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Abstract 
 
In this paper, we describe an algorithm for predicting future positions and orientation of a moving object in a 
time-varying environment using an autoregressive model (ARM). No constraint is placed on the obstacles 
motion. The model addresses prediction of translational and rotational motions. Rotational motion is repre-
sented using quaternions rather than Euler representation to improve the algorithm performance and accuracy 
of the prediction results. Compared to other similar systems, the proposed algorithm has an adaptive capabil-
ity, which enables it to predict over multiple time-steps rather than fixed ones as reported in other works. 
Such algorithm can be used in a variety of applications. An important one is its application in the framework 
of designing reliable navigational systems for autonomous mobile robots and more particularly in building 
effective trajectory planners. Simulation results show how significantly this model could reduce computa-
tional cost. 
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1. Introduction 
 
The importance of designing and producing robots capa-
ble of performing tasks in time-varying environments is 
gaining increasing recognition. Consider, for example, 
multiple autonomous robots that could replace humans 
working in unsafe environments—cleaning up hazardous 
wastes or handling radioactive materials. For true auto- 
nomy in such tasks, a capability that would enable each 
moving robot to react adaptively to its surrounding envi-
ronment is needed while carrying out a certain task. For 
instance, each one of the robots needs to navigate be-
tween two locations. The situation is similar to that of a 
person crossing a street. He needs to recognize the pres-
ence of obstacles and people around him, identify static 
and moving ones, and constantly update his knowledge 
of the environment. Several researchers have described 
algorithms for robot motion planning systems in static 
environments. For a recent survey on this subject and a 
more detailed presentation of the different methodologies 
on robot motion planning, see [1,2]. As for the dynamic 
environments, there have been fewer studies, for exam-
ple [3-8]. All of these assume complete knowledge about 

the environment and a full control of the motion of ob-
stacles. Conceptually, we may subdivide the problem of 
robot navigation into three inter-related phases: sensor 
integration and data fusion, scene interpretation and map 
building, and trajectory planning. Each of these phases 
consists of several sub-problems. One of which is the 
prediction problem that deals with predicting future con-
figurations (positions and orientations) of moving obsta-
cles. This information is needed for trajectory planning 
of the robot in order to avoid any possible future colli-
sions. In the case of humans, the prediction procedure is 
usually characterized by a high performance and rarely 
misses its objective. This may be because of the accurate 
decisions we make based on the data collected through 
our biological sensors and what we predict about the 
environment over a period of time. In this article, we 
propose an algorithm to predict future configurations of 
freely moving obstacles based on an autoregressive 
model (ARM) with conditional maximum likelihood 
approach and the least squares method to estimate the 
model parameters. To make our analysis practical and 
more realistic, we do not assume any control over the 
trajectories of the moving objects. We assume that pre-
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vious and current positions and orientations are available 
from sensory devices. 

In the past, Kehtarnavaz [9] and Elnagar [10] proposed 
similar algorithms. Kehtarnavaz, proposed a prediction 
algorithm that is also based on an ARM. Their goal was 
to establish a collision zone around each moving obstacle 
and then treat zones as stationary obstacles. Collision 
zones represent forbidden regions which are defined 
based on a high likelihood of collision. However, the 
proposed algorithm has two drawbacks. First, it dealt 
with translating obstacles only and, second, it is too con-
servative (transferring the dynamic environment into a 
static one). Later, Elnagar described another ARM-based 
algorithm that accounts for the prediction of translating 
and rotating objects in a truly dynamic sense, [10]. 

Morkovian models were also used to predict motion as 
sequential decision problems in a completely known en-
vironment. Such a model is called a Markov Decision 
Process (MDP). A modified version of such a model is 
also used in local environments where there is uncer-
tainty or lack of information about the environment. This 
type of a model is called a Partially Observable Markov 
Decision Process (POMDP). Examples of works that 
made use of the former model to predict future motion of 
moving objects in local-based collision avoidance sys-
tems may be found in [11-13]. A similar global-based 
system is reported in [14]. Examples of works that are 
based on the POMDP model can be found in [15] and 
[16]. Because the POMDP reward function is updated at 
each time step and hence the POMDP is solved at each 
time step, the need for a fast and efficient solution 
method arises. Moreover, all works above rely on fixed 
time steps too. 

