/
oo Resmurch
0.00 Publishing

Journal of Geoscience and Environment Protection, 2017, 5, 71-88
http://www.scirp.org/journal/gep

ISSN Online: 2327-4344

ISSN Print: 2327-4336

Uncertainty Analysis of Spatial Autocorrelation
of Land-Use and Land-Cover Data within
Pipestem Creek in North Dakota

Papia F. Rozario?", Peter G. Oduor?, Larry Kotchmans3, Michael Kangas#*

'Environmental & Conservation Sciences, North Dakota State University, Fargo, ND, USA
*Department of Geosciences, North Dakota State University, Fargo, ND, USA

3State Forester, North Dakota Forest Service, Molberg Forestry Center, Bottineau, ND, USA
“Nursery & State Forest Team Leader, North Dakota State University, Fargo, ND, USA

Emalil: *papia.rozario@ndus.edu, peter.oduor@ndus.edu, larry.kotchman@ndus.edu, michael.kangas@ndus.edu

How to cite this paper: Rozario, P.F,
Oduor, P.G., Kotchman, L. and Kangas, M.
(2017) Uncertainty Analysis of Spatial
Autocorrelation of Land-Use and Land-
Cover Data within Pipestem Creek in
North Dakota. Journal of Geoscience and
Environment Protection, 5, 71-88.
https://doi.org/10.4236/gep.2017.58008

Received: May 23, 2017
Accepted: July 30,2017
Published: August 2, 2017

Copyright © 2017 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

A major threat to biodiversity in North Dakota is the conversion of forested
land to cultivable land, especially those that act as riparian buffers. To reverse
this trend of transformation, a validation and prediction model is necessary to
assess the change. Spatial prediction within a Geographic Information System
(GIS) using Kriging is a popular stochastic method. The objective of this study
was to predict spatial and temporal transformation of a small agricultural wa-
tershed—Pipestem Creek in North Dakota; USA using satellite imagery from
1976 to 2015. To enhance the difference between forested land and non-fo-
rested land, a spectral transformation method—Tasseled-Cap’s Greenness
Index (TCGI) was used. To study the spatial structure present in the imagery
within the study period, semivariograms were generated. The Kriging predic-
tion maps were post-classified using Remote Sensing techniques of change
detection to obtain the direction and intensity of forest to non-forest change.
TCGI generated higher values from 1976 to 2000 and it gradually reduced
from 2000 to 2011 indicating loss of forested land.
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1. Introduction

Sustainable use of riverine systems and riparian habitats are directly affected by
changing land use patterns [1]. Modeling land use patterns is an important tech-

nique for the projection of alternative pathways into the future [2] [3] [4]. Geo-
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graphic Information Systems (GIS) combined with satellite remote sensing has
varied application and has been recognized as a powerful tool in detecting land
use and land cover change (LULC) [5] [6] [7]. Satellite data is cost effective and
the information obtained from them can be used as inputs to build land use and
land cover datasets [8]. Spatial representation of the LULC change is essential for
regional planners and management [9]. To elucidate the optimal use of land and
to provide input data for watershed models, it is necessary to have information
on existing LULC change patterns [10].

Geostatistics deals with problems pertaining to spatial serial data, mapping
and interpolation of the data on a statistical platform that are related to a time
analysis [11]. It has an ability of distinguishing the continuous nature of LULC
and is able to detect random variations during modeling, dependent on the spa-
tial correlation within the ecosystem [12]. Prediction using sample points is car-
ried out by the spatial behavior and spatial distribution of parameters to minim-
ize the error while doing any type of image classification [13]. Inverse Distance
Weighting and Splines are deterministic interpolation methods to analyze
change in land use patterns but these methods tend to oversimplify the results,
as the spatial autocorrelation of the data is not considered [14]. A geostatistical
method is usually preferred where sample data points can be transformed into
continuous surfaces to understand the spatial autocorrelation within the data
[15]. The parameters used for any analysis can be aggregated from pixels to ob-
ject class representation using image segmentation [16].

Kriging Interpolation is a very popular geostatistical method [17] [18]. Ordi-
nary Kriging estimates the mean as a constant in the searching neighborhood
[19]. The Kriging technique has recently become very common for analyzing
spaceborne data [20]. The values of unsampled locations are estimated by Krig-
ing models using weighted averaging of the known sampled locations, which
provide a correlation among the neighboring values that can be modelled as a
function of the geographical distances between each location across the study
area within the variogram [21]. Global and local information in predictions can
be obtained from Kriging, but the ability of the variogram in describing spatial
dependence is a function of the quality and quantity of the data samples [21].
According to a study by [22], exponential models are often best-fitted semivari-
ogram models as they use the weighted least-squares method. [23] [24] and [25]
introduced the semivariogram to remote sensing and discovered that the para-
meters of the variogram can be directly related to a feature in an image. The
primary assumption of a geostatistical analysis when assuming spatial continuity
is that samples that are located close to each other are similar than samples that
are far apart [25]. This variation in geographic data or the spatial relation can be
analyzed from a semivariogram model. An ideal semivariogram has associated
features such as the lag, nugget, range and sill. The direction and distance are
commonly referred to as the lag, the nugget is variability at zero distance and
represents sampling and analytical errors, the range of influence in a semivario-

gram designates the extent beyond which autocorrelation between sampling sites
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is very less or zero and the sill represents the variability of spatially independent
samples [26].

