Stable Adaptive Fuzzy Control with Hysteresis Observer for Three-Axis Micro/Nano Motion Stages

Lih-Chang Lin, Bor-Yih Chang, Biing-Der Liaw
Department of Mechanical Engineering, National Chung Hsing University, Taichung, Chinese Taipei
Email: lclin@mail.nchu.edu.tw

Received July 31, 2012; revised August 31, 2012; accepted September 7, 2012

ABSTRACT
This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov stability theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demonstrate the control performance.

Keywords: Micro/Nano Stage; Adaptive Fuzzy Control; Hysteresis Observer; Fuzzy Function Approximator

1. Introduction
Recently, control of micro/nano stages considering the piezoactuator hysteresis effects has found great interests in the literature. Effective ultrafine-resolution trajectory tracking performance of stages is limited by the intrinsic hysteretic behavior of the piezoceramic material and the structural vibration of the devices [1].

Many efforts were trying to decrease the hysteresis effect of piezoactuators. Newcomb and Flinn [2] found that the relationship between the extension of a piezoceramic actuator and its applied electric charge has significantly less hysteresis nonlinearity than that between deformation and applied voltage. Furutani et al. [3] proposed an induced charge feedback control for the piezoactuators. The approach needs measurement of the induced charge and a specially designed charge drive amplifier, and will cause an increase in the response time of the actuator.

In order to linearize the control system, many researches focused on the inverse feedforward compensation based on some inverse hysteresis model. Several models have been suggested for describing the complex hysteretic behavior, for example, the Preisach model in Ge and Jouaneh [4,5], Yu et al. [6], and Liu et al. [7], the generalized Preisach model in Ge and Jouaneh [8], the dynamic Preisach model in Yu et al. [9]; the generalized Maxwell elasto-slip model in Goldfarb and Celanovic [10]; the variable time-relay hysteresis model in Tsai and Chen [11]; the Prandtl-Ishlinskii (PI) model (a subclass of the Preisach model) in Ang. et al. [1] and Hasmani and Tjahjowidodo [12]; the Duhem model in Stepanenko and Su [13]; the polynomial approximation method in Croft and Devasia [14]; and the Jiles-Atherton model in Dupre et al. [15]. Ge and Jouaneh [5] proposed a PID feedback control using the classical Preisach model for the hysteresis. Song et al. [16] proposed a cascaded PD/lead-lag feedback controller based on a linear model for the piezoactuator with hysteresis being compensated via the feedforward cancellation using the inverse classical Preisach model. Recently, Maslan et al. [17] presented a discrete-time transfer function and its inverse for a highly nonlinear and hysteretic piezoelectric actuator, and traditional PID controller and PID with active force control were considered.

To mitigate the effects of the unknown hysteresis, Wang et al. [18] suggested a model reference control for linear systems with unknown input hysteresis using an inverse KP (Krasnosel’ski-Pokrovskii) hysteresis model [19]. Hwang et al. [20] proposed a neural-network nonlinear model for learning the hysteretic behavior of a piezoelectric actuator, and suggested a discrete-time variable-structure control for enhancing the nonlinear model-based feedforward control performance. Based on the learned nonlinear model of piezoelectric actuator systems in [20], Hwang and Jan [21] proposed a controller including a nonlinear inverse control and a discrete neuro-adaptive sliding mode control using a recurrent neural network to compensate for the residue dynamic uncertainty. Wai and Su [22] presented a supervisory genetic algorithm (SGA) control system for a piezoelectric ceramic motor. The controller consists of a GA control to search an optimum control effort online via gradient descent training process and a supervisory control to stabilize the system states around a predefined bound region.
Recently, Ronkanen et al. [23] presented a two-input (velocity and voltage) one-output (current) feedforward backpropagation network to model the inverse nonlinear velocity-current relation of a piezoelectric actuator, and then introduced a feedforward charge control scheme.

Other analytical types of nonlinear differential hysteresis models include the simplified Dahl model used in Lyshevski [24], Sun and Chang [25], Sain et al. [26], and the Bouc-Wen model in Low and Guo [27], Chen et al. [28], and Gomis-Bellmunt et al. [29]. Chen et al. [28] proposed an H_∞ almost disturbance decoupling robust control based on the Bouc-Wen hysteretic model. Shieh et al. [30] proposed an adaptive displacement control for a piezopositioning mechanism with the LuGre (hysteretic) friction model suggested by De Wit et al. [31]. Gu and Zhu [32] suggested a new mathematic model to describe the frequency-dependent and amplitude-dependent hysteresis in a piezoelectric actuator using a family of ellipses. These analytical hysteresis models will be much easier for precision positioning control design.