Tsai et al. [17] described a model for predicting the 
positions and the orientations of a moving robot in a 3-D 
environment based on constant time intervals. The mo- 
del is based on a potential field where the repulsive for- 
ce and torque between the robot and the obstacles are 
used to re-adjust the configurations of the robot so as to 
keep it far from the obstacles in the environment while 
passing through bottlenecks in its free space. It should 
be noted that this model emphasizes on keeping a dis-
tance from obstacles rather than precisely predict the 
configurations. 

In this work, we extend the work to take into account 
variable time-steps rather than fixed ones. This is done 
based on the feedback received from the prediction phase 
of previous configurations. The more accurate the pre-
dictions are, the longer the time period (between two 
successive readings of the environment) will be. Our 
proposed algorithm uses the idea of quaternions opposed 
to Euler-representation, which was used in all past works, 
to model rotation. The application of quaternions in ro-

botics is not new (for example, see [18,19]). However, 
the combination of quaternions and variable sample times 
in the context of robot motion prediction is new. 

The next section describes the procedure for predicting 
positions of a translating object using an ARM. Estima-
tion of the autoregressive parameters along with simula-
tion results for the translational case is presented in Sec-
tion 2. Predicting a trajectory of a rotating object is dis-
cussed in Section 3. Section 4 describes the general algo-
rithm for predicting the motion of a freely moving object. 
More simulation results are demonstrated in Section 5. 
 
2. Translational Motion 
 
In this section, we develop a prediction model to be used 
by a robot to decide about future positions of translating 
obstacles. Our intention is to use this model within a tra-
jectory planning algorithm in a time-varying environ-
ment. Before the robot starts to interact with its envi-
ronment, data about visible obstacles are collected, via 
sensors, for a short period of time. This step enables the 
robot to learn about any translating obstacles in its visi-
bility field1 at discrete points in time-space. Therefore, 
modeling using difference equations is appropriate, but 
since sensory readings are usually noisy, an autoregres-
sive model is more relevant and useful. Formally, an 
ARM that calculates the position of a translating obstacle, 

i , at step  based on its previous positions is given 
by: 
O n

     ,1
e

p x
i p j ij

x n x n j


   n         (1) 

where  ix n
O

, 1j

 is the actual random sequence of positions 
for obstacle  along the x-axis. i

,, ,p j p   , are autoregressive parameters, and 
 x nei  is a zero-mean white Gaussian noise. Further-

more, the difference equation is said to be of order . 
Our objective is to estimate the autoregressive coeffi-
cients from a number of observations. If the sampling 
steps, of sensing the environment, are small enough then 
it is acceptable to assume constant or slowly changing 
acceleration for a translating obstacle. Hence, it is rea-
sonable to model acceleration of , along the x-axis, 
with the following first order ARM: 

p

iO

    1,1 ex
i i i xx n x n j     n         (2) 

Other acceleration components ( y  and ) along the 
y and z axes are computed similarly. 1,1

z
x  is a first order 

autoregressive parameter and  is the prediction 
error. On the other hand, a new x-position of a translat-
ing obstacle can be estimated using Newton’s equations 

 nei

1Visibility field (VF) specifies the visibility range of the robot, which 
is defined as a sphere (3-D)/circle (2-D) with grid that is uniformly 
distributed on its surface. 
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of motion: 

        21
1 1 1

2i i n i nx n x n x n t x n t            (3) 

where  and  are the velocity and 
acceleration of obstacle i  along x-axis at step 

 1x n    1ix n 
O  1n  , 

respectively. nt  is the variable time interval between 
 and . The classical positional relationship 

between acceleration and velocity along x-axis is: 
 1n   n

     1
i
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x n x n
x n
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Substituting for  x n  and  in (4) and then 
equating Equation (2) with the result while substituting 
for  yields: 
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where 2 2 3n n nt t t     . Equation (1) is a 3rd order 
ARM (compare with Equation (1)). Similarly, we can 
predict the y and z coordinates of a translating object 
along y and z-axes, respectively. In general the predic-
tion model for translational motion can be expressed in 
the following matrix notation: 
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where  , ,w x y z  and the autoregressive coefficients 
are: 
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where 2n nA t t    and 2n nA t t   . 
 
