scientists and con-
trol scientists [1-3], distributed sensor networks [4], and 
congestion control in communication networks [5] and 
so on. In fact, a complex dynamical network can be 
viewed as a large-scale system with special interconnec-
tions among its dynamical nodes from a system-theoretic 
point of view and when we solved the control problems 
of electric power systems, socioeconomic systems, etc., 
large-scale interconnected systems with many state vari-
ables often appear. In order to stabilize large-scale inter-
connected systems via the local feedback, the traditional 
methods usually ignore or try to reduce the influence of 
interconnections under the condition that the subsystems 
are controllable. The interconnections among subsystems 
in large-scale systems are thought to be one of the most 
important roots to produce complexity recently [6]. To 
enhance the effects of stabilization, the strategy of cou-
pling two decoupled subsystems via designing a suitable 
combined feedback are considered in [7,8], which is 

called the harmonic control.  
Along the development of society, interconnections 

play more and more important roles in social systems, 
economic systems, power systems, etc. The connections 
of the system states are a type of the most important 
structures of a system. In fact, in many fields and even in 
our daily life, besides the usual feedback controls, it is 
also very useful for us to control our business by regu-
lating the connections among the subsystems directly. 
For examples, the damages in power and transportation 
ties is one of the main facts to result in the huge loss in 
the freeze disaster in several provinces in southern China 
in 2008, and reflects the effects of the connections of the 
subsystems for the social large-scale system; the strict 
and active quarantine and isolation measures among re-
gions in the SARS and H1N1 is also an example. In fact, 
in our daily life, we always deal with the interpersonal 
relationship between ourselves and those around us and 
the inter-relations between ourselves and the collective 
around us. Therefore, we can say that the human world is 
a complex network system through these relationships, 
and the handling of these relationships is actually the 
regulation of the connection among persons.  

The consideration of the connection problem were 
mainly seen in the power system research early times, 
including the transient stability analysis [9] and splitting 
control [10-12]. The interconnection coefficients of the 

*This work was supported in part by the National Natural Science 
Foundation of P. R. China under Grant 60874007 and the Research 
Fund for the Doctoral Program of Higher Education 200802550024. 
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state variables of the subsystems are considered as the 
control variables that are regulated directly in the split-
ting control for power system. Furthermore, the isolation 
treatment strategy is further discussed in the emergency 
control [13-15]. The studies give a theoretical interpreta-
tion for the practical experiences that the early quaran-
tine and isolation strategies are critically important to 
control the outbreaks of epidemics. Finally, a new kind 
of concept called Hadamard synergic control is intro-
duced based on the Hadamard matrix product [16]. It is 
achieved via a composite strategy of the state feedback 
control and the direct regulation of the part of connection 
coefficients of system state variables. Such a control im-
proves the limitations of the traditional feedback control 
[17-19] and may be of some potential applications in the 
emergency treatment such as isolation and obstruction 
control. For clear, we give this model again here. 

Consider the following linear time-invariant system: 

     x t Ax t Bu t               (1) 

Here,  , , , 1, 2, ,
T m

ij i in n
A a B b b R i n


         

Obviously, the element ija  is the interconnection co-

efficient between the i-th state and the j-th state, for con-
venience, we call the system matrix A as system inter-
connection matrix. In many practical cases, such as the 
switches and circuit breakers in the power systems, fire-
wall in the Internet etc., the system interconnection ma-
trix A can be directly regulated, of course, can be 
pre-designed in some extent. Thus, the system intercon-
nection matrix A can be divided into two parts: 1 2A A . 

1A  is the fixed part of A which is not able to be regu-

lated directly and 2A  is the flexible part of A which can 

be regulated directly in some extent. By using the Ha-
damard matrix product, this direct regulation of the in-
terconnection matrix A can be written as follows: 

1 2KA A A K                  (2) 

Here, for convenience, we call [ ]ij n nK k   as the 

connection coefficient gain matrix. It may be need to 
satisfy some constraints such as 0 1ijk   etc. Of 

course, the control strategy above is different from the 
feedback control. 2A K  is the Hadamard matrix prod-

uct defined as [20]:  

2 2,ij ij ijn n n n
A K a k A a

 
          

Then, the general feedback control problem formula-
tion can be extended as follows: find direct connection 
coefficient gain matrix K  and feedback gain matrix 
F  such that the generalized closed loop system 

 1 2x A A K BF x                (3) 

is stable, robust stable, or some other specific perform-

ances. For convenience, we call this kind of control 
strategy as Hadamard synergic control. 

In order to illustrate the idea of isolation and obstruc-
tion of the connections among subsystems, we give the 
following examples [21]. 

Example 1. Replacing the scalars , , ,ij i j ija b f k  by 

matrices ,, ,ij i j ij ijA B F k E  with appropriate dimensions 

and the self-loops are not allowed, the general Hadamard 
synergic control model (3) can be rewritten as:  

1 11 1 12 12 2 1 1 11 1

2 22 2 21 21 1 2 2 22 2

1 1 1 1 1 1

n n n

n n n

n nn n n n nn nn n nn n

x A x k A x k A x B u

x A x k A x k A x B u

x A x k A x k A x B u  

    

    

    

 
 

 

 

where , 1, 2, ,in
ix R i n    is the local state of the i-th 

subsystem. ijk are the control variables. System model 

above can be rewritten as: 

 1 2x A A K x Bu               (4) 

Here,  

12 1
11

21 2
1 2

1 2

12 12 1 1
11

21 21 2 2

1 1 2 2

0

0
,

0

0

0
,

0

[1]
i j

n

n

nn
n n

n n

n n

nn
n n n n

ij n n

A A
A

A A
A A

A
A A

k E k E
B

k E k E
B K

B
k E k E

E 

 
   
       
    

 
 

   
       
    

 






   







   



  

 In power systems, the model (4) can be used to describe 
the frequency control in multi-areas loads with the bal-
ance of active powers among the networks of different 
areas. 

Example 2. Consider the network model researched in 
[1,3], in fact, the system interconnection matrix A  is 
divided into two parts. By the Kronecker product, this 
network model can be written as [22]: 

   1n O C nx I A C A x I B u           (5)  

where    1 2 1 2, , , , , , ,
T TT T T T T T

n nx x x x u u u u   , n nC R   

is called as the outer coupling matrix, CA  is the inner 

coupling matrix describing the interconnections. 
Obviously, the network model (5) is a special case of 

the model (4). From the definition of the matrix Kronecker 
product we know, the connection matrix of the system 
has very symmetrically consistency structure if we de-
scribe the system by using the corresponding Hadamard 
product, this is: any two subsystems have the same basic 
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connection structure except the coupling coefficient, i.e. 

11 22

1,2, ,

1
O

ij
C

nn

A i j n
A

A i j n

B B B

 
    
  




 

Network model (5) has very specific project back-
ground such as in the consensus and formation control 
problem. This also illustrates the rationality and general-
ity of the abstract model (4). 

Example 3. The host population consists of six sub 
populations: namely susceptible individuals 1( )x t , as-

ymptomatic individuals 2 ( )x t , quarantined individuals 

3 ( )x t , symptomatic individuals 4 ( )x t , isolated indi-

viduals 5 ( )x t , recovered individuals 6 ( )x t . The total 

population size is 
6

1

( )i
i

N x t


  . The detailed descrip-

tions of other parameters see [23]. The SARS transmis-
sion model with quarantine and isolation controls u and v 
is given by the following nonlinear system of differential 
equations: 

 

 
 

 

4 2 3 5
1 1

4 2 3 5
2 1 2

3 2 2 3

4 1 2 1 1 4 4

5 4 2 3 2 2 5

6 1 4 2 5 6

E Q J

E Q J

x x x x
x x

N
x x x x

x p k u x
N

x ux k x

x k x d x vx

x vx k x d x

x x x x

      


      




 

 
  

  
   

  
    

  

    

    

  










 

Obviously, the model above is a typical interconnec-
tion-regulation control of a nonlinear system with the 
control variables u and v (see Figure 1). 

Hadamard product is a classical matrix product. It has 
many applications in some areas especially in mathe-
matics and physics. It also has some applications in sig-
nal processing [24]. In the existing literatures, almost all 
the results about the eigenvalue estimations on Ha-
damard products were obtained under the presupposition 
that the involved matrices are special ones such as 

M-matrices, Hermitian (or the form of *A A ), diagonal 
matrices, etc. See [25-29] and the other corresponding 
references. Also, the discussions on the mixture products 
like ( )A B C  are scarcely reported. Hence, the basic 

properties and expressions on Hadamard product still 
remain to be extensively studied. 

Although almost all the existing control theory and 
applications are implemented by feedback controls, the 
feedback is, in a general sense, only one of the specific 
measures to implement the regulations of the connections 
of system states.  

)(1 tx



1x

 tx2

p

2x

 tx4
21xk

4x 41xd

 tx6
41x

 tx3

2ux

3x

32xk
 tx5

5x52xd

4vx

52x 6x

 

Figure 1. A schematic representation of the populations 
flow. 
 