In this work, we consider the precision control of a three-axis piezoactuated micro/nano stage. An adaptive controller with simplified Dahl model-based hysteresis variables observer is designed using the Lyapunov stability theory. In the adaptive controller, a fuzzy function approximator with parameters update law is included to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used for illustrating the possible control performance.

2. Dynamic Model for a Three-Axis Micro/Nano Motion Stage

The dynamic model for a single-axis piezoactuated flexure stage with analytic simplified Dahl hysteresis model is as below [24]:

$$m\ddot{x} + k_x \dot{x} + k_1 x + k_2 x^2 + k_3 x^3 = k_u u - k_f f$$

(1)

$$\dot{f} = \dot{x} - \frac{1}{k_{fi}} |\dot{x}| f$$

(2)

where x is the output displacement of the flexure stage; m is the mass of the flexure mover; k_x is the damping coefficient; k_1, k_2, and k_3 are the stiffness constants; u is the input voltage of the piezoelectric actuator; k_u is the input gain; f is the hysteresis variable; k_f and k_{fi} govern the scale and the shape of the hysteresis loop.

Consider a xyz three-axis flexure micro/nano stage (P-517.3CL, Physik Instrumente, PI) [33] driven by piezoelectric actuators shown in Figure 1. The hysteresis phenomena and the coupling effects among the three axes induced by the flexure structure, can be taken into account via the following complete matrix-vector model:

$$Mx + K_1 x + K_2 (x^2) + K_3 (x^3) + \Delta = K_u u - K_f f$$

(3)

$$\dot{f} = x - K_{fi} |x| f$$

(4)

where $x = [x_1 \ x_2 \ x_3]^T$ is the output displacements vector;

$$x_2 = [x_1^2 \ x_1 x_2 \ x_2^2]^T;$$

$$x_3 = [x_1^3 \ x_1^2 x_2 \ x_1 x_2^2 \ x_2^3]^T;$$

$$|x| = \text{diag}([|x_1| \ |x_2| \ |x_3|]);$$

$$\Delta = [D_1 \ D_2 \ D_3]^T$$

is used to consider the coupling effects among the axes and the model uncertainty;

$$M = \text{diag}([m_x \ m_y \ m_z]), u = [u_x \ u_y \ u_z]^T,$$

$$K_1 = \text{diag}([k_{x1} \ k_{x2} \ k_{x3}]), K_1 = \text{diag}([k_{y1} \ k_{y2} \ k_{y3}]),$$

$$K_2 = \text{diag}([k_{z1} \ k_{z2} \ k_{z3}]), K_3 = \text{diag}([k_{x1} \ k_{x2} \ k_{x3}]),$$

$$f = [f_x \ f_y \ f_z]^T, K_u = \text{diag}([k_{uf} \ k_{uf} \ k_{uf}]),$$

$$K_f = \text{diag}([k_{fi1} \ k_{fi2} \ k_{fi3}]), K_{fi} = \text{diag}([k_{fi1} \ k_{fi2} \ k_{fi3}]).$$

For ease of numerical simulation and implementation, the system parameters in SI units could be scaled in terms of more suitable units: displacement in nm, mass in g, time in ms, and input voltage in mV. After scaling, the scaled models keep the same forms as Equations (3) and (4). The parameters of the stage are identified, based on input/output data pairs via genetic algorithms by Chang [34], and are given as follows:

