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Abstract 
This study presents an overview of viscoelastic characteristics of biocomposites derived of natu-
ral-fibre-reinforced thermoplastic polymers and predictive models have been presented in order 
to understand their rheological behavior. Various constitutive equations are reviewed for a better 
understanding of their applicability to polymer melt in determining the viscosity. The models to 
be investigated are the Giesekus-Leonov model, the Upper Convected Maxwell (UCM) model, the 
White-Metzner model, K-BKZ model, the Oldroyd-B model, and the Phan-Thien-Tanner models. 
The aforementioned models are the most powerful for predicting the rheological behavior of hy-
brid and green viscoelastic materials in the presence of high shear rate and in all dimensions. The 
Phan-Thien Tanner model, the Oldroyd-B model, and the Giesekus model can be used in various 
modes to fit the relaxation modulus accurately and to predict the shear thinning as well as shear 
thickening characteristics. The Phan-Thien Tanner, K-BKZ, Upper convected Maxwell, Oldroyd-B, 
and Giesekus models predicted the steady shear viscosity and the transient first normal stress co-
efficient better than the White-Metzner model for green-fibre-reinforced thermoplastic compos-
ites. 
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1. Introduction 
The rheological properties and extrudate behavior of polymer melts are of central importance in the processing 
and fabrication of polymer products. The melt-rheological behavior of short sisal, coir, and pineapple fibre-re- 
inforced polymer systems has been studied in various works [1] [2]. However, there is limited research on the 
effects of parameters such as the fibre length, the fibre-matrix interaction, and the aspect ratio of green-fibre-re- 
inforced thermoplastic biopolymer composites on nonlinear rheological behavior [3] [4]. 

The mathematical explanation of a viscoelastic fluid is much more complex than its Newtonian counterparts. 
In addition to the conservation equations of mass and momentum, the constitutive equation or rheological equa-
tion of state is required; this relates stress to deformation. For a viscoelastic liquid this relationship is nonlinear 
and it has no standard form universally valid for each fluid in every flow situation. This reality is one of the rea-
sons why the subject of viscoelasticity is so challenging. 

The constitutive equation should not only describe the rheological characteristic of the polymer melt but also 
give the final fibre orientation of the composite. For this reason it is fundamental to evaluate the role of the bio-
composite’s rheology and the natural fibre-polymer interaction. It has been observed that the total stress of the 
composite increases as fibres are added; consequently a satisfactory constitutive equation could be achieved by 
adding an extra stress term to an already existing constitutive equation, which then adequately describes the 
polymer melt [5]-[7]. 

Accordingly, constitutive equations found in the literature that adequately describe polymer melt will be ex-
plored for their application in biocomposites processing. Particular focus will be given to nonlinear rheological 
characteristics of viscoelastic materials. The power-law, Cross WFL, Casson, Bird-Carreau and Hershel Bulkley 
models are among the most preferred rheological models due to their ability to predict velocity and pressure dis-
tributions in uniform flows in addition to their simple representation of shear thinning behaviour [7]-[12]. How-
ever, in the case of high shear stress of viscoelastic polymer melt, the predictive power of these models is con-
siderably reduced [10]. 

In this study, a review of nonlinear rheological models for viscoelastic materials from natural-fibre-reinforced 
thermoplastic polymers will be presented by a special review of the Upper convected Maxwell, Phan-Thien- 
Tanner (PTT), K-BKZ, Oldroyd-B, Giesekus and Whhite-Metzner constitutive models. 

2. Viscoelastic Characteristics of Materials 
Viscoelasticity is the property of a material to demonstrate both viscous and elastic properties under the same 
conditions when it undergoes deformation. Viscous materials present resistance to shear flow and strain linearly 
with time when a stress is applied. The shear stress of these materials depends on strain: when strain is applied 
and then released, they return to their initial configuration. Some common and well-known viscoelastic materi-
als include paint, blood, ketchup, honey, mayonnaise, polymer melt, polymer solution and suspension, shampoo, 
and corn starch. 