2.1. Estimating the Coefficients 
 
To estimate the coefficients 3,( , 1,2,3j j ) 



 using a 
given sequence of data points that belong to obstacle 

 we need to minimize        1 , 2 , ,i i i iO x x x N

   e ,ex y
i in n   and  ez

i n  in Equation (6). There are 
several approaches to do so. We present two of them. 
The first one is the conditional maximum likelihood ap-
proach [20], [21] to estimate both the autoregressive co-
efficients and 2 , which is the variance of the noise. 
The second model is based on the least squares method. 

As for the first model, we will work the details of 
minimizing  xe n

i  only. The same procedure is used to 
minimize the other error terms. 
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where N is the number of readings. To maximize the 
logarithmic likelihood function ( c ), we differentiate 
Equation (7) partially with respect to 3,1 3,2 3,3

l
, ,x x x    and 

2
x  and equating the derivatives to zero. Note that for 
 3,  we can only minimize the summation 

part of Equation (7). However, looking again at Equation 
(5) we notice that all 

1, 2,3j x
j

 ’s are dependent on one coeffi-
cient 1,1

x  which can be determined from the following 
conditional likelihood function [20]: 
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where estimates should fall within the allowable range 

1,11 1x        Note that (7) is the logarithm of 
the conditional likelihood function for a third-order 
autoregressive model whereas (8) represents the function 
of a first-order model. Maximizing (8) with respect to 

1,1
x  and 2

x ,we obtain: 
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     (9) 

Using 1,1
x , we can easily determine the values of 

 ’s in Equation (5) and consequently predict the future 
position of a translating obstacle based on its history po-
sitions. The model needs at least four points before it 
starts the prediction process. Compared with the first 
approach (i.e., computing all x ’s), the second one is 
computationally inexpensive. It should be noted that the 
estimates for the translational components along the y 
and z axes can be obtained with the exact procedure de-
scribed earlier. 

The second model which is widely used, [22], for es-
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timating the coefficient 1,1

x  as it changes with time, is 
to fit an ARM to the sequence of acceleration in a least 
squares sense as follows: 
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1,1

ˆ arg min 1
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where  is a weight factor. For a uniformly 
changing acceleration, 

0  
  is kept closer to 1. The solu-

tion to the above least squares problem is: 
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Similarly, we can obtain coefficients for translation 
along the y and z axes. Notice the initial values for  
and  are set to 0. We used both models of estimating 
coefficients in our simulation results. The second model 
produces better results than the first model when pre-
dicting the motion of arbitrary moving objects. However, 
the first model outperforms the second when predicting 
for uniformly moving objects.  

Δ
Ψ

 
2.2. Simulation Results: Translational Case 
 
We introduce several simulation examples to show how 
the proposed model works. In Figure 1, we assume a 2D 
work space in which a point-object is translating. Based 
on its past positions, a predicted trajectory is generated 
using the proposed ARM (dotted line). Each prediction 
process is performed in a variable t  time. The closer 
the dots are on the graph, the smaller the sampling time 
is. If the prediction is accurate, the time interval of the 
next reading is enlarged. The main difference between 
the two graphs in Figures 1 and 2 is how the coefficient 
  is estimated? Figure 1 shows a predicted trajectory 
of a translating point-object over a long period of time 
(120 sampling steps) with varying acceleration. Although 
the point does not follow a structured or well-defined2 
trajectory, as in Figure 2, the predicted result (dotted line) 
is quite close to the actual trajectory (solid line). The 
mean square errors are 1.12 and 0.82 distance-units in 
upper and lower graphs, respectively. A simulation in-
volving a well-defined trajectory (sin(x) curve) is dem-
onstrated in Figure 2. In this case, almost a perfect 
match (mean square errors are 0.0016 and 0.0017 dis-
tance-units in upper and lower graphs, respectively) is 
obtained between the actual and predicted future posi- 

 

Figure 1. Predicting future positions based on (8) (upper 
graph) and (9) (lower graph) for a moving point-object with 
varying acceleration. 
 

 

Figure 2. Predicting positions based on (8) (upper) and (9) 
(lower) of a translating point-object with a uniform accel-
eration. 
 
tions. While the upper graph of each figure shows the 
result of using the conditional likelihood method [10], 
the lower one depicts the result of using the least squares 
technique [9]. The lower graph shows slightly better re-
sults in the case of varying acceleration. Comparing our 
results to these two models ([19,10]) where prediction is 
carried out based on a fixed time step, we did achieve as 
good results based on the adaptive model but with less 
time steps. For example, we obtained the results of Fig-
ures 1 and 2 in 88 and 99 steps, respectively, compared 
to 120 and 360 steps when either of the systems of [10] 

2A well-defined trajectory is one that can be modeled by a mathe-
matical function over a given time period. 
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or [9] is used. This is a significant improvement. 
 