An effective way of mapping vegetation and analyzing LULC change is using
the Tasseled-Cap transformation [27]-[36]. The Tasseled-Cap transformation is
a conversion of the original bands of an image into a new set of bands with de-
fined interpretations that are useful for vegetation mapping [37]. The term Tas-
seled-Cap comes from the shape of the plot of the data that resembles a cap. A
Tasseled-Cap transform is performed by taking “linear combinations” of the
original image bands—similar in concept to principal components analysis [36]
[37]. Tasseled-Cap reduces the volume of the data without any loss of informa-
tion and its spectral features are directly related to land features [38] [39] [40].
This transformation in remote sensing is the conversion of the readings in a set
of data into composite values that is the weighted sums of separate data readings
[41]. One of these weighted sums measures roughly the brightness or greenness
of each pixel in the scene [41]. [42] reported that the composite values are linear
combinations of the values of the separate data readings, but some of the weights
are negative and others are positive. The composite values represent the degree
of greenness of the pixels or the degree of yellowness of vegetation or perhaps
the wetness of the soil [42] [43]. Usually there are just three composite variables
listed within a remote sensing interface. The Tasseled-Cap transformation of
Landsat thematic mapper (TM) consists of six multispectral features, all of
which could be potentially differentiated in terms of stability and change in a
multitemporal dataset [41] [42] [43]. The first three features, which are bright-
ness index, greenness index, and wetness index, respectively usually account for
the most variation in a single-date image [44]. [45] analyzed Landsat data for
environmental studies and found the Tasseled Cap transformation to be a con-
sistent indicator of assessing forest change as it captures Shortwave Infrared
(SWIR). Tasseled-Cap’s Greenness Index (TCGI) would ideally identify forest
cover but it is less sensitive to any topographic effect [45]. [46] led a study to dis-
tinguish old growth and mature forests in the Pacific Northwest using Landsat
datasets. In their study, the Tasseled-Cap brightness index did not separate old
growth and mature forests due to their sensitivity to topography but the green-
ness and the wetness index were able to identify forest disturbances.

The primary objectives of this study were: 1) to apply Ordinary Kriging In-
terpolation technique to smooth TCGI values, extracted from 30 m to 60 m spa-
tial resolution Landsat images in order to analyze spatio-temporal transforma-
tions; 2) to apply change detection techniques to the interpolated prediction
maps to yield the intensity of the LULC change.

2. Site Description

The Pipestem Creek watershed, 8-Digit Hydrologic Unit Code (HUC) (10160002)
sub-basin is approximately 257,178 hectares covering parts of 4 counties (Foster,

Kidder, Stutsman, and Wells) in the Missouri Region—James Sub-Region of
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North Dakota. Of the 257,178 hectares, Stutsman County contains 65%, Wells
22%, Foster 8%, and Kidder 5% [47] [48]. North Dakota’s land base is mostly a
prairie land Ze. it mostly consists of grasslands [49]. Most of the forests in this
region are found scattered along the river bank or in urban patches [48] [49].
Pipestem Creek starts from the Pipestem Dam downstream to its confluence
with the James River, which is about 9.01 kilometers [50]. The mean annual pre-
cipitation is from 330 to 559 millimeters and mean elevation ranging from 390
to 780 meters. The type of soil found at this location is Williams-Bowbells loams
which is a well-drained, non-saline clay loam with calcium carbonate of about
20% [51]. Figure 1 shows the study area map and its location in North Dakota.

3. Materials and Methodology

3.1. Image Processing

Image classification and processing was done on a remote sensing platform—
ENVI®4.5. Six Landsat images (Table 1) covering the study site were down-
loaded from the Global Land Cover Facility [52]. The images were acquired by
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Kidder

Lt
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==
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10 15 Coordinate System: NAD 1983 UTM Zone 14N
I Miles Projection: Universal Transverse Mercator

Figure 1. Map of study area—Pipestem Creek watershed in North Dakota.

DOI: 10.4236/gep.2017.58008

74 Journal of Geoscience and Environment Protection


https://doi.org/10.4236/gep.2017.58008

P. F. Rozario et al.

Table 1. Landsat time series scenes used in the study.