At constant temperature, water, air, ethanol, and benzene are represented as Newtonian fluids. This means 
that the rapport between the shear stress versus shear rate is a straight line with a constant slope for a fixed tem-
perature that is independent of the shear rate. Also, the plot passes through the origin: that is, the shear rate is 
zero when the shear stress is zero [13]. 

A fluid that does not behave in a Newtonian fashion between shear stress and shear rate when it undergoes 
deformation is commonly termed non-Newtonian. This means that the relation between shear stress and shear is 
not a straight line but is non-linear. High-molecular-weight liquids, which include polymer melts and solutions 
of polymers, as well as liquids in which fine particles are suspended, are usually non-Newtonian. In this case, 
the slope of the shear stress versus shear rate plot will not be constant as we change the shear rate. When viscos-
ity decreases with increasing shear rate, the fluid is called shear-thinning. In the opposite case, where the viscos-
ity increases as the fluid is subjected to a higher shear rate, the fluid is called shear-thickening. Shear-thinning 
fluids also are called pseudoplastic fluids and shear-thickening fluids are also called dilatants. Shear-thinning 
behavior is more common than shear-thickening [13]-[16]. 

Another type of non-Newtonian fluid is viscoplastic or “yield stress” fluid. This is a fluid that will not flow 
when only a small shear stress is applied. The shear stress must exceed a critical value known as the yield stress 
for the fluid to start flowing. Hence, viscoplastic fluids behave like solids when the applied shear stress is less 
than the yield stress. Once it exceeds the yield stress, the viscoplastic fluid will flow just like an ordinary fluid 
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[14] [15]. 
On the other hand, some classes of fluids exhibit time-dependent behavior. This means that even ata given 

constant shear rate, the viscosity may vary with time. This category of material comprises both thixotropic and 
rheopectic fluids, whose behaviors in this respect are opposites. The viscosity of a thixotropic liquid will de-
crease with time under a constant applied shear stress. However, when the stress is removed, the viscosity will 
gradually recover with time as well. By contrast, rheopectic fluid behavior can be observed when the fluid in-
creases in viscosity with time when a constant shear stress is applied [15] [16]. 

3. Rheological Modelling of Viscoelastic Composites 
Mathematical models of viscoelasticity are mostly based on a differential or integral representation. From a 
mathematical point of view, the differential representation is easier to handle than the integral one. However, the 
integral representation is capable of predicting the time dependence more generally. 

The characteristic feature of linear viscoelastic materials is that the stress is linearly proportional to the strain 
history. Linear viscoelasticity is usually applicable only for small deformations, low rate, low stress, and linear 
materials. However, in reality about 90% of fluids are nonlinear, with large deformations, and with nonlinear 
response in the presence of such deformations. Nonlinear viscoelastic behavior is usually exhibited when the 
deformation is large and most of the time when the material changes its properties under deformations [17]-[24]. 
Consequently, nonlinear viscoelastic mathematical models are needed [25]-[30]. 

Existing nonlinear mathematical rheological models are often constructed through modifications and exten-
sions to higher-order stress or strain terms of the linear theory [31]. As noted earlier, from a mathematical point 
of view, the integral representation of a viscoelastic constitutive equation is more difficult to perform than the 
differential form. Thus, several models characterized by elastic, viscous, and inertial nonlinear contributions 
with various complexities have been developed for describing the nonlinear behavior of these materials [32]. 
However, in these models, due to the mathematical complications, only the elastic or viscous nonlinearity is of-
ten taken into account and the inertial contribution is ignored. Moreover, there are only a few theoretical models 
formulated with constant-value rheological material parameters. 