$$m_x = m_y = 0.2903 \times 10^3 g; k_x = k_y = 249.27 g/\text{ms};$$

$$k_{x1} = k_{y1} = 4.579 \times 10^5 g/\text{ms}^2;$$

Copyright © 2012 SciRes.
\[k_{2x} = k_{2y} = -1.6958 \times 10^{-3} \text{ g/nm} \cdot \text{ms}^2; \]
\[k_{3x} = k_{3y} = 8.6767 \times 10^{-9} \text{ g/nm}^2 \cdot \text{ms}^2; \]
\[k_{uv} = k_{vy} = 0.4716 \times 10^3 \text{ g} \cdot \text{nm} / \text{mV} \cdot \text{ms}^2; \]
\[k_{ui} = k_{yi} = 3.6339 \times 10^{-3} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 8.783 \times 10^{-2} \text{ g/nm} \cdot \text{ms}^2; \]
\[k_{fu} = 1.8344 \times 10^{-3} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 1.9910 \times 10^{-3} \text{ g/} \text{nm} \cdot \text{ms}^2; \]
\[k_{fu} = 2.4296 \times 10^{-7} \text{ g/nm} \cdot \text{ms}^2; \]
\[k_{fu} = 4.9758 \times 10^{-4} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 1.6242 \times 10^{-4} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 1.6242 \times 10^{-4} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 2.4296 \times 10^{-7} \text{ g/nm} \cdot \text{ms}^2; \]
\[k_{fu} = 1.6242 \times 10^{-4} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 1.6242 \times 10^{-4} \text{ g/} \text{ms}^2; \]
\[k_{fu} = 2.4296 \times 10^{-7} \text{ g/nm} \cdot \text{ms}^2; \]

After defining the state vector as \(\dot{x}_1 = x_2 \), \(\dot{x}_2 = \dot{x}_2 \), the stage’s dynamic model can be written in the following vector state equations:

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = -M^{-1} \left(K_1 x_2 + K_2 x_1 + K_3 x_1^2 + K_4 x_1^3 + \Delta \right) \]
\[+ M^{-1} K_{12} A - M^{-1} K_{1} f \]
\[= A + B u + B_j f \]
\[f = x_2 - k_{uy} |\dot{x}| f \]

where
\[A = -M^{-1} \left(K_1 x_2 + K_2 x_1 + K_3 x_1^2 + K_4 x_1^3 + \Delta \right) \]
\[B = M^{-1} K_{12}, \quad B_j = -M^{-1} K_{1} \]

3. Stable Fuzzy Approximator-Based Adaptive Control for Micro/Nano Stages

3.1. Control Design Using Backstepping Method

Based on the nonlinear dynamics model (5), this subsection considers the backstepping-based stable control law design for the three-axis flexure stage.

First consider the \(x_i \) subsystem, \(\dot{x}_1 = x_2 \). Let

\[\dot{x}_1 = v_1 \]

where \(v_1 \) is a virtual input. Define the tracking error signal as

\[e_1 = x_1 - x_1 \]

(7)

where \(x_1 \) is the desired trajectory for the three-axis motion. Differentiating Equation (7), we have

\[\dot{e}_1 = \dot{x}_1 - \dot{x}_1 = v_1 - \dot{x}_1 \]

(8)

Considering the Lyapunov function candidate

\[V_1 = \frac{1}{2} e_1^T P e_1 \]

(9)

where \(P \in \mathbb{R}^{3 \times 3} \) is symmetric and positive definite, and differentiating Equation (9), we have

\[\dot{V}_1 = e_1^T P \dot{e}_1 = e_1^T P \left(v_1 - \dot{x}_1 \right) \]

Thus, we can choose the virtual input \(v_1 \) as

\[v_1 = \dot{x}_1 - \kappa e_1 \]

(11)

with positive definite feedback gain matrix

\[\kappa = \text{diag}[\kappa_1, \kappa_2, \kappa_3] \]

such that

\[\dot{V}_1 = -e_1^T P \kappa e_1 \leq 0 \]

(12)

and \(\lim_{t \to \infty} e_1(t) = 0 \), that is, the subsystem is asymptotically stable.

Further, the actual whole nonlinear system is considered:

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = A + B u + B_j f \]

After introducing new error signal

\[e_2 = x_2 - v_1 \]

(14)

we can obtain

\[\dot{e}_2 = \dot{x}_2 - \dot{v}_1 = A + B u + B_j f - \dot{x}_2 + \kappa e_1 - \kappa^2 e_1 \]

Then by considering the Lyapunov function candidate as

\[V_2 = \frac{1}{2} e_2^T P e_2 = \frac{1}{2} e_2^T P e_2 \]

(16)

where \(e = \begin{bmatrix} e_1^T & e_2^T \end{bmatrix} \), \(P = \text{diag} \begin{bmatrix} P_1, P_2 \end{bmatrix} \), \(P \in \mathbb{R}^{3 \times 3} \) is symmetric and positive definite, and taking the time derivative of Equation (16), we have

\[\dot{V}_2 = e_1^T P \left(e_2 - \kappa e_1 \right) \]
\[+ e_2^T P \left(A + B u + B_j f - \dot{x}_2 + \kappa e_1 - \kappa^2 e_1 \right) \]