Let the feedback law be , m n
ju Fx F f R      , 

, 1, 2, ,m
jf R j n   . Then the system matrix of the 

closed loop is of the form: T
ij i j n n

A a b f


    . The ac-

tual functions of the feedback are the compensations of 

ija , i.e., regulating the interconnection coefficients from 

ija  to T
ij i ja b f  via the input information channel. 

Hence, in an open-loop viewpoint, the feedback control 
is just a special indirect regulation of interconnections of 
system states. 

The observation above show that the feedback control 
strategy is only one of the specific measures to imple-
ment the regulations of the connections of system states 
via the input information channel, rather than the direct 
physical regulation of the system interconnection matrix 
A. 

In this paper, we mainly discuss the Hadamard synergic 
stabilization problem for the general two-node-network 
(4), and then Hadamard synergic stabilization problem 
for the special model (5) is studied. Matrix algebra and 
algebraic graph theory are proved useful tools in model-
ing the communication network and relating its topology 
to the discussion of the network stability.  

The rest of this paper is organized as follows. System 
models and problem formulation discussed in this paper 
are given in Section 2. Hadamard synergic stabilization 
problem for the general two-node-network (4) is studied 
in Section 3. In Section 4, Hadamard synergic stabiliza-
tion problem for the special network model (5) is dis-
cussed. Furthermore, networks with communication 
time-delays are investigated. The last section concludes 
the paper. 

 
2. System Models and Problem Formulation 
 
In this section, we give the system models and problem 
formulation discussed in this paper.  

Because of the existence of the Hadamard product, 
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this makes that the stability analysis of the general net-
work model (4) become difficult. Therefore, we mainly 
consider the Hadamard synergic control problem for the 
special model (5). Furthermore, Hadamard synergic con-
trol for the two-node-network model of the general net-
work system (4) is investigated simply. For convenience, 
the network model (5) can be rewritten as: 

   1n O C nx I A K A x I B u            (6) 

ij n n
K k


     is the connection coefficient gain matrix. 

In the general case, the control variables ijk  often 

need to satisfy some constraints. There exist the follow-
ing cases being researched. 

Case 1: ijk  is discrete. For example 0,1ijk  . When 

0ijk  , it means that we cut off the connections from the 

j-th subsystem to the i-th subsystem; When 1ijk  , it 

means that we keep the corresponding connections. In 
this case, the control is called the isolation treatment 
strategy. In fact, this kind of control strategy has been 
researched in many literatures [15] especially in the 
power electrical engineering [10-12]. 

Case 2: ijk  is continuous. It often needs to meet 

some constraints. For example, 0 1ijk   in the epi-

demic control [13,14,25]; 
n

ii ij
j i

k k


   in the consensus 

or formation control problem [30,31], etc. 
Although the control variables ijk  often need to sat-

isfy some constraints, as the stability research in the 
classical feedback control of the system (1) required to 
unconstrained control ( )u t  we also suppose that the 

connection coefficient ijk R  in this paper. 

We present the formulations of the Hadamard synergic 
stabilization problems as follows: 

Hadamard synergic stabilization problem (HSSP) 
[21]: Given system (1), and let 1 2A A A  . Find con-

nection coefficient gain matrix n nK R   and feedback 
control u Fx  such that the corresponding Hadamard 
synergic closed loop (3) is stable, i.e. 

 1 2A A K BF C     

where (.)  represents the set of eigenvalues of the cor-

responding matrix, C  means the left-half complex 
plane. For convenience, we call the matrix pair ),( FK  

as the synergic control matrix pair. 
Remark 1. Obviously, the HSSP is equivalent to the 

problem that is to find connection coefficient gain matrix 
K such that 1 2( , )A A K B   is stabilizable. One of the 

stronger conditions of it is to find a matrix K such that 

1 2( , )A A K B   is completely controllable. Also, for 

convenience, we call these two problems as Hadamard 
synergic stabilization and Hadamard synergic Controlla-
bilization problems respectively. 

In this paper, we mainly consider the Hadamard syn-
ergic stabilization problem for the two cases: 

Case 1: The two-node-network model of the general 
network system (4). 

Case 2: The special network model (6). 
 
3. Hadamard Synergic Stabilization for the 

General Two-Node-Network 
 
In this section, we consider the Hadamard synergic Sta-
bilization problem for the general dynamical network 
model (4). We mainly consider the two-node-network de-
scribed as: 

1 11 1 12 12 2 11 1

2 22 2 21 21 1 22 2

x A x A x B u

x A x A x B u




  
  




         (7) 

Then, the Hadamard synergic stabilization problem for 
the network model (7) can be presented as: find connec-
tion coefficients 12 21, R    and decentralized feed-

back control 1 1 1 2 2 2,u F x u F x   such that the closed 

loop matrix 

11 11 1 12 12

21 21 22 22 2

(2)loop

A B F A
A

A A B F



 

   
 

is stable. 
When 12 0   or 21 0  , the stability of (2)loopA  

is equal to the stability of the two subsystems, so we do 
not consider this condition. In the following, we suppose 
that 12 210, 0   . 

 
3.1. Case of    12 21 1rank A rank A   

 
In this section, we discuss the Hadamard synergic stabi-
lization problem of the network model (7) with the spe-
cial case 12 21( ) ( ) 1rank A rank A  . 

Based on the theorem of the Linear Algebra, let 

12 1 2 21 2 1 1 1 2 2, , , , ,T T nA a b A a b a b a b R   . Then, the sys-

tem (7) without local input can be rewritten as: 

1 11 1 12 1 2 2

2 22 2 21 2 1 1

T

T

x A x a b x

x A x a b x





 

 




            (8) 

Note that system above is equivalent to the following 
system: 

1 11 1 12 1 2 1 1 1

2 22 2 21 2 1 2 2 2

T

T

x A x a y y b x

x A x a y y b x




  
  




 

Let 1 2 2 1,u y u y    are the inputs of the intercon-
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nected control; 1 2,y y  are the outputs of the first and 

second subsystem respectively. Then 12 1 21 2,a a   can 

be viewed as the matrix of the first and second subsys-
tem accepting the interconnected control respectively. 
Hence, let  

   
   

1

1 12 1 11 1

1

2 12 2 22 2

T

T

H s b sI A a

H s b sI A a









 

 
 

Then, the matrix 11 12 12

21 21 22

(2)
A A

A
A A



 

  
 

 can be vie- 

wed as the state matrix of the closed-loop feedback sys-
tem as shown in Figure 2. 

Theorem 1. There exist 12 21, R    such that the 

matrix (2)A  is stable if and only if there exist 12 , 

21 R   such that the polynomial 1 2( ) ( ) ( )f s d s d s   

12 21 1 2( ) ( )f s f s   is stable. In this case, the matrices 12A , 

21A  must satisfy that 12 21( ) ( ) 0tr A tr A  . 

Here,  

     
     

*

1 11 1 1 11 1

*

2 22 2 2 22 2

det , ( )

det , ( )

T

T

d s sI A f s b sI A a

d s sI A f s b sI A a

   

   
 

*(.), ()tr  denote the trace and adjoins of the correspond-

ing matrix respectively. 
Proof. From the analysis above we know that (2)A  

is stable if and only if the feedback system shown in 
Figure 2 is stable, where the closed loop transfer func-
tion in Figure 2 is 

   
   

   
       

1

1 2

*

11 2 22 2

1 2 12 21 1 2

1

det T

H s
H s

H s H s

sI A b sI A a

d s d s f s f s 




 




 

Therefore, (2)A  is stable if and only if the polyno-

mial ( )d s  is stable. Let 1 1 2 2
11 22,n n n nA R A R   . Then, 

note that ( )d s  and 1 2( ) ( )f s f s  are the polynomials 

with degree 1 2n n  and 1 2 2n n   respectively. Hence, 

if we let 1 2 1 2 1
0( ) ( )n n n nd s s cs d s     , then we have 

that 12 21( ) ( ) 0c tr A tr A   . This completes the proof. 

Remark 2. When ( ) 1rank M  , there exist vectors 

, na b R  such that TM ab  and the different de-
compositions are unique up to a constant, so the result 
above is independent of the decompositions of the cou-
pled matrices 12 21,A A . The results above can be gener-

alized to cases of multiple subsystems simply. 

)(1 sH

)(2 sH
 

Figure 2. The closed loop of the system (8). 
 
 
3.2. Case of    12 211, 1rank A rank A   

 
In this section, we discuss the Hadamard synergic stabi-
lization problem of the network model (7) with the gen-
eral case 12 21( ) 1, ( ) 1rank A rank A   by using the small 

gain theorem.  
Decompose 12 1 2 ,A B C 21 2 1A B C , then 12 12A   

12 1 2( )B C , 21 21 21 2 1( )A B C  . Let 

     
     

1

1 1 11 12 1

1

1 1 11 12 1

H s C sI A B

H s C sI A B









 

 
 

Similarly as in the section 3.1, the matrix (2)A  can 

be viewed as the state matrix of the closed-loop feedback 
system as shown in Figure 2. In this way, (2)loopA  can 

be viewed as an interconnected system composing of two 
subsystems  11 12 1 1, , ,A B C   22 21 2 2, ,A B C  under the 

local feedback. 
Using the small gain theorem, we can get the follow-

ing result. 
Proposition 1. If there exist 12 21 1 2, , ,F F   such that 

   

   

1

1 11 11 1 12 1

1

2 22 22 2 21 2 1

C sI A B F B

C sI A B F B













 

   
     (9) 

then the system (7) can be stabilized by the synergic 
control.  