For these reasons, nonlinear models with constant rheological coefficients are required. The elastic and vis-
cous nonlinearities are taken simultaneously into consideration through a simple nonlinear generalized Maxwell 
fluid model consisting of a nonlinear spring connected in series with a nonlinear dashpot obeying a power law 
with constant material coefficients [33]-[36]. According to a previous study by Bauer (1984), suitable constitu-
tive equations for viscoelastic materials must relate stress, strain, and their higher time derivatives: or better said, 
they must take into consideration the elastic, viscous, and inertial nonlinearities simultaneously [35]. Moreover, 
various researchers have explored how polymer viscoelasticity affects the diameter distribution of polymer melt- 
extrudate fibres and have demonstrated that increasing the melt viscosity leads to an increase in fibre diameter 
but has little effect on the diameter distribution [36]. The commonly used Phan-Thien-Tanner (PTT) and Upper- 
Convected Maxwell (UCM) constitutive models assume constant shear stress acting on the fibre surface and ne-
glect the effects of heat transfer [37]-[46]. The K-BKZ type of constitutive equation has been widely used in 
various studies on predicting the rheological behavior of viscoelastic materials. For example, Galante used the 
constitutive equation to describe viscoelastic effects in an integral equation of the K-BKZ type, suitable for 
polymer solutions and melts [40]. The problem with the constitutive equation of K-BKZ is that it is not fully ap-
plicable to predicting the nonlinear rheological behavior of viscoelastic materials [39]-[41]. 

The behavior and properties of a non-Newtonian fluid within compressible flow are provided by the conser-
vation of mass and momentum equations, respectively. 

4. Governing Equations 
The governing equations for the annulus flows are presented as follows. 

Continuity equation for incompressible fluids: 0v∇⋅ =  
where v  is the velocity vector. 

Equation of momentum: V V V p g
t

ρ τ ρ∂ + ⋅∇ = −∇ +∇ ⋅ + ∂ 
 

where ρ  is the density, p  is the pressure, and τ  is the stress tensor. 



R. Cherizol et al. 
 

 
9 

5. Constitutive Equations 
There are many numerical representations for viscoelastic models. The most common models are Upper-con- 
vected Maxwell (UCM), Phan-Thien-Tanner (PTT), Oldroyd-B, Giesekus, K-BKZ and White-Metzner. 

5.1. K-BKZ Model 
The K-BKZ integral constitutive equation with multiple relaxation times describes and predicts the stresses within 
a fibrous suspension, solution, or molten polymer. Also, an extra term is added to the constitutive equation to 
account for the extra stresses due to the presence of fibres and to predict the orientation of a given fibre under-
going stresses within the suspension or molten [40]. The motivation for developing such a constitutive equation 
with these two considerations is to present an equation that can describe the rheological behavior of polymeric 
fibrous solutions and moltens while also to have a model, which can be used in numerical simulations. 

c f pτ τ τ= +  

The fibre equation is: 

( )
3

1,2 12224ln
f ij

nL u S S
h

D

τ η γ
 
 
 

=  

where ( )η γ  is the viscosity of the polymer, γ  is the shear rate, f  is the fibre volume fraction, D  and L  
are the diameter and length of the fibre, n  is the number of the suspension, and h  is the average distance 
from a given fibre to its nearest neighbor [41]. Dinh and Armstrong proposed the following expression to calcu-
late the distance between two fibres: 

( ) 1 2h nL −=  for aligned systems 
( ) 12h nL

−
=  for random systems 

Orientation tensor: 

( )dij i jS p p p pψ= ∫  

The polymer equation is: 

( ) ( )1
1 1

1
exp , d

Nt k
p c c t

k k k

G t t H I II C t tτ
λ λ

−
− −−∞

=

 ′− ′ ′= − 
 

∑∫  

where pτ  is the shear stress for the polymer, kλ  and kG  are the relaxation times and relaxation moduli, N  
is the number of relaxation modes, 1

tC−  is the finger strain tensor, and 1 1,  C CI II− −  is its first and second in-
variants. H  is the strain memory function, and the following formula is used, proposed by Papanastasiou et al.: 

( ) ( ) ( )1 1
1 1

,
3 1C C

C C

I II
I I

H
I

α
α β β− −

− −

=
− + + −

 

For simple shear flow, the strain-memory function is given as: 

( )1 1 2,C CIIH I α
α γ− − =
+

 

( )1
21 exp d

t N k
p tk

k k

G t t C t tατ
λ λ α γ

−
=−∞

 ′− ′ ′= − 
+ 

∑∫  

where α  and β  are nonlinear model constants to be determined from shear and elongation flow data, respec-
tively. γ  is the shear strain the Tstrain-memory function in simple shear flow is dependent on α  butnoton 
β . This is expected since α  is viewed as a shear-thinning parameter, while β  is viewed as an elonga-
tional-thinning parameter [40] [41]. 