Thus we can choose the nonlinear control law as follows:

\[u = u_s \]
\[= B^{-1} \left(\dot{x}_2 - 2 \kappa e_2 + \kappa^2 e_1 - A - B_j f - P_{11} P e_1 \right) \]

(18)

and obtain

\[\dot{V}_2 = -e_1^T P \kappa e_1 - e_2^T P \kappa e_2 = -e^T P \kappa e \]

(19)

where \(\kappa = \text{diag}[\kappa, \kappa] \).

If further choose \(\kappa = \kappa I \) with \(\kappa > 0 \), then we can
have
\[\dot{V}_f = -\kappa e^T Pe = -2\kappa V_f \leq 0 \]
and \(\lim_{t \to \infty} e(t) = 0 \). Thus, the equilibrium point \(e = 0 \) of the closed-loop system is exponentially stable.

The internal state variables \(f \) can also be shown to be bounded. Consider the Lyapunov function
\[V_f = \frac{1}{2} f^T f \]
(21)

By choosing the class-\(K_\infty \) functions
\[\gamma_{f1}(|f|) = \gamma_{f2}(|f|) = \frac{1}{2} f^T f, \]
then since
\[\gamma_{f1}(|f|) \leq V_f \leq \gamma_{f2}(|f|), \]
we know that \(V_f \) is positive definite, decrescent, and radially unbounded [35]. Differentiating Equation (21) and substituting in the internal dynamics
\[\dot{f} = x_2 - k_f^{-1} \dot{x} |f| f, \]
(23)
we have
\[\lim_{t \to \infty} x_2(t) = \dot{x}_d(t) \]
if the desired trajectory satisfies \(\dot{x}_d(\infty) = 0 \), then we can have \(\lim_{t \to \infty} V_f = 0 \). Thus, \(f \) is bounded and the overall closed-loop system is stable.

Let the output vector \(x_1 = 0 \), \(x_2 = 0 \), we can obtain the system’s zero dynamics as follows:
\[\dot{f} = 0 \]
(25)
That is, the hysteresis variables will become constants when the flexure mover returns to the origin and remains there.

In order to further enhance the system’s active damping capability, we can introduce a nonlinear damping term
\[-\eta \left(\frac{\partial V}{\partial \dot{e}} \right)^T \]
where \(\beta = \begin{bmatrix} 0 & B^T \end{bmatrix}^T \) into the control law (18). That is, the control law can be modified as
\[u_e = u_e - \eta \left(\frac{\partial V}{\partial \dot{e}} \right)^T \]
\[= \hat{K}_u^{-1} \dot{M} (\dot{x}_d - 2\kappa e_2 + \kappa^2 e_i) \]
\[+ \hat{M}^{-1} \left(\hat{K}_f \dot{f} + \hat{K}_x x_1 + \hat{K}_x x_2 \right) \]
\[- P_2^{-1} P_1 e_1 \]
(26)
where \(\hat{M}^{-1}, \hat{K}_f, \hat{K}_x, \hat{K}_x, \hat{K}_1, \hat{K}_2, \) and \(\hat{K}_3 \) are the nominal matrices for \(M^{-1}, K_f, K_x, K_x, K_1, K_2, \) and \(K_3, \) respectively, obtained by substituting in the estimated parameters, and \(\Delta \) represents the discrepancy due to the estimate error. Let \(\Delta = \Delta_2 + \hat{K}_3^{-1} \Delta \) be the integral uncertainty, we can further design a fuzzy function approximator \(\mathcal{F}_\beta \) to compensate for its effect. The modified control law can be written as follows:
\[u = \mathcal{F}(z, \dot{\theta}) \]
\[= \hat{K}_u^{-1} \dot{M} (\dot{x}_d - 2\kappa e_2 + \kappa^2 e_i) \]
\[+ \hat{M}^{-1} \left(\hat{K}_f \dot{f} + \hat{K}_x x_1 + \hat{K}_x x_2 \right) \]
\[- P_2^{-1} P_1 e_1 \]
(27)
where \(\dot{f} \) is the observed hysteresis vector for \(f \), \(z \) is the input vector of the controller, and \(\theta(t) \) is the parameters vector to be updated for the fuzzy compensator. Here
\[\hat{M} = \text{diag} [m_1, m_2, m_3], \hat{K}_u = \text{diag} [k_u, k_u, k_u], \]
\[\hat{K}_f = \text{diag} [k_f, k_f, k_f], \hat{K}_x = \text{diag} [k_x, k_x, k_x], \]
\[\hat{K}_i = \text{diag} [k_i, k_i, k_i], \hat{K}_2 = \text{diag} [k_2, k_2, k_2], \]
and
\[\hat{K}_3 = \text{diag} [k_3, k_3, k_3] \]
are used in Equation (27). The hysteresis observer and the fuzzy compensator design will be considered in the sequel.