In the following, we suppose that  

   12 1 1 21 2 2

1 1 2 2

, , , ,

0, 0

     
   

 

   
        (10) 

Remark 3. Based on the Proposition 1, we know that 
if there exist 12 21,   such that 

   

   

1

1 11 12 1

1

2 22 21 2 1

C sI A B

C sI A B















  
      (11) 

then (2)A  is stable. Obviously, there exist 12 21,   as 

in (10) such that (11) holds if and only if 
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   

   

1

1 11 1

1

2 22 2
1 2

1

C sI A B

C sI A B
 











  
        (12) 

But the decompositions of 12 21,A A  are general not 

unique. 
In the following, we give the suitable decompositions 

and the explain (12) by LMI method by using the result 
in [32]. 

Theorem 2. For any fixed full rank decompositions 
0 0 0 0

12 1 2 21 2 1,A B C A B C  , there exist connection coeffi-

cients 12 21,  as in (10) and decompositions 12 1 2A B C , 

21 2 1A B C  such that (11) holds if and only if there exist 

positive matrices 1 2, , ,P P X Y  such that 

0 0 0
1 11 11 1 1 1 1 1

0
1 1 2

2

0 0 0
2 22 22 2 2 2 2 2

0
2 2 2

1

01

01

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X





  
   
  
  
   
  

    (13) 

Proof. Based on the result in [32], we know for any 

fixed full rank decompositions 0 0 0 0
12 1 2 21 2 1,A B C A B C  , 

there exist connection coefficients 12 21,   and decom-

positions 12212112 , CBACBA   such that (11) holds if 

and only if there exist positive matrices 1 2, , ,P P X Y   

such that 

2 0 0 0
1 11 11 1 12 1 1 1 1

0
1 1

2 0 0 0
2 22 22 2 21 2 2 2 2

0
2 2

0

0

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X





  
 

 
  

 
 





 

Let 2
12 ,X X   2

21Y Y  , then the inequalities above 

can translate into  

0 0 0
1 11 11 1 1 1 1 1

0
1 1 2

21

0 0 0
2 22 22 2 2 2 2 2

0
2 2 2

12

01

01

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X





  
   
  
  
   
  

 

If there exist positive matrices 1 2, , ,P P X Y  such that 

(13) holds, and we can choose connection coefficient 

12 1 21 2,      such that (11) holds. 

Conversely, if there exist connection coefficients 

120 210,   as in (10) such that (11) holds, then we can 

get:  
0 0 0

1 11 11 1 1 1 1 1

0
1 1 2

210

0 0 0
2 22 22 2 2 2 2 2

0
2 2 2

120

01

01

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X





  
   
  
  
   
  

 

By using Schur complement, we know that the ine-
qualities above are equal to: 

0 0 2 0 1 0
1 11 11 1 1 1 120 1 1 1 1

0 0 2 0 1 0
2 22 22 2 2 2 210 2 2 2 2

0

0

0

0

T T T

T T T

Y

P A A P B XB C PY PC

X

P A A P B YB C P X P C










    
 
    

 

Since 1 1200    , 2 2100    , thus 2 2
1 1200    , 

2 2
2 2100    , so we have 

0 0 2 0 1 0
1 11 11 1 1 1 1 1 1 1 1

0 0 2 0 1 0
2 22 22 2 2 2 2 2 2 2 2

0

0

T T T

T T T

P A A P B XB C PY PC

P A A P B YB C P X P C









   

   
 

use Schur complement, then (13) holds. This completes 
the proof. 

Remark 4. From the Theorem above, we know that 
we only need to consider full rank decompositions among 
the different decompositions of 12 21,A A  under the 

minimal connection coefficients. From the proof of the 

Theorem 1 in [32], we know that 1
1 11 1( )C sI A B


   

1
2 22 2( )C sI A B


  can be minimized among different 

decompositions of 12 21,A A  by LMI method, if we let 

    1 1

1 11 1 2 22 2 0min C sI A B C sI A B  

 
     

we can get 1
12 21 0max    . 

From the proof above, we can give the following algo-
rithm to get the estimation of 12 21max , max   for any 

fixed full rank decompositions. 
Step 1. For any fixed full rank decompositions 

0 0 0 0
12 1 2 21 2 1,A B C A B C  , solve the LMI (13) if it holds, 

go to step 2; otherwise, stop. 
Step 2. Solving the following LMIs:  

2
2

2
1

0 0 0
1 11 11 1 1 1 1 1

0 1
1 1

0 0 0
2 22 22 2 2 2 2 2

0 1
2 2

0

0

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X





  
    
  
    
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If it holds, then, we can get: 

12 1 21 2max , max      

Otherwise, go to step 3. 
Step 3. Choose the appropriate step size 1 2,    

and move one step size for the LIM (13), i.e., solve the 
following inequalities: 

0 0 0
1 11 11 1 1 1 1 1

0
1 1 2

2 2

0 0 0
2 22 22 2 2 2 2 2

0
2 2 2

1 1

01
( )

01
( )

T T T

T T T

P A A P B XB PC

C P Y

P A A P B YB P C

C P X

 

 

  
   

   
  
   

   

  (14) 

If it does not hold, stop and get  

   12 1 1 1 21 2 2 2max , , max ,              

Otherwise, keep on moving one step size for the LIM 
(14) and solve the corresponding inequalities and con-
tinue the following process in step 3. If it moves the n  
step size, we can get:  

  
  

12 1 1 1 1

21 2 2 2 2

max 1 ,

max 1 ,

n n

n n

    

    

     

     
 

Obviously, (13) is only a sufficient condition, but it is 
easy to establish an LMI algorithm for designing decen-
tralized control 1 2,F F . 

Theorem 3. For any fixed full rank decompositions 
0 0 0 0

12 1 2 21 2 1,A B C A B C  , there exist 1 2,F F and 12 21,   

as in (10) and decomposition 12 1 2 21 2 1,A B C A B C   

such that (9) holds, if and only if there exist positive 

1 2 1 2, , ,P P X X  and any matrices 1 2,Y Y  such that 

2
2

2
1

0 0 0
1 11 11 1 11 1 1 11 1 1 1 1 1

0
1 1 2

0 0 0
2 22 22 2 22 2 2 22 2 2 2 2 2

0
2 2 1

01

01

T T T T T

T T T T T

P A A P B Y Y B B X B PC

C P X

P A A P B Y Y B B X B P C

C P X





    
  
 
 
    
  
 
 

 

and decentralized controllers gain are given by 1F   
1

1 1Y P , 1
2 2 2F Y P . 

Remark 5. LMIs can be solved easily by using the 
toolbox [33]. Compare to the result in the Subsection 3.1, 
result in this section is only sufficient condition, but it is 
easier to establish an LMI algorithm for designing de-
centralized control and more simple to compute. 
 
4. Synergic Stabilization for the Special  

Dynamical Network  
 
In this section, we discuss the HSSP for the special model 

(6). 
 
4.1. Nyquist Criterion Method 
 
For stability analysis of network (6), we show the fol-
lowing to be true. 

Theorem 4. There exist connection coefficient gain 
matrix [ ],ij ijK k k R   such that n O CI A K A    is 

stable if and only if there exist i R   such that 

O i CA A  are stable simultaneously for 1, 2, ,i n  . 

Proof. Let n nP R   be a nonsingular matrix such 

that 1P KP J   and J  is the Jordan standard form of 
K .Then, based on the Properties of the matrix Kro- 
necker product, we can get:  

   1 1

1
n n O C n

n O C

P I I A K A P I

I A J A

    

   
 

Since the Jordan form matrix J is block upper-triangular, 
the stability of this system is equivalent to the stability of 
the n systems defined in the diagonal blocks. For CJ A , 

the diagonal blocks are each i CA , and then we can get 

the conclusion. This completes the proof. 
Remark 6. If ijk  need to meet some constraints, then, 

i  also should satisfy some constraints correspondingly. 

For example in the consensus or formation control prob-
lem: 

1,

n

iqq k i
ij

ij

k j i
k

k R j i

 
  

 


          (15) 

Then, we need that there must exist 
0

0i   such that 

0O i CA A  is stable, i.e., OA  is stable, and the associ-

ated eigenvector of 
0i

  is  1 1
T . 

In the following discussion, we suppose that CA   

1 1B C , 1
m n
mC R  . We can get the following result. 