5.2. Upper-Convected Maxwell Model (UCM) 
UCM model is a differential generalization of the Maxwell model for the case of large deformations based on 
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the upper-convected time derivative. The model can be written as: 1 2 Dτ λ τ η+ =
︿

 

( ) ( )T1
2

D u u = ∇ + ∇   

D  is the tensor of the deformation rate 

1τ λ τ ηγ+ = 

︿

 

where λ  is the relaxation time, η  is zero shear viscosity, and τ
︿

 is tis he upper-convected time derivative of 
the stress tensor, which is expressed as: 

( ) ( )T V
t

V Vτ τ ττ τ∂
= ∇ ∇+ ⋅ − − ∇
∂

︿

 

The UCM constitutive model incorporates memory effects of materials, but its viscosity is constant at various 
shear rates [42]-[45]. 

5.3. White-Metzner Model 
The White-Metzner model is derived from the network theory of polymers (White and Metzner 1963). Modifi-
cation of the viscosity and relaxation parameters as a function of the shear rate, γ  leads to the White-Metzner 
model. This model exhibits shear thinning, not because of nonaffine motion, but because the relaxation is accel-
erated at high strain rates, where the relaxation is faster than any deformation [46]. The viscoelastic differential 
constitutive model takes the form: 

( ) ( )1  2 Dττ λ γ η γ+ =
︿

 

where ( )η γ  can be obtained from the experimental shear viscosity curve and the function ( )λ γ  can be ob-
tained from the experimental first normal stress difference curve. 

5.4. Phan-Thien-Tanner Model (PTT) 
The PTT model refers to a quasi-linear viscoelastic constitutive equation, which is widely used in simulation of 
polymer solution flows. The original Phan-Thien Tanner equation was written using both of the following modi-
fications simultaneously: the Gordon Schowalter derivative and the segment kinetics. It employs specific forms 
for the creation and destruction rates of the network junctions in the network theory of Lodge and Yamamoto 
[47] [48]. Although the Phan-Thien Tanner model over predicts both the shear viscosity at higher shear rates and 
the transient and extensional properties, it accurately predicts the zero shear viscosity and seems suitable for 
numerical simulations of polymer melts. It is worth noting that, compared to integral models such as the Bird- 
Carreau and Wagner models, differential models such as the PTT model provide robust numerical algorithms 
and exhibit good behavior in FEM simulations [47]. The interested reader is referred or more accurate compari-
son between the K-BKZ (as integral model) and the PTT model. 

In the PTT model, the extra stress tensor is considered as the sum of the viscoelastic component 1τ , and the 
purely Newtonian component 2τ . 

1 2τ τ τ= +  

in which 2τ  is given by: 

2 22 Dτ η=  

where D  is the strain rate tensor. 
The complete form of the PTT constitutive equation for the viscoelastic component 1τ  is: 

( ) ( )
2

f trτ
ετ λ λ γ γτ τ τγ η+ + + = 

︿

 

or 

( )T 2YD D GDτ ξ τ τ τ
λ

+ ⋅ ⋅+− ⋅ =
︿
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where the Oldroyd’s upper convective derivative τ
︿

 isdefined by: 

TDV V V
Dt

τ τ τ= − ⋅∇ −∇ ⋅
︿

 

where V  represents the velocity matrix, TV  is the transpose of the velocity matrix, and ( )D V Dt  is the 
material derivative of the velocity matrix. 