3. Rotational Motion 
 
For a moving point-object or a sphere, the analysis in-
troduced so far is sufficient to predict its next position. 
However, it is not enough to predict the motion of a 
more general object. This is because the most general 
type of motion an object can undergo is a combination of 
translation and rotation. We have already dealt with the 
translational component. Now, we describe a similar 
model for the rotational component. Without loss of 
generality, we represent a given moving object with its 
center of mass and some other reference (feature) points 
that belong to the object. 

For example, a line segment in space is defined by its 
center of mass and end-points. We only predict the tra-
jectory of the center of mass and then use it for the other 
reference points. Reference points are used to show the 
orientation of a given object in a 3D-space. Specifically, 
the problem in general can be stated as follows: given M 
key-frames ( iF , i = 1, 2, ···, M) that represents the num-
ber of previous orientations, what is the expected orien-
tation of key-frame M + 1(FM+1), when given orienta-
tions of the  , ,i i i i x y z     frames with respect to a 
global frame of reference3, W? , ,   i i i

x y and z  

x n

 are the 
rotation angles about X, Y and Z axes, respectively. 

The mathematical analysis for developing the rota-
tional-prediction model is exactly analogous to the one of 
the translational case. If we assume that the object under-
goes a constant angular acceleration, which is a fair as-
sumption when the sampling steps are small for the type of 
application we consider, then the angular acceleration can 
be modeled with the following ARM of order 1: 

     1,1 1 exi i
x x in n               (11) 

A new orientation of a rotating obstacle Oi can be pre-
dicted by the following classical relation: 

        21
1 1 1

2
i i i i
x x x xn n n T n            T

 

 (12) 

where  and  are the angular veloc-
ity and acceleration of obstacle Oi at step (n − 1), respec-
tively. Since the change in rotational angles is expected 
to be small because  is small, Equation (12) can be 
rewritten in a third order ARM as Equation (5) to pro-
duce similar results. Similar to the translational case, 
future orientation of a rotating obstacle based on its pre-
vious orientations can be predicted. 

 1i
x n   1i

x n 

T

However, instead of representing the rotation as a 
combination of 3 rotations as mentioned earlier, we 

choose a different approach. That is rotation about an 
arbitrary axis in space. This is frequently found when 
modeling robot manipulators. For example, a grip of a 
robot usually rotates around an axis that is inclined with 
the principle axis of its arm. This type of rotation is 
known as rotation using quaternions. A good introduction 
to the mathematics of quaternions and their relationship to 
rotation can be found in [23]. A unit-length quaternion 
( q a b c d   i j k , where ) cor-
responds to the point  in 4-dimensions. There 
is a natural map that takes a quaternion and produces a 
rotation. For example, quaternion cor- 
responds to a rotation 

2 2 2 2a b c d   
d)

q a b c   i j
 

1
(a, b,c,

1cos
dk

  about the axis (b,c,d). 
One should notice that the mapping of quaternions to 
rotations is 2-to-1. There are several advantages for using 
quaternions to describe rotations instead of using Euler 
angles. First, the space of a quaternion has the same 
space as the set of rotations whereas this is not the case 
for Euler angles except for 3 × 3 orthogonal matrices 
with determinant 1. Further, the number of parameters 
used to describe a quaternion is 4 compared to 9 in Euler 
representation. The disadvantage of using quaternions is 
the 2-to-1 mapping, which requires the choice between 
two values for the appropriate one.  

Rotation using quaternions can be viewed as a se-
quence of translations and simple rotations that will 
make the arbitrary axis coincide with one of the principle 
coordinate axes, then rotation is performed, and finally 
the axis is returned to its original position. In general, we 
perform the following sequence of steps: translate one of 
the endpoints of quaternion to the origin, perform rota-
tion around x and y axes to align the quaternion with the 
z-axis, now rotate around the z-axis with the desired ro-
tation value, reverse rotation around the x and y axes, 
and finally apply reverse translation.  
 