Theorem 5. There exists Hadamard synergic control 

matrix pair  [ ], ,ij ijK k k R F   such that the network 

(6) is stable if and only if there exist , 1, 2, ,i R i n     

such that the controller i i iu Fy z   simultaneously 

stabilizes the set of the following n  systems: 

1

1

i O i i

i i

i i i

x A x B u

y x

z C x

 






              (16) 

Proof. Using the same transform method as in the 
Theorem 4, we can get that the network (6) is stable if 
and only if the following n  systems is stable simulta-
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neously if 1 1CA B C . 

 1 1 1i O i ix A B IC B IF x    

where  1

1
nx P I x  . 

This is equivalent to the controller i i iu Fy z   sta-

bilizes the set of the n  systems as in (16). This com-
pletes the proof. 

Remark 7. Theorem 5 reveals that the special network 
(6) can be analyzed for stability by analyzing the stability 
of a single system with the same dynamics, modified by 
only a scalar, representing the interconnection, that take 
values according to the eigenvalues of the connection 
coefficient gain matrix K . 

Hereafter, we refer to the transfer function from iu  to 

iy  as ( )G s ; the closed loop system can be shown as 

Figure 3 in this case. If ( )G s  is single-input-single-output 

(SISO), we can state a second version of Theorem 5 
which is useful for stability analysis. 
Theorem 6. Suppose ( )G s  is SISO and p  is the 

number of right-half plant poles of ( )P s . Then, the 

closed loop system as in Figure 3 is stable if and only if 
1) If 0, 1,2, ,i i n    , then, the counterclockwise 

net encirclement of 1( , 0)i j  by the Nyquist plot of 

1 ( )C P s  is equal to p  for 1, 2, ,i n  . 

2) Otherwise, 0p   and this net encirclement is 

equal to zero. 
Proof. The Nyquist criterion states that the stability of 

the closed loop system in Figure 3 is equivalent to the 
number of counterclockwise encirclements of ( 1, 0)j  

by the forward loop 1 ( )iC P j   being equal to the num-

ber of the right-half plant poles of ( )P s , which is as-

sumed to be p . This criterion is equivalent to the num-

ber of encirclements of 1( , 0)i j  by the Nyquist plot 

of 1 ( )C P s  being p . This completes the proof. 

Similarly, if ( )G s  is MIMO, we can give the fol-

lowing result. 
 

)(sG

F

)(sP

1Ci

u y

 

Figure 3. The closed loop of the system (16). 

Corollary 1. Suppose ( )G s  is MIMO and p  is the 

number of right-half plant poles of ( )P s . Then, the 

closed loop system as in Figure 3 is stable if and only if 
1) If 0, 1,2, ,i i n    , then, the counterclockwise 

net encirclement of the origin by the Nyquist plot of 

  1det iI C P s is equal to p  for 1, 2, ,i n  . 

2) Otherwise, 0p  and this net encirclement is equal 

to zero. 
Remark 8. The zero eigenvalue of K  can be inter-

preted as the unobservability of absolute motion in the 
measurements iz . The design strategy in the Theorem 6 

can be interpreted as follows: firstly, close the inner loop 
around iy  such that the internal closed loop system 

( )P s  has p  right-half plant poles which is equal to the 

number of uncontrollable poles of the system (16); sec-
ondly, close the outer loop around iz  such that the 

whole network system is stable. This can be seen as the 
synergic action between the feedback control and the 
connection gain regulation. 
 
4.2 Algebraic condition 
 
In this section, we consider the Hadamard synergic sta-
bility problem by using the algebraic method. First, we 
give the following Lemma.  

Lemma 1. For any matrix K , 

     n O C C n OI A K A K A I A      

if and only if O C C OA A A A . 

Proof. Based on the fact 

    
    

n O C O C

C n O C O

I A K A K A A

K A I A K A A

    


   
 

We can get the conclusion directly. This completes the 
proof. 

Lemma 2. [20] Let , n nS T C   and ST TS , 

1, , n  , 1, , n   are their eigenvalues respectively. 

Then, there exists a permutation 1, , ni i  of 1, 2, , n  

such that 
11 , ,

ni n i      are eigenvalues of S T . 

Remark 9. Lemma 2 implies that if ST TS , then 
( ) ( ) ( )S T S T     , i.e.  

        
        

max Re max Re max Re

min Re min Re min Re

S T S T

S T S T

  

  

  

  
 

Here, ( )X  denotes the eigenvalue of matrix X . 

Theorem 7. Suppose O C C OA A A A  and satisfied 

1) If   max Re 0CA  , then,  
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 
  
  

max Re
Re max ,0

max Re

O

C

A
K

A






    
  

 or 

  
    

max Re
Re 0

min Re

O

C

A
K

A







   

2) If   min Re 0CA  , then,  

 
  
  

max Re
Re min ,0

min Re

O

C

A
K

A






    
  

 or 

 
  
  

max Re
0 Re

max Re

O

C

A
K

A







   

3) If   max Re 0CA  , then, 

    
  
  

max Re
min Re 0, 0 Re

min Re

O
C

C

A
A K

A


 




  

    
  
  

max Re
min Re 0, 0 Re

min Re

O
C

C

A
A K

A


 




    

Proof. Based on the Lemma 1 and Lemma 2, we have 
that  

  
     
       

max Re

max Re max Re

max Re max Re Re

n O C

n O C

O C

I A K A

I A K A

A K A



 

  

  

   

 

 

then, we can get the conclusion directly. This completes 
the proof. 

Corollary 2. Suppose that the connection gain matrix 
[ ]ijK k  meet constraint (15), O C C OA A A A  and OA  

is stable.  

1) If   max Re 0CA  , then, n O CI A K A   is 

stable for any K  satisfied 0ijk  . 

2) If   min Re 0CA  , then, n O CI A K A    is 

stable for any K  satisfied 0ijk  . 

Proof. Based on the Gerschgorin disk theorem, we 
know that all the eigenvalues of [ ]ijK k  are located in 

the union of the n  disk: 

1

n

i ii ij
j

G z R z k k


 
    
 

  

thus, we can get that all the eigenvalues of [ ]ijK k  are 

positive except zero when 0ijk   and are negative ex-

cept zero when 0ijk  . Then based on the Theorem 7, 

we can get the conclusion directly. This completes the 
proof. 

When we consider the common decentralized control-
ler i iu Fx , if we want to use the conclusions above, 

we must require that 1 1( ) ( )O C C OA B F A A A B F   , 

this is difficult to solve. Thus, we consider the special 
case that , 0C nA aI a   and can get the following re-

sult. 
Corollary 3. If 1( , )OA B  is controllable, then for any 

K  there must exist common decentralized controller 

i iu Fx  such that 1( ) ( )n O nI A B F K aI     is sta-

ble; otherwise, suppose 1 21

30O

A A
TA T

A
  
  
 

, then, there 

exist common decentralized controller i iu Fx  such 

that 1( ) ( )n O nI A B F K aI     is stable if and only if 

3max(Re ( ))
( )

A
K

a


   for 0a   or 3max(Re ( ))
( )

A
K

a


   

for 0a  . 
Proof. From the fact that for any matrix ,K F  

     
     

1

1

n O n

n n O

I A B F K aI

K aI I A B F

  

   
 

and based on the Lemma 2 we can get the conclusion 
directly. 

Remark 10. Based on the analysis in the Corollary 3 
for this special case, synergic action between the decen-
tralized feedback control and the connection gain regula-
tions can be interpret as follows, that is: designing the 
common decentralized controller i iu Fx  to stabilize 

the controllable part firstly, and designing connection 
coefficient gain matrix K  to stabilize the uncontrolla-
ble part secondly. 
 
4.3. Network with Communication Time-Delays 
 
In this section, we consider a network of continuous-time 
integrators in which the i -th subsystem state ix  passes 

through a communication channel ije  with time-delay 

0ij   before getting to j -th subsystem. The transfer 

function associated with the edge ije  can be expressed 

as: ( ) ij s
ijh s e

  in the Laplace domain. As the discus-

sion in [34], to gain further insight in the relation be-
tween the connection gain matrix K  and the maximum 
time-delays, we focus on the simplest possible case 
where the time-delays in all channels are equal to 0   

and ( ) ( ) s
ijh s h s e   . Then the network system can be 

written as:  

       1
1

n

i O i ij C j i
j

x t A x t k A x t B u 


      

After taking the Laplace transform of both sides, we 
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can get 

            
1

0
n

i i O i ij C j
j

sX s x h s A X s h s k A X s


    

The set of equations above can be rewritten in a com-
pact form as: 

       1
0n O CX s sI h s I A K A x


       (17) 

The convergence analysis for a network of integrator 
nodes with communication time-delays reduces to stabil-
ity analysis for a multiple-input-multiple-output (MIMO) 
transfer function:  

      1

N O CG s sI h s I A K A


      

In the following, we give the stability result of the 
model (17). 