Analyzing the expression above, the first term represents the stress tensor transport and the transient part of 
the flow. In the second term, the slipping between the fluid polymeric chains is computed. The third term in-
cludes the elastic effects. Finally, the term on the right side of the equality represents the diffusive effects. τ  is 
the stress tensor, D  the deformation-rate tensor, λ  the fluid relaxation time, and G  the relaxation module. 
The parameter ξ  controls the amount of movement between the fluid polymeric chains [49]. For 0ξ =  the 
model is named PTT Affine and the slipping between the polymeric chains is neglected. The function Y  de-
pends on the rate of creation and destruction of the links between the chains.Moreover, the PTT model incorpo-
rates the memory effect of materials and its viscosity can vary with the change of the shear rate. When ξ  is 
zero, PTT constitutive equation reduces to its simplified form (SPTT): 

( )( )f tr τ τ λ ητ γ+ = 

︿

 

Phan-Thien and Tanner assumed specific forms for the creation and destruction rates of the network junctions 
and derived a constitutive equation containing two free parameters, ε   and ξ  [48]. The exponential constitu-
tive model takes the following form: 

( ) 1 11 1exp 21
2 2

tr Dλ ξ ξε τ τ λ τ τ η
η

   + − +      
=



︿ ︿

 

ε  and ξ  are the adjustable parameters of the model. 
The parameters η  and λ  are the viscosity and relaxation time respectively, measured from the equilibrium 

relaxation spectrum of the fluid. They are not considered as adjustable parameters of the model. The PTT model 
can be solved using a single relaxation time or multiple relaxation times, similar to the Giesekus model. The li-
near form of the PTT model predicts shear thickening at high elongational rates, after which a plateau is reached 
[47]-[49]. 

5.5. Giesekus-Leonov Model 
Giesekus proposed a constitutive model based on a concept of configuration-dependent molecular mobility. In 
this model, the viscoelastic component of the extra stress tensor is represented with the following parameters 

pη , λ  and α . Owing to the highly nonlinear nature of the model equations, all of the properties need to be 
obtained numerically [50]-[55]. 

21
1 0p p p

αλ
τ λτ τ ηγ

η
+ − + =  

The α  parameter is the dimensionless Giesekus-model mobility factor and controls the extensional viscosity 
and the ratio of second normal stress difference to the first one. The dimensionless The Giesekus-model mobility 
factor used to evaluate the anisotropic drag is represented by 0 1α< < . For 0α =  the model becomes the 
isotropic UCM model, while for 1α =  the model is merely an anisotropic drag, and for 0α >  the model re- 
presents shear-thinning behavior. The Giesekus model predicts the tension-thickening region for elongational 
flow, after which a plateau is reached; but it shows the existence of a tension-thinning region at high strain rates 
[56]-[59]. 

5.6. Oldroyd-B Model 
The Oldroyd-B model is a principal form of viscoelastic model: 

( )1 1 1 1 22 0ddτ λτ η λ− − =+ 

︿

 

where d  is the rate of deformation tensor, 1η  is the shear viscosity, 1λ  is the relaxation time, and 2λ  is the 
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second relaxation parameter [60]-[62]. The Oldroyd-B model is mostly used to describe the rheological charac-
teristics of polymer liquids composed at low concentration and moderate shear rates for high-viscosity Newto-
nian molecular weight polymer. 

1) At 1 0λ =  the model simplifies to a second-order fluid with a vanishing second normal stress coefficient. 
2) At 2 0λ =  the model reduces to the convected Maxwell model. 
3) At 1 2λ λ=  the model reduces to a Newtonian fluid with viscosity 1η . 

6. Conclusions 
Understanding the complex behaviour of polymer materials and interpreting it as one general equation requires a 
vast knowledge of the characteristics and formation of this complex type of material. Since rheometer does not 
provide the necessary information for all important rheological properties, constitutive equations are the best 
available tools for effective process control. 

The development of valuable models for composite behavior and the exploration of appropriate constitutive 
equations to describe this complex behavior have been a high priority for many researchers. However, under-
standing the rheological behavior of viscoelastic composites is a redoubtable challenge. 

The K-BKZ, PTT, Oldroyd-B, and Giesekus models will be widely studied and extended in future works. 
These models will be applied to the prediction and determination of the shear viscosity of viscoelastic compos-
ites as a function of shear stress and shear rate during extrusion and injection moulding processes. 
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