3.2. Hysteresis Observer Design

Since the hysteresis variables are difficult to measure for feedback, a nonlinear observer can be suggested as:
\[\dot{x}_i = \dot{x}_i - \frac{1}{k_{ii}} |\dot{x}_i| \dot{x}_i - k_{ii} e_i, k_{ii} > 0, \]
(28)
where \(\dot{x}_i \) are the estimated hysteresis variables, \(e_i \) are the observer’s input variables to be defined later in the derivation of the stable control law and parameters update law, and \(k_{ii} > 0 \) are the input gains. Define estimate errors as
\[\tilde{x}_i(t) = x_i(t) - \dot{x}_i(t), \]
we have
\[\dot{\tilde{x}}_i = - \frac{1}{k_{ii}} |\tilde{x}_i| \tilde{x}_i + k_{ii} e_i, k_{ii} > 0, \]
(29)
And Equation (29) can be written in the following vector form:
\[\dot{f} = -\tilde{K}_f \hat{f} + K_e e_f \]

(30)

where

\[f(t) = [\tilde{f}_x(t), \tilde{f}_y(t), \tilde{f}_z(t)]^T \]

is the estimate error vector, and

\[\tilde{K}_f = \text{diag}[k_{f_x}, k_{f_y}, k_{f_z}], \]
\[K_e = \text{diag}[k_{ae}, k_{ae}, k_{ae}], \]
\[e_f(t) = [e_{f_x}(t), e_{f_y}(t), e_{f_z}(t)]^T. \]

3.3. Fuzzy Function Approximators Design

This subsection will construct the fuzzy function approximators using T-S fuzzy systems to compensate for the modeling errors and coupling effects among the three axes. The tracking errors \(e_{1,i}, e_{2,i}, \) and \(e_{3,i} \) are chosen respectively as the input variable of the fuzzy approximator for each axis, and the compensating voltage of each axis is the output variable. In the universe of discourse of each input variable, five fuzzy sets are defined as in Figure 2. The rule base of the fuzzy approximator for the \(i \)-th axis is considered as follows:

Rule \(j \): If \(e_{1,i} \) is \(A_j(e_{1,i}) \) Then

\[y_{i,j} = a_{1,j} e_{1,i} + b_{1,j} e_{2,i} + c_{1,j} e_{3,i} + d_{1,j}, \]

(31)

where \(A_j \)’s are the fuzzy sets defined over the universe of discourse of each input variable \(e_{1,i}, i = 1,2,3 \), stands for the \(x \), \(y \), and \(z \) axis, respectively.

Using singleton fuzzifier, product inference engine, and center average defuzzifier [36], the mapping of the fuzzy approximator for the \(i \)-th axis is

\[y_i = \sum_{j=1}^{5} \mu_{i,j} (a_{i,j} e_{1,i} + b_{i,j} e_{2,i} + c_{i,j} e_{3,i} + d_{i,j}) \]

(32)

where \(\mu_{i,j} = A_j(e_{1,i}) \) is the degree of firing of the \(j \)-th rule’s antecedent. Let

\[\psi = [e_{1,i}, e_{2,i}, e_{3,i}, 1]^T, \]
\[\theta_{i,j} = [a_{i,j}, b_{i,j}, c_{i,j}, d_{i,j}]^T, \]

then

\[y_i = [\mu_{1,i}, \psi^T, \mu_{2,i}, \psi^T, \mu_{3,i}, \psi^T]^T \]

(33)

Defining the regressor vector

\[\varphi_i = [\mu_{1,i} \psi^T, \mu_{2,i} \psi^T, \mu_{3,i} \psi^T]^T \]

and the unknown parameter vector

\[\theta_i = [\theta_{i,1}^T, \theta_{i,2}^T, \theta_{i,3}^T]^T, \]