Theorem 8. Consider a network of integrator nodes 
with equal communication time-delay 0   in all links. 
Assume the matrix n O CI A K A    has no eigenvalue 

of zero or the algebraic multiplicity of the zero eigen-
value is 1. Then the model (17) is stable if and only if 
either of the following equivalent conditions are satis-
fied:  

1) 0(0, )   with 0 min( )i  , where 

 
   

   
 

 
   

   
 

2 2

2 2

2 2

2 2

Re
arcsin

Re Im
Re 0

Re Im

Re
2 arcsin

Re Im
Re 0

Re Im

i

i i
i

i i

i

i

i i
i

i i



 


 





 


 



 


  
 

 


(18) 

i  is the eigenvalue of the matrix n O CI A K A   . 

2) The Nyquist plot of ( )
se

s
s



   has a zero encir-

clement around 
1

i
 for 0i  . 

Proof. To establish the stability of (17), we use fre-
quency domain analysis. We have ( ) ( ) (0)X s G s x . 

Define       1
n O CH s G s sI h s I A K A      . 

Then, we require that all the zeros of   det H s  are on 

the Left Hand Plane (LHP) or 0s  . Let i  be the 

normalized eigenvector of n O CI A K A    associated 

with the eigenvalue i . If the matrix n O CI A K A    

has zero eigenvalue and suppose 1 0  , then 0s   in 

the direction 1  is a zero of   det H s  since 

   1 10 0n O CH I A K A      ; otherwise 0s   

is not a zero of   det H s . 

Furthermore, we can get that any eigenvector of 
( )H s  is an eigenvector of n O CI A K A    and vice 

verse. Then, we can get that for any s  of the zero of 

  det H s , we must have ( ) 0iH s    for some one i , 

i.e., 

     
  0

i n O C i

s
i i

H s sI h s I A K A

s e 

 

 

    

  
 

But 0i  , thus, 0s   satisfies the following equa-

tion:  

1
0

s

i

e

s







                 (19) 

Thus, if the net encirclement of the Nyquist plot of 

( )
se

s
s



   around 
1

i
  for 0i   is zero, then all 

the poles of )(sG  except 0s   are stable. 

We calculate the upper bound on time-delay   as 
follows. We want to find the smallest value of the 

time-delay 0   such that   det H s  has a zero on 

the imaginary axis. Set s j   in (19), we can get 

0

0

j
i

j
i

j e

j e





 

 

 

  
 

multiplying both sides of the two equations above, we 

get  2 2 2 sin 0i i      .  

Let Re( ) Im( )i i ij    , then, we have  

         
        

Re 2 Re 1 sin Im

2 Re Im Im sin 0

i i i

i i ij

     

    

   

  
 

Assume 0   (due to 0s  ), then from the equa-
tion above, we can get: 

       2 2
Re Im , Re sini i i         

This implies 

     
   

2 2

2 2

Re
Re Im 2 arcsin

Re Im

i
i i

i i

k


   
 

    
  

, 

i.e. 

 
   

   

2 2

2 2

Re
2 arcsin

Re Im

Re Im

i

i i

i i

k



 


 






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thus, the smallest 0   satisfied that 0 min( )i   

and i  are given in (18).  

Due to the continuous dependence of the roots of (19) 
in   and the fact that all the zeros of this equation ex-
cept 0s   for 0   are located on the open LHP, for 
all 0(0, )  , the roots of (19) are on the open LHP, 

and therefore the poles of ( )G s  are all stable except 

0s  , but the algebraic multiplicity of the zero eigen-
value is 1. We can repeat a similar argument for the as-
sumption that 0  . This completes the proof. 

Remark 11. From the condition (1) of the Theorem 
above, we can see that the upper bound on time-delay 

0  is determined by the eigenvalues n O CI A K A   . 

Thus, if O C C OA A A A , then based on the Lemma 2, we 

can design the desired connection gain matrix K  in 
order to obtain expected upper bound on time-delay. 
 
5. Conclusions 
 
In this paper, Hadamard synergic stabilization problem is 
investigated. Synergic stabilization problem for a special 
kind of networks are studied by using the Nyquist crite-
rion. The mechanism of the synergic action between two 
control strategies: feedback control and the connection 
coefficients regulations are presented. Networks with 
communication time-delays are also discussed. Further-
more, synergic stabilization problem for the general dy-
namical network composed of two subsystems are inves-
tigated. The regulations of the interconnections can be 
exploited to improve the stability of the closed-loop sys-
tem. It should be noted that only some special network 
models have been investigated in this paper, many more 
general network models remain to be challenging sub-
jects for future research. Although Hadamard synergic 
control problem has not received much attention, we 
suggest that it will probably turn out to be widespread in 
power electrical engineering and the epidemic control 
system. We hope that our work will stimulate further 
studies of this new kind of control problem. 
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Abstract 
 
A system of ordinary differential equations, which describe various aspects of the interaction of HIV with 
healthy cells in fast progressive patient, is utilized, and an optimal control problem is constructed to prolong 
survival and delay the progression to AIDS as far as possible, subject to drug costs. Optimal control problem 
is approximated by linear programming model using measure theoretical approach and suboptimal combina-
tions of reverse transcriptase inhibitor (RTI) and protease inhibitor (PI) drug efficacies are proposed. The 
Comparison of healthy CD4+ T-cells counts, virus particles and immune response, before and after the 
treatment is introduced. 
 
Keywords: HIV Model, Optimal Control, Measure Theory, Linear Programming 

1. Introduction 
 
Human Immunodeficiency Virus infects CD4+ T-cells, 
which are an important part of the human immune sys-
tem, and other target cells. The infected cells produce a 
large number of viruses. Medical treatments for HIV 
have greatly improved during the last two decades. 
Highly active antiretroviral therapy (HAART) allows for 
the effective suppression of HIV-infected individuals and 
prolongs the time before the onset of Acquired Immune 
Deficiency Syndrome (AIDS) for years or even decades 
and increase life expectancy and quality to the patient but 
antiretroviral therapy cannot eradicate HIV from infected 
patients because of long-lived infected cells and sites 
within the body where drugs may not achieve effective 
levels [1-3]. HAART contain two major types of 
anti-HIV drugs, reverse transcriptase inhibitors (RTI) 
and protease inhibitors (PI). Reverse transcriptase in-
hibitors prevent HIV from infecting cells by blocking the 
integration of the HIV viral code into the host cell ge-
nome. Protease inhibitors prevent infected cells from 
replication of infectious virus particles, and can reduce 
and maintain viral load below the limit of detection in 
many patients. Moreover, treatment with either type of 
drug can also increase the CD4+ T-cell count that are 
target cells for HIV.  

Many of the host–pathogen interaction mechanisms 
during HIV infection and progression to AIDS are still 
unknown. Mathematical modeling of HIV infection is of  

interest to the medical community as no adequate animal 
models exist in which to test efficacy of drug regimes. 
These models can test different assumptions and provide 
new insights into questions that is difficult to answer by 
clinical or experimental studies. A number of mathe-
matical models have been formulated to describe various 
aspects of the interaction of HIV with healthy cells, See 
[4]. The basic model of HIV infection is presented by 
Perelson et al. [5] that contain three state variables 
healthy CD4+ T-cells, infected CD4+ T-cells and con-
centration of free virus. Another model is presented in [6] 
that although maintaining a simple structure, the model 
offers important theoretical insights into immune control 
of the virus based on treatment strategies Furthermore 
this modified model is developed to describe the natural 
evolution of HIV infection, as qualitatively described in 
several clinical studies [7].  

Some authors use mathematical model for HIV infec-
tion in conjunction with control theory to achieve appro-
priate goals, by incorporating the effects of therapy on an 
HIV-infected individuals. For example, these goals my 
be maximizing the level of healthy CD4+ T-cells and 
minimizing the cost of treatment [8-12], maximizing 
immune response and minimizing both the cost of treat-
ment and viral load [13,14], maximizing both the level of 
healthy CD4+ T-cells and immune response and mini-
mizing the cost of treatment [15], Maximizing the level 
of healthy CD4+ T-cells while minimizing both the side 
effects and drug resistance [16] and maximizing survival 
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time of patient subject to drug cost [17] and etc. 
The papers [18-21] consider only RTI medication 

while the papers [22,23] consider only PIs. In [24-27] all 
effects of a HAART medication are combined to one 
control variable in the model. In [13,28-31] dynamical 
multidrug therapies based on RTIs and PIs are designed. 

In this paper, we consider a mathematical model of 
HIV dynamics that includes the effect of antiretroviral 
therapy, and perform an analysis of optimal control re-
garding appropriate goal. 

The paper is organized as follows. In Section 2, the 
underlying HIV mathematical model is described. Our 
formulation of the control problem which attempts to 
delay appearance of AIDS as far as possible is described 
in Section 3. Formulated optimal control problem is ap-
proximated by linear programming (LP) problem. Re-
lated procedure is described in Section 4. Numerical re-
sults obtained from using LP model are presented in Sec-
tion 5. Finally Section 6 is assigned to concluding re-
marks. 
 