4. Complete Algorithm 
 
The following algorithm summarizes the steps needed to 
predict the (n + 1)th future position and orientation of a 
free moving object in space based on it’s first n positions 
and orientations: 

Input: previous positions and orientations. 
For i from 1 to No_of_obstacles do 
For each feature point in obstaclei do 

 Compute , ,x y z
i i i    

 Determine the rotation axis 
 Predict next position , ,x y z

i i i    and orienta-
tion 

 Apply transformation and obtain the resulting 
position in 3-D 

End do 3It is also possible that orientations are measured with respect to each 
frame of reference Fi. End do 
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5. Simulation Results: Rotational Case 
 
In the following simulations, we predict the orientations 
of an open cubic object that is specified by its end-points. 
In the first simulation, the object rotates around an arbi-
trary axis AB, where A = (0.5,0.5,1) and B = (0.5,0.5,0), 
which is pointed at in the figure. This axis is parallel to 
the z-axis. We rotate the object around this axis under 
varying angular acceleration. Figure 3 shows a top view 
of the 3D environment of both the actual and the pre-
dicted configurations of the cube. We only show a lim-
ited number of frames because otherwise the graph will 
be cluttered and difficult to follow. Another view of the 
environment, but in 3D, is shown in Figure 4. Figure 5 
depicts the predicted angle values compared to the actual 
readings. The mean square errors are 0.0168 and 0.00142 
distance-units in upper and lower graphs, respectively. 

In all simulations, solid lines represent the actual set of  
 

 

Figure 3. A 2D view of the prediction of a rotating cubic 
object. 
 

 

Figure 4. A 3D view of the rotating cubic object. 

readings whereas the dotted lines characterize the pre-
dicted ones. In this simulation, we have 120 readings but 
the algorithm performed only 59 readings and produced 
these good prediction results. In the second simulation, 
we change the rotation axis AB to be defined by A = 
(0,0,0) and B = (1,1,1) under the same angular accelera-
tion of the first simulation. While Figure 6(a) shows the 
several frames of the actual and predicted configuration 
of the cube in 3D. 

Figure 7 depicts the prediction of a rotating triangle 
after 12 and all readings, respectively. Out of 200 read-
ings, the algorithm performed only 69 readings and pro-
duced these good prediction results (the mean square 
errors are 0.0685 and 0.0545 distance-units by both  
 

 

Figure 5. Prediction vs actual readings over the time inter-
val for rotational angles based on (9) (upper graph) and (10) 
(lower graph). 
 

 

Figure 6. Prediction of a rotating cubical object around a 
rotational axis. 
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(a) 

 

 
(b) 

Figure 7. (a) Prediction of a rotating triangle; (b) prediction 
of a rotating triangle. 
 
models, respectively). Figure 8 shows the actual versus 
predicted results; notice the sampling rate along the 
curves. 

Figure 9 shows another simulation of a simple repre-
sentation of a 3-link manipulator rotating around two 
rotational axes (link 1 and link 2 in the figure). Figure 
10 shows another simulation of a simple representation 
of a 3-link manipulator rotating around an arbitrary axis. 
 
6. Conclusions 
 
We have described an adaptive algorithm for predicting 
future positions and orientations of moving obstacles in a 
3D time-varying environment using an ARM. Orienta-
tions are represented as quaternions. Configurations of 
moving obstacles are not known priori, but we assume  

 

Figure 8. The prediction of the rotating cube but around a 
different rotation axis. 
 

 

Figure 9. A simulation of a 3-link manipulator and its rep-
resentation. 
 
knowledge of previous positions and orientations are 
available to the ARM from sensory devices. Four read- 
ings are required by the algorithm before the prediction 
process starts. Simulation results show how close the 
predicted trajectory to the original one, which compares 
favorably with other existing models. 

However, the proposed algorithm outperforms similar 
existing ones in terms of computational cost because of 
its adaptive capability while maintaining accurate predic-
tion results. In addition, the use of quaternions simplified 
the analysis and improved accuracy of the prediction 
process when compared to other models that use Euler 
angles representation to model rotation. The proposed 
algorithm can be used in a variety of applications. An  
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Figure 10. A manipulator rotating as a rigid body. 
 
important one is its application in the framework of de-
signing reliable navigational systems for autonomous 
mobile robots and more particularly in building effective 
trajectory planners. 
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