Equation (33) can be written as

\[y_i = \varphi_i \theta \]

(34)

And the fuzzy approximators for the three axes can be written in the vector form as

\[\mathfrak{J}_f = \Phi_i \hat{\theta} \]

(35)

where

\[\Phi_i = \text{diag}[\varphi_i, \varphi_i, \varphi_i], \]
\[\hat{\theta} = [\hat{\theta}_{1,1}^T, \hat{\theta}_{1,2}^T, \hat{\theta}_{1,3}^T]^T. \]

3.4. Derivation of Parameters Update Law and Stability of Overall System

In this subsection, the input signals

\[e_f = [e_{f_x}, e_{f_y}, e_{f_z}]^T \]

of the hysteresis observer, and the parameters update laws of the fuzzy function approximators will be selected in the stability consideration of the overall adaptive feedback control system for a three-axis piezoelectric flexure stage.

Consider the following Lyapunov function candidate,

\[V_o = V_e + \frac{1}{2} \dot{\hat{\theta}}^T \Gamma^{-1} \hat{\theta} + \frac{1}{2} \tilde{f}^T K_o^{-1} \tilde{f} \]

(36)

\[= \frac{1}{2} e_f^T P e_f + \frac{1}{2} \dot{e}_f^T P_2 e_f + \frac{1}{2} \dot{\hat{\theta}}^T \Gamma^{-1} \dot{\hat{\theta}} + \frac{1}{2} \tilde{f}^T K_o^{-1} \tilde{f} \]

where \(\Gamma \) is symmetric and positive definite, \(\dot{\hat{\theta}} = \dot{\hat{\theta}} - \theta \).

Taking the time derivative, we have

\[\dot{V}_o = e_f^T P e_f + e_f^T P_2 \dot{e}_f + \dot{\hat{\theta}}^T \Gamma^{-1} \dot{\hat{\theta}} + \tilde{f}^T K_o^{-1} \tilde{f} \]

(37)

\[= e_f^T P (e_f - ke_f) \]
\[+ e_f^T P_2 (A + Bu - \ddot{x}_j + ke_f - \kappa^2 e_f) \]
\[+ \dot{\theta}^T \Gamma^{-1} \dot{\theta} + \tilde{f}^T K_o^{-1} \tilde{f} \]

(38)

After substituting in Equations (30) and (17), Equation
(37) becomes (38).

Let
\[\begin{pmatrix} M^{-1} K_x \end{pmatrix} \begin{pmatrix} \hat{K}_x \end{pmatrix} = I + \epsilon \mathbf{I}, \]
\[M^{-1} = \hat{M}^{-1} + \epsilon \mathbf{I}, \]
where
\[\epsilon = \text{diag}[\epsilon_1, \epsilon_2, \epsilon_3] \]
and
\[\epsilon_m = \text{diag}[\epsilon_{m1}, \epsilon_{m2}, \epsilon_{m3}] \]
are the error matrices, \(I \) is the identity matrix. Since \(f = \hat{f} + f \), where
\[\hat{f} = [\hat{f}_1, \hat{f}_2, \hat{f}_3]^T, \]
we have
\[\hat{K}_f \hat{f} - K_f f = \hat{K}_f (f - \hat{f}) - K_f f \]
and Equation (38) can be written as
\[\dot{V}_a = -e_t^T P \kappa e_t - e_t^T P \kappa e_t - \hat{f}^T K_x^{-1} \hat{K}_f \hat{f} \]
\[-e_t^T (M^{-1} \hat{K}_x) \eta (M^{-1} \hat{K}_x) P e_2 \]
\[+(-e_t^T P \hat{M}^{-1} \hat{K}_x \hat{f} + e_2 \hat{f}) \]
\[+e_t^T (M^{-1} \hat{K}_x) \Phi \hat{\theta} + \hat{\theta}^T \Gamma^{-1} \hat{\theta} - \Delta_e \]
where \(\Delta_e \) is defined as (40).