2. Presentation of a Working Model 
 
In this paper, the pathogenesis of HIV is modeled with a 
system of ordinary differential equations (ODEs) de-
scribed in [7]. This model can be viewed as an extension 
of basic HIV Models of Perelson et al. [5]. 

x dx rxv                  (1) 

y rxv ay yz                 (2) 

w cxyw qyw bw                (3) 

z qyw hz                  (4) 

 1 Pv k u y v                (5) 

0 Rr r u                   (6) 

Most of the terms in the model have straightforward 
interpretations as following:  

The first equation represents the dynamics of the con-
centration of healthy CD4+ T-cells (x). The healthy 
CD4+ T-cells are produced from a source, such as the 
thymus, at a constant rate λ, and die at a rate dx. The 
cells are infected by the virus at a rate rxv. The second 
equation describes the dynamics of the concentration of 
infected CD4+ T-cells (y). The infected CD4+ T-cells 
result from the infection of healthy CD4+ T-cells and die 
at a rate ay and killed by cytotoxic T-lymphocyte effec-
tors CTLe(z) at a rate ρyz. The population of CTLs is 
subdivided into precursors or CTLp (w), and effectors or 
CTLe (z). Equations (3)-(4) describe the dynamics of 
these compartments. In accordance with experimental 
findings [32] establishment of a lasting CTL response 
depends on CD4+ T-cell help, and that HIV impairs T 
helper cell function. Thus, proliferation of the CTLp 

population is given by cxyw and is proportional to both 
virus load (y) and the number of uninfected T helper 
cells (x). CTLp differentiation into effectors occurs at a 
rate cqyw. Finally, CTLe die at a rate hz. Equation (5) 
describes the dynamics of the free-virus particles (v). 
These free-virus particles are produced from infected 
CD4+ T-cells at a rate ky and are cleared at a rate τv. 
Model also contain an index of the intrinsic virulence or 
aggressiveness of the virus (r). This index increases line-
arly in the case of an untreated HIV-infected individual, 
with a growth rate that depends on the constant r0 Finally 
Equation (6) describes the dynamic of this index. In 
model variables uP and uR denotes protease inhibitors (PI) 
and reverse transcriptase inhibitors (RTI), respectively. 
uR reduces infection rate of healthy CD4+ T-cells by 
reducing the growth rate of the aggressiveness of the 
virus (r) and uP prevents virus production by reducing 
the production rate from infected CD4+ T-cells.  

The model has several parameters that must be as-
signed for numerical simulations. The descriptions, nu-
merical values and units of the parameters are summa-
rized in Table 1. These descriptions and values were 
taken from [7]. We note that Equations (1)-(6) with these 
parameters, model dynamics of fast progressive patients 
(FPP). 
 
3. Optimal Control Formulation 
 
In clinical practice, Anti-retroviral therapy is initiated at 
t0, the time at which CD4+ T-cell counts reach 350 
cells/μl. The transition from HIV to AIDS occurred when 
patients CD4+ T-cell count falls below 4AIDSCD   

around 200 cells/μl. Our aim is to propose drug regimen  
 

Table 1. Parameter Values for the HIV model. 

Parameters Value/Unit Description 

λ 7 cellsµl-1day-1 Healthy CD4+ Production 

d 7 × 10-3 day-1 Healthy CD4+ clearance 

a 0.0999 day-1 Infected CD4+ clearance 

ρ 2 µlcells-1 day-1 Infected CD4+ kill 

c 5 × 10-6 µl2cells-2day-1 CTLp proliferation 

q 6 × 10-4 µlcells-1day-1 CTLp differentiation 

b 0.017 day-1 CTLp clearance 

h 0.06 day-1 CTLe clearance 

k 300 copiesml-1cells-1 µlday-1 Virus production 

τ 0.2 day-1 Virus clearance 

r0 10-9 copies-1ml day-2 Virulence growth  
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to maximize asymptomatic stage time or equivalently 
prolong survival and delays the progression to AIDS as 
far as possible, subject to drug costs. This can be mod-
eled as follows: 

Assume that the onset of AIDS occurs after time ft . 

Hence we should have: 

    04 , 4 , ,f AIDS AIDS fx t CD x t CD t t t            (7) 

We follow [8] and [22] in assuming systemic costs of 

the PI and RTI drugs treatment is proportional to 2 ( )
P

u t  

and 2 ( )
R

u t  at time t respectively. Therefore Overall cost 

of the PI and RTI drugs treatment is 
0

2 ( )f

P

t

t
u t dt  and 

0

2 ( )f

R

t

t
u t dt  respectively and overall cost of treatment is 

given by 
0 0

2 2( ) ( )f f

P R

t t

t t
u t dt u t dt  . Because symmetric  

costs for two types of drugs are in different scale, coeffi-
cient σ is set to balance them. Administration of drugs in 
high dose, are toxic to the human body. Moreover emer-
gence of drug resistant strains is one of the basic com-
plications in drug treatments. Many authors have ignored 
drug resistance issues, since fixing a maximum cost for a 
drug regime is equivalent to only administering a limited 
amount of chemotherapeutic agent. If that limited 
amount is chosen to be sufficiently small positive  , the 

risk of drug resistance can be largely ignored. Therefore 
we impose following constraint on drug cost: 

    
0

2 2f

P R

t

t
u t u t dt            (8) 

Setting, ( , , , , , )x y w z v r   and ( ) ( , )P Ru t u u  the 

differential Equations (1)–(6) can be represented in a 
generalized form as: 

      
 

1 1 5 6

1 5 6 2 2 4

1 2 3 2 3 3

2 3 4

2 5

0

, ,

1 P

R

d

a

c q b
t g t t u t

q h

k u

r u

    
     
     

 
  

  



  
   
  
  

 
   
  

   (9) 

Now with respect to above descriptions and (7) and (8) 
the optimal drug regime problem can be stated as fol-
lows: 

0,
max f

f

t

tu t
dt                 (10) 

subject to 

 , ,g t u 


               (11) 

    
0

2 2f

P R

t

t
u t u t dt              (12) 

   1 0 0 1, 4f AIDSt t CD               (13) 

 1 04 , ,AIDS ft CD t t t                  (14) 

We refer to this time optimal control problem as 
TOCP. Some problems may arise in the quest for the 
optimal solution. For example, may not exist control 
function (.)u  and corresponding state (.) and final 

time ft  that satisfy in (11)-(14). In order to overcome 

these difficulties in the next section we transfer the 
TOCP into a modified problem in measure space. 

 
4. Approximation of TOCP by Linear  

Programming Model  
 
Using the measure theory for solving optimal control 
problems based on the idea of Young [33], which was 
applied for the first time by Wilson and Rubio [34], has 
been theoretically established by Rubio in [35]. Then the 
method has been extended and improved by Mehne et al. 
[36] for solving time optimal control problems that leads 
to approximation of problem by linear programming (LP) 
model. We shall follow their approach here. 

 
4.1. Transformation to Functional Space  
 
We assume that state variable (.)  and control input 

(.)u , get their values in the compact sets 1A A    
6

6A    and 2
1 2U U U    , respectively. Set 

0 , fJ t t    . 

Definition 4.1.1. We define a triple , ,fp t u     to 

be admissible if the following conditions hold: 
1) The vector function (.)  be absolutely continuous 

and belongs to A  for all t J . 
2) The function (.)u  takes its value in the set U  

and is Lebesgue measurable on J . 

3) p  satisfies in the system (11)–(14), i.e. on 0J , 

the interior set of J . 
We assume that the set of all admissible triples is non-

empty and denote it by W . Let p  be an admissible 

triple and B  be an open ball in 6 containing J A  

and  C B  be the space of all real-valued continuous 

differentiable functions on it. Let  C B   and define 
g as follows: 
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       

          6

1

,
, ,

, ,
, ,

g

j
j j

d t t
t t u t

dt

t t t t
g t t u t

t

 
 

   






 
 

 
 (15) 

for each  , ( ), ( )t t u t  , where J A U    . The 

function g  is in the space  C  , the set of all con-

tinuous functions on the compact set  . Since p   

, ,ft u    is an admissible triple, we have 

    
     

0

0 0

, ,

, ,

ft g

t

f f

t t u t dt

t t t t

 

       


       (16) 

for all  C B  . Let  0D J  be the space of infi-

nitely differentiable all real-valued function with com-

pact support in 0J . Define: 

               
 0

, , , , ,

1, ,6

j
j jt t u t t t g t t u t t

j D J

     



 

  
 

(17) 

Then if , ,fp t u     be an admissible triple for 

1, ,6,j    and  0D J  , from (17) we have 

        

          

        

0 0

00

0

, ,

, , |

, ,

f f

f f

f

t tj
jt t

t t

j j tt

t

jjt

t t u t dt t t dt

g t t u t t dt t t

g t t u t t t dt

   

   

  




 

   
 

 





 

since the function (.)  has compact support in 0J , so 

   0 0ft t    and j jg


  so 

    
0

, , 0ft j

t
t t u t dt            (18) 

Also by choosing the functions which are dependent 
only on time, we have: 

      
0

1, , ,ft

t
t t u t dt a C         (19) 

where  1C   is the space of all functions in  C   

that depend only on time and a  is the integral of   

on J . Equations (16), (18) and (19) are really weak 
form of (11), (13) and (14). We note that, the role of 
constraint (13) is considered on the right side of equation 
(16) by considering functions  C B   which are 

monomials of 1 . Furthermore, the constraint (14) is 

considered, by choosing appropriate set A . Now we 
consider the following positive linear functional on 

 C  . 