Choosing the input vector of the hysteresis observer \(e_f \) as:
\[e_f^T = e_t^T P \hat{M}^{-1} \hat{K}_f \]
(41)
That is,
\[e_f = \hat{K}_f \hat{M}^{-1} P e_2 \]
(42)
we can obtain
\[\dot{V}_a = -e_t^T P (e_t + \kappa e_t) + e_t^T P \left[M^{-1} (f - \hat{f} + f - K_x x_2 - K_x x_3 - K_x x_3^2 - K_x x_3^3 - \Delta) \right] \]
\[+e_t^T (M^{-1} \hat{K}_x) \left[\hat{K}_x^{-1} \hat{M} \left[\hat{x}_2 - 2 \kappa e_2 + \kappa^2 e_1 + \hat{M}^{-1} \left(\hat{x}_2 + \hat{x}_3 + \hat{x}_2^2 + \hat{x}_3^2 - \hat{K}_x^2 - \Delta \right) - \hat{P}^{-1} P e_2 \right] \]
\[-\eta \hat{M}^{-1} \hat{K}_x P e_2 + \mathcal{J}_p \right] - \hat{x}_2 - 2 \kappa e_2 + \kappa^2 e_1] + \hat{\theta}^T \Gamma^{-1} \hat{\theta} - \hat{f}^T K_x^{-1} \hat{K}_f \hat{f} + \hat{f}^T e_f \]
(38)
\[\Delta_e = -e_t^T P \left[M^{-1} \left(\hat{K}_f - f \right) + \left(\hat{K}_x - f \right) x_2 + \left(\hat{K}_x - f \right) x_3 + \left(\hat{K}_x - f \right) x_3^2 + \left(\hat{K}_x - f \right) x_3^3 - \Delta \right] \]
\[+e_2 (K_x - f - K_x x_2 - K_x x_3 - K_x x_3^2 - K_x x_3^3 - \Delta) + e \left(\hat{x}_2 - 2 \kappa e_2 + \kappa^2 e_1 \right) - e \hat{P}^{-1} P e_2 \]
\[+e \hat{M}^{-1} \left(\hat{K}_f + \hat{K}_x x_2 + \hat{K}_x x_3 + \hat{K}_x x_3^2 + \hat{K}_x x_3^3 - \hat{K}_x x_3^2 - \Delta \right) \]
(40)
By further representing the uncertainty as:
\[\Delta_e = e_t^T P \left(M^{-1} \hat{K}_x \right) \Delta_e, \]
and substituting
\[\Phi \hat{\theta} = \Phi_f (\hat{\theta} + \hat{\theta}) = \Phi_f \hat{\theta} + \Phi_f \theta \]
in Equation (43), we have
\[\dot{V}_a = -e_t^T P \kappa e_t - e_2^T e_2 - \hat{f}^T K_x^{-1} \hat{K}_f \hat{f} \]
\[-e_t^T (M^{-1} \hat{K}_x) \eta (M^{-1} \hat{K}_x) P e_2 \]
\[+e_2^T (M^{-1} \hat{K}_x) \Phi_f \hat{\theta} + \hat{\theta}^T \Gamma^{-1} \hat{\theta} \]
\[+e_2^T (M^{-1} \hat{K}_x) \left(\Phi_f \theta - \Delta_e \right) \]
(44)
Thus, we can choose the parameters adaptation law of the fuzzy approximators as:
\[\dot{\hat{\theta}} = -\Gamma \left(e_t^T P \left(M^{-1} \hat{K}_x \right) \Phi_f \right)^T + \sigma \left(\hat{\theta} - \theta^* \right) \]
(45)
If further choose \(\kappa = \kappa I \), \(\eta = \eta I \), and assume the approximation error \(\omega = \mathcal{J}_p \theta - \Delta_e = \Phi_f \theta - \Delta_e \) be bounded, i.e., \(|\omega| \leq W \), then we can obtain
\[\hat{V}_a \leq -\kappa e_t^T P \left(M^{-1} \hat{K}_x \right) \hat{f} + W \frac{\sigma}{4\eta} \hat{\theta} \]
\[+\frac{\sigma}{2} \left(\hat{\theta} - \theta^* \right)^T \left(\hat{\theta} - \theta^* \right) \]
(46)
Letting
\[d = \frac{W}{4\eta} + \frac{\sigma}{2}(\theta - \theta^0)^T (\theta - \theta^0) \]
and defining class-\(K_\infty \) functions:
\[\gamma_{\partial i}(|e|) = V_i = \frac{1}{2} e^T p e, \]
and
\[\gamma_{\partial j}(|\tilde{f}|) = \tilde{f}^T (K_i, \tilde{K}_j) \tilde{f}, \]
Equation (46) can be rewritten as
\[\dot{V}_u \leq -2\kappa \gamma_{\partial i}(|e|) - \gamma_{\partial j}(|\tilde{f}|) - \frac{\sigma}{2} \tilde{\theta}^T \tilde{\theta} + d \]
Hence, when
\[|e| \geq \frac{1}{\gamma_{\partial i}(d/2\kappa)} \]
or
\[|\tilde{f}| \geq \frac{\sqrt{2d/\sigma}}{\gamma_{\partial j}(d)}, \quad V_u \leq 0, \]
and thus the overall adaptive control system is boundedly stable.

4. Results and Discussion

In this section computer simulation will be used to illustrate the performance of the proposed adaptive fuzzy control with hysteresis observer for a three-axis flexure stage. Triangular uncertainties for the \(x, y, \) and \(z \) axes \((D_x, D_y, \) and \(D_z)\) shown in Figure 3 are selected in the simulation. The desired trajectories for the \(x, y, \) and \(z \) axes are selected as follows \((t \text{ in ms})\):

![Graphs showing triangular uncertainties for x, y, and z axes](image)

Figure 3. Triangular uncertainties for the x, y, and z axes. (a) \(D_x \), (b) \(D_y \), (c) \(D_z \).
\[x_d(t) = y_d(t) = 5000 + 5000 \sin \left(\frac{2\pi}{1000} t - \frac{\pi}{2} \right) \] (nm)

\[z_d(t) = 3000 + 3000 \sin \left(\frac{2\pi}{1000} t - \frac{\pi}{2} \right) \] (nm)

Controller parameters are selected as follows:

\[P_1 = \text{diag}[15, 15, 50], \]
\[P_2 = I_3, \quad \kappa = 0.5I_3, \]
\[\eta = 0.4I_3, \quad \Gamma = \text{diag}[\Gamma_1, \Gamma_2, \Gamma_3], \]
\[\Gamma_1 = \text{diag} \left[\begin{array}{cccc}
10^{-4} & 10^{-5} & 10^{-6} & 10^{-4} & 10^{-5} \\
10^{-4} & 10^{-5} & 10^{-6} & 10^{-4} & 10^{-5} \\
10^{-4} & 10^{-5} & 10^{-6} & 10^{-4} & 10^{-5} \\
\end{array} \right], \]
\[\Gamma_2 = \text{diag} \left[\begin{array}{cccc}
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
\end{array} \right], \]
\[\Gamma_3 = \text{diag} \left[\begin{array}{cccc}
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
10^{-5} & 10^{-4} & 10^{-5} & 10^{-4} & 10^{-5} \\
\end{array} \right]. \]

\[K_o = I_3, \sigma = 0.1 \text{ and } \theta_i(0) = 0, i = x, y, z. \]

The simulation results are shown in Figure 4. From Figures 4(a)-(c), we know that the tracking performances are very good. The tracking errors of \(x\) and \(y\)-axes are within ±2.5 nm - 2.2 nm, and the tracking error of \(z\)-axis is within ±2 nm. From Figures 4(d)-(f), the hysteresis-variable estimate errors of \(x\) and \(y\)-axes are within ±0.5 nm, and the estimate error of \(z\)-axis is within ±1 nm. The control voltages \(u_x, u_y, \) and \(u_z\) are shown in Figure 4(g), and the fuzzy compensation voltages \(\Phi_{\rho,x}, \Phi_{\rho,y}, \) and \(\Phi_{\rho,z}\) are shown in Figure 4(h). And the parameters update processes of the function approximators for \(x, y, \) and \(z\)-axes are shown in Figures 4(i)-(k), respectively. The parameters of the first and fifth rules are not updated since the tracking errors are small and they are nearly not fired. Although the persistent exciting of the system signals of this considered simulation case are not sufficient enough to let the other parameters converge to constants, the adaptive control system can guarantee the tracking control performance to be still very good.

5. Conclusion

In this work, a stable adaptive control law with nonlinear dynamic hysteresis observer for a three-axis flexure stage
is proposed. Fuzzy function approximators are included in the control law to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effect. The stability of the overall closed-loop system is guaranteed using the Lyapunov theory. Simulation results are shown to illustrate the effectiveness of the suggested control approach. In the future study, actual implementation can be considered for the development of a precision stage for testing the control performance.

REFERENCES

Copyright © 2012 SciRes.