      : , , ,p J
F F t t u t dt F C       (20) 

Proposition 4.1.1. Transformation pp   of ad-

missible triples in W  into the linear mappings p  

defined in (20) is an injection. 
Proof. We must show that if 1 2p p , then 

1 2p p   . 

Let , , , 1,2
jj f j jp t u j     be different admissible 

triples. If 
1 2f ft t , then there is a subinterval of 

10 , ft t 
  , say 1J , where 1 2( ) ( )t t   for each 1t J . 

A continuous function F can be constructed on   so 
that the right-hand side of (20) corresponding to 1p  and 

2p  are not equal. For instance, assume F is independent 

of u such that for all 1t J , this function is positive on 

the appropriate portion of the graph of 1( )t , and zero 

on 2 ( )t , then the linear functional are not equal. In 

other word if 
1 2f ft t , then 

1p  and 
2p  have dif-

ferent domains and are not equal. 
Thus, the TOCP (10)-(14) is converted to following 

optimization problem in functional space: 

 1
p

pMaximize


  (from (10))         (21) 

Subject to 

   ,g
p C B        (from (16))     (22) 

   00, 1,...,6,j
p j D J      (from (18))  (23) 

   1,p a C      (from (19))     (24) 

 p H    (from (12))          (25) 

where         2 2, ,
p R

H t t u t u t u t   . 

 
4.2. Transformation to Measure Space 
 
Let  M    denotes the space of all positive Radon 

measures on  . By the Riesz representation theorem, 
there exists a unique positive Radon measure   on   

such that: 

      
     

, ,

, , ,

p J
F F t t u t dt

F t u d F F C



  


 

   




    (26) 

So, we may change the space of optimization problem 
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to measure spaces. In other words, the optimization prob-
lem in functional space (21)-(25) can be replaced by the 
following new problem in measure space: 

 
 Maximize 1

M


 
             (27) 

Subject to 

   ,g C B                 (28) 

   00, 1,...,6,j j D J            (29) 

   1,a C                (30) 

 H                  (31) 

We shall consider the maximization of (27) over the 
set Q  of all positive Radon measures on   satisfying 

(28)-(31). The main advantages of considering this 
measure theoretic from of the problem is the existence of 
an optimal measure in the set Q  which this point can 

be studied in a straightforward manner without having to 
impose conditions such as convexity which may be arti-
ficial.  

Theorem 4.2.1. The measure theoretical problem of 
maximizing (27) with equality and inequality constraints 

(28)-(31) has an optimal solution  . 

Proof. As we will show in the next, (29) and (30) are 
special version of (28). Therefore, the set Q can be writ-
ten as 1 2Q Q Q   where 

    
 

1 : g

C B

Q M


   



      

and 

    2 :Q M H      . 

Assume that , ,fp t u    is an admissible triple. It is 

well known that, the set     0: 1 fM t t      is 

compact in weak*-topology. Furthermore, 1Q  as inter-

section of inverse image of closed singleton sets    

under continuous functions  g    is also closed. 

It can be shown in a similar way that 2Q  is closed. 

Thus, Q is a closed subset of a compact set. This proves 
the compactness of the set Q. Since the functional 

 1   mapping the compact set Q on the real line, 

is continuous and so has a maximum on the compact set 
Q. 

Next, based on analysis in [35], the problem (27)-(31) 
is approximated by a LP problem and a triple p* which 

approximate the action of Q   is achieved. 

4.3. Approximation 
 
Problem (27)-(31) is an infinite dimensional linear pro-
gramming problem and all the functions in (28)-(31) are 
linear with respect to measure  . Of course, it is an 

infinite dimensional LP problem, because  M    is 

infinite dimensional space. It is possible to approximate 
the solution of this problem by the solution of a finite- 
dimensional LP of sufficiently large dimension. Also, 
from the solution of this new finite dimensional LP we 
induce an approximated admissible triple in a suitable 
manner. We shall first develop an intermediate problem, 
still infinite-dimensional by considering the maximiza-
tion (27), not over the set Q but over a subset of 

 M    with only a finite numbers of the constraints in 

(28)–(31) being satisfied. This will be achieved by 
choosing countable sets of functions whose linear com-

binations are dense in the sets  C B ,  1C   and 

 0D J , and then selecting a finite number of them. As-

sume the set  : 1,2,...i i   be such that the linear 

combinations of the functions  i C B   are uni-

formly dense in  C B . For instance, these functions 

can be taken to be monomials in t and the components of 
the vector  . As we will show in the next, some of these 

monomials are suitable for our problem and are as fol-
lows:  

   
 

1 1
and , 0,1 , 1, 2,... ,

2,3,4,5,6

i j j i
ht i j

h

    


    (32) 

Let set  : 1,2,...i i   be such that linear combina-

tions of the functions  0
i D J   are uniformly dense 

in  0D J . For r = 1, 2, … some of these functions can 

be taken as follows [36]: 

 
 0

2 1

2
sin

0

l
r

r t t
t t

t T

otherwise


 

  
      




 

and 

 
 0

2

2
1 cos

0

l
r

r t t
t t

t T

otherewise




  
       




 (33) 

where 0lT t t    and lt  is a lower bound for optimal 

time which can be obtained using controllability.  
Finally, let set  : 1, 2,...i i   be such that linear 

combinations of the functions  1
i C    are uni-
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formly dense in  1C  . These functions can be consid-

ered monomials in t as follows: 

( ) , 0,1, 2...s
s t t s               (34) 

Remark 1. With respect to (15) and (17) it can be seen 
that (29) and (30) are also achieved from (28) by setting 

      , jt t t t     and     
0

,
t

t t d       re-

spectively. 
The first approximation will be completed by using 

above subjects and the following propositions. 
Proposition 4.3.1. Consider the linear program con-

sisting of the maximizing function  1   over the 

set MQ  of measures in  M   satisfying: 

  , 1, ,g
i i i M       

 H   

Then max (1)
MM Q   tends to max (1)Q   as 

M →∞. 
Proof. We have 1 2 MQ Q Q Q      ; hence, 

1 2 .M          Therefore, { }n  is non 

increasing and bounded sequence then converges to a 
number   such that   . We show that,   . 

Set 
1

M
M

R Q




  . Then, R Q  and max (1)R  . It 

is sufficient to show R Q . Assume R   and 

( )C B  . Since Linear combinations of the functions 

 , 1, 2,...j j   are uniformly dense in  C B , there is 

the Sequence    , 1, 2,...k jspan j    such that k  

tends to   uniformly as k→∞. Hence, 
1S , 

2S  and 
3S  

tend to zero as k→∞ where 1 sup kS
    , 

2 sup
tt kS      and 3 sup kS     . We have 

R  , and functional  f f  is linear. Therefore, 

 g
k k      and  

     
     

      

 1 2 3

, , , ,

, ,

, , 2

t

g g g
k k

k

t k k

t t g t u

t t d

S g t u d S d S



        

    

      

  



 

       

   

       

  



 

 



 
 

Since the right-hand side of the above inequality tends 
to zero as k→∞, while left-hand side is independent of 

k , therefore ( )g    . Thus R Q  and    

which implies   . 

Proposition 4.3.2. The measure   in the set MQ  at 

which the functional (1)   attains its maximum has 

the form 
1

1

( )
M

j j
j

z  


  



              (35) 

where 0,j jz    and )(z  is unitary atomic meas-

ure with the support being the singleton set { }jz , charac-

terized by ( )( ) ( ),z F F z z   . 

Proof. See appendix of [35]. 
Therefore, with respect to above descriptions we re-

strict our attention to finding measure in form    
1

1
( )

M

j jj
z 

 , which maximizes functional  1     

and satisfies in (31) and M number of constraints in the 

form of (28)-(30). Clearly, 
1

1
( ) ( ),

M

j jj
F F z F 


    

( )C  . Therefore, by choosing 1M  number of functions 

in the form of (32), S number of functions in the form of 
(34) and 2M   number of functions in the form of (33), 

which leads to 2 26M M   number of functions of the 

type (17) where are numbered sequentially as ,h  

21,...,h M , infinite dimensional problem (27)-(31) is 

approximated with following finite dimensional nonlin-
ear programming (NLP) problem:  

 

1

0, 1

Maximize
j j

M

j
z M j






   
            (36) 

Subject to 

 
1

1
1

, 1,...,
M

g
j i j i

j

z i M  




         (37) 

 
1

2
1

0, 1,...,
M

j h j
j

z h M 




         (38) 

 
1

1

, 1, ,
M

j s j
j

z a s S 




          (39) 

 
1

1

M

j j
j

H z 




                   (40) 

where, 1 2M M M S   . We confront with NLP with 

more than 2( 1)M   unknowns j , , 1,..., 1jz j M  . 

Finally, the following proposition enables us to approxi-
mate the problem via the finite dimensional linear pro-
gramming problem. 

Proposition 4.3.3. Let  1 2, ,...,N Ny y y   be a cou- 

ntable dense subset of  , for any N sufficiently large 

number. Given 0  , a measure ( )v M    can be 
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found such that: 

    11,...,g g
i iv i M            (41) 

    21,...,h hv h M             (42) 

    1,...,s sv s S              (43) 

   v H H                    (44) 

where measure v  has the form 

 
1

1

M

j j
j

v z 






              (45) 

where the coefficients , 1,..., 1j j M     are the same as 

optimal measure (35), and zj ΩN,  j = 1,…, M + 1. 

Proof. We rename functions g
i ’s, h ’s, sv ’s and H  

sequentially as , 1,2,..., 1jf j M  . Then, for j = 1,…, 

M + 1, 

     

   

1

1

1

,1

max

M

j i j i j i
i

M

i j i j i
i ji

v f f z f z

f z f z

 




  




 



    

   
 




. 

jf ’s are continues. Therefore, 
,

max
i j

 can be made less 

than 
1

1

M

jj


 


 by choosing , 1, 2,..., 1iz i M  , suffi-

ciently near to iz . 

For construction of dense subset N , J is divided to S 

subintervals as follows:  

 
0 0

1
, , 1,2,..., 1

1 1s

s T s T
J t t s S

S S

  
       

 

and 

,S l fJ t t                  (46) 

Furthermore, intervals Ai’s and Uj’s are divided into ni 
and mj subintervals respectively, then the set Ω is divided 
into N = Sn1 n2 n3 n4 n5 m1 m2  cells. One point is chosen 
from each cell. In this way we will have a grid of points, 
which are numbered sequentially as jy  1( , ,...,

jjt   

6 , , )
j j jP Ru u , j = 1,…, N. 

Remark 2. It is well known that each function type 
(34) can be approximated in a nice way by a linear com-
bination of characteristic function of subintervals of J. In 
practice we consider ( ) ( ), 1,...,

ss Jt t s S    instead of 

functions of the type (34), where sJ ’s are given by (46) 

and
sJ denotes the characteristic function of sJ . The 

main reason for this choice of s ’s is related to their 

essential role in construction of control functions. For 
more details see [35,36].  

Considering (45) the NLP (36)-(40) is converted to the 
following LP: 

0 1

Maximize
j

N

j
j


 
              (47) 

subject to 

  1
1

, 1,...,
N

g
j i j i

j

y i M  


          (48) 

  2
1

0, 1,...,
N

j h j
j

y h M 


           (49) 

 
1

N

j j
j

H y 


                (50) 

 

 

 

1

1

2 1

1 1

1

1

l

j
j

S l

j
j S l

Sl

j f l
j S l

T

S

T

S

t t











  

  











 








              (51) 

  , 2,3,4,5,6i f it A i              (52) 

where 
N

l
S

 . Of course, we need only to construct the 

function (.)u , since the (.)  is simply the corresponding 

solution of differential Equations (1)-(6) which can be 
estimated numericall. Using simplex method, nonzero 

optimal solution 
1 2
, , ,

pi i i     , 1 2 pi i i    of LP 

(47)-(52) can be found where p  cannot exceed the num-

ber of constraints i.e., 1 2 1p M M S    . 

Setting 0 0i t  , piecewise control pair ( ) ( )Pu t u t , 

( )Ru t  which approximate the action of the optimal con-

trol, is constructed based on these nonzero coefficients as 
follows [35,36]: 

    1

0 0

, ,
, 1,2,...,

0

i i i ij j h h

j j

P R
h h

u u t
u t j p

otherewise

 


 

 

  
    




 
 

It should be remembered, 
i j

Pu  and 
i j

Ru  are respec-

tively 7th and 8th components of 
jiy . 
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5. Numerical Results 
 
In our implementation, we set 1 14M   and chosen func-

tions   from  C B  are as follows: 

1 1

2 2
1 2 3 4 5 6 1 1 2 1 3 1 4 1 5 1 6, , , , , , , , , , , , ,t t                    

Furthermore, we set 2 2M   . Hence, we have 2 12M   

number of functions in the form of (17). Parameter S  is 
set to 11 and desired lower bound for optimal time is set 
to 2007.5 (5.5 )lt years . Setting (0,0)u  , and solv-

ing ODE (1)-(6) using 4th order Runge-Kutta method, 
shows that at 0 620t  ,  0 (350,12.40,1.26,0.16,t   

18454) . Starting points of our simulation runs are: 

x(0) = 103 cellsµl-1, v(0) = 104 copiesml-1, y(0) = 0 
cellsµl-1, w(0) = 10-3 cellsml-1, z(0) = 10-7cellsµl-1 and 
r(0) = 2 × 10-7 mlcopies-1day-1. 

Maximum values for uP and uR, are 0.7 and 9 × 10-10 
respectively [7]. Therefore, the coefficient   for balanc-
ing both PI and RTI costs in (8) is set to    

2

-10

0.7

9 10  
 
  

. Furthermore, the total costs are bounded 

above by 480  . By using controllability, considered 

ranges for states and controls and corresponding parti-
tions for construction of yj, j=1,…, N are summarized in 
Table 2. Note that, selected values from the set U1 for 
construction of yj’s are 0, 0.4 and 0.7. These values indi-
cate off, moderate and strong PI-therapy. Similarly, cor-
responding values for RTI control are 0, 5 × 10-10 and 9 × 
10-10 [7]. Therefore, we have linear programming with 
M = 33 constraints and N = 59405 unknowns, that is 
solved using simplex method and environment of MAT-
LAB. Implementing the corresponding LP model, the sub- 

optimal time has been found 2133.2 (71.11 )ft Months  . 

Figure 1 shows the resulting suboptimal control pair. 
The response of the system to the control functions is 
depicted in Figure 2. Figure 2(a) shows that condition 

(14) violates in a subinterval of J, which is due to ap-
proximate nature of control pair and can be ignored. Be-
cause, the length of this subinterval is very small as 

compared to the length of J. We found 1( ) 199.28ft   , 

which is close to exact value i.e., 200. From Figures 2(a) 
and 2(b), we see drop in the number of CD4+ T-cells, 
and a rise in viral load following the initial infection until 
about the third month. After this time, CD4+ T-cells start 
recovering and virus starts decreasing due to the immune 
response, but can never eradicate virus completely. Then 
CD4+ T-cells level decreases and viral load increases 
due to de struction of immune system in absence of 
treatment. Figures 2(b) and 2(c) show a clear correlation 
between the CTLe and virus population. As the virus 
increases upon initial infection, CTLe increases in order 
to decrease the virus. Once this is accomplished, virus 
decreases. Then virus grows back slowly, and this trig-
gers an increase in the CTLe population. CTLe, further 
increases in an attempt to keep the virus at constant lev-
els but lose the battle because of virus-induced impair-
ment of CD4+ T-cell function, in absence of treatment 
(dotted line). Memory CTL responses depend on the  
 
Table 2. Considered ranges for states and controls and cor-
responding number of partitions. 

State Range Number of partitions 

1  A1 = [200, 1000] n1 = 5 

2  A2 = [5, 30] n2 = 3 

3  A3 = [0, 1.6] n3 = 2 

4  A4 = [0, 1.3] n4 = 2 

5  A5 = [500, 35000] n5 = 10 

6  A6 = [0, 2 × 10-7] n6 = 1 

Pu  U1 = [0, 0.7] m1 = 3 

Ru  U2 = [0, 9 × 10-10] m2 = 3 

 

 

Figure 1. The suboptimal piecewise constant control pair (.)Pu  and (.)Ru . 
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(a)                                                          (b) 

 

 
(c)                                                          (d) 

Figure 2. Dynamic behavior of the state variables x, v, w and z versus time in the case of untreated (dotted line) and treated 
infected patients (solid line). 

 
presence of CD4+ T-cell help. Figures 2(a) and 2(b) 
show that, in presence of treatment the virus is controlled 
to very low levels and CD4+ T-cells are maintained 
above the critical levels for relatively long time. There-
fore, immune response expands for relatively long time 
successfully. Furthermore, these figures indicate inverse-
coloration between viral load and CD4+ T-cells level. 
From Figures 2(c) and 2(d) interestingly, a decrease in 
CTL’s occurs in response to therapy can be observed. 
The extent of the decrease is directly correlated with the 
increase in treatment effectiveness which is consistent 
with experimental findings [37]. 

 
6. Conclusions 
 
In this paper, we considered a system of ordinary differ-

ential equations, which describe various aspects of the 
interaction of HIV with healthy cells in fast progressive 
patient, for constructing a time optimal control problem 
which maximizes asymptomatic stage of patient. A 
measure theoretical method is used to solve such kind of 
problems, and numerical results, confirmed the effec-
tiveness of this approach. 
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