Satellite/Sensor Location Date Path/row*
Landsat-2 MSS North Dakota 06/08/1976 34/27
Landsat-4 TM North Dakota 31/08/1991 31/27

Landsat-7 ETM+ North Dakota 30/08/2000 31/27

Landsat-7 ETM+ North Dakota 18/08/2005 31/27

Landsat-7 ETM+ North Dakota 22/08/2011 31/27

Landsat-8 ETM+ North Dakota 19/08/2015 31/27

*Path/row of the MSS image is listed according to Worldwide Reference System-1 (WRS-1) while those of
TM and ETM+ are according to WRS-2.

different sensors (MSS, TM, and ETM+) and were from six different time pe-
riods, as listed in Table 1. The Landsat images were processed by applying a
dark object subtraction and then converting the image digital numbers to reflec-
tance values. Dark object subtraction was applied to remove shadows, scattering
and electrical gains within the datasets, e.g. [53]. This was done to obtain a
sound quantitative analysis of the images. Reflectance values were used to calcu-
late several vegetation indices for each image subset. These include the Norma-
lized Difference Vegetation Index (NDVI) and Tasseled-Cap indices. NDVI was
calculated in ENVI®4.5 using the equation NDVI = (NIR — Red)/(NIR + Red)
[54]. Band 3 was used as red and band 4 was used as near IR to generated NDVI
and the output datasets were saved as floating point data type. Tasseled-Cap was
calculated in ENVI®4.5 using the Transform tool where the reflectance images of
years 1976 to 2015 were used as inputs. The output image generated four bands—
Brightness index, Greenness index (TCGI), Wetness index and a null or Non-
index. These individual bands were displayed and linked to acquire regions of
interest (ROI) representing forested areas. 30 training sites were acquired. Spec-
tral separability analysis was performed using ROI Separability tool on NDVI
and TCGI, incorporating mean and standard deviation values of extreme classes
in each scene, to analyze the most suitable index for differentiating between fo-
rested areas and non-forested areas using methodologies of [55] and [56]. The
ROI statistical results displayed univariate statistics such as minimum value,
maximum value, mean, standard deviation among other values. Since the reso-
lution of MSS and TM/ETM+ are different, for the MSS image, a 3 x 3 pixels
window was selected and for the TM/ETM+ images, 6 x 6 pixels window was
selected. The window values were averaged to generate new pixel values using
raster calculator in ArcMap® 10.4.1. Thus, the resolution of the images was re-
duced by factors of 3 and 6, to specifically fit the MSS and TM/ETM+ images

respectively.

3.2. Geostatistical Analysis

To better understand the spatial structure of the imagery on a given date and lo-
cation, an empirical semivariogram model such as Ordinary Kriging was applied
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to the sampled data. The six transformed datasets corresponding to the six years
were imported to ArcMap® 10.4.1 where they were clipped to the watershed
boundary shapefile. Geostatistical Analyst was used to perform Ordinary Krigin-
gon each dataset for each model type: Gaussian, Exponential, J-Bessel, K-Bessel,
Circular, and Spherical. To consider the model that best fitted the study, certain
parameters were considered—1) Cross-validation scatter plot where the measured
and predicted values were compared by using the difference between them, 2)
Mean estimation error where the difference between the estimated and the known
point values were considered, and 3) Mean standardized squared estimation error.
These parameters were generated in ArcMap® 10.4.1 using Geostatistical Analysis.
Based on these parameters, among other Kriging models, the Exponential mod-
el was found to be the best fit for this study. A smoothing factor of 0.2 was ap-
plied to the search neighborhood type for all the datasets. The scatterplots de-
rived from the Exponential model for each datasets is shown in Figure 2. The
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Figure 2. Cross validation scatterplots of the Exponential model of Pipestem Creek watershed data-
sets for years 1976 to 2015 where (a) 1976, (b) 1991, (c) 2000, (d) 2005, (e) 2011, and (f) 2015.
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resultant interpolation images are shown in Figure 3. Isotropic distribution was

assumed in all cases, similar to the study by [57].
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Figure 3. Kriging Interpolation maps of Pipestem Creek watershed based on TCGI or GI (Greenness Index) values for years
1976 to 2015.
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4., Results and Discussion

4.1. Image Processing Analysis

Figure 4 is the visual representation of TCGI for the Pipestem creek watershed.

The greener areas represent forest cover and the light green to white areas

1976

TCGI

N

- Low

0 35 7 14
s Miles

Figure 4. TCGI images of Pipestem Creek watershed for years 1976 to 2015.

DOI: 10.4236/gep.2017.58008 78 Journal of Geoscience and Environment Protection


https://doi.org/10.4236/gep.2017.58008

P. F. Rozario et al.

represents non-forested areas to barren areas. TCGI is high for the years 1976 to
1991 and it gradually decreases from 2000 to 2015. The images generated for NDVI
(Figure 5) for years 1976 to 2015 showed similar results to TCGI when compared

Figure 5. NDVI images of Pipestem Creek watershed for years 1976 to 2015.
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visually, but the spectral separability analysis generated low standard deviation
for TCGI which is indicative of data clustering around the mean, implying data
reliability. TCGI efficiently determined each class on what it resembled most in
the base image. TCGI was originally designed to examine vegetation properties,
its advantage lies in its ability to compare different sensors with different spec-
tral bands, as it subsets different spectral bands to one normalized layer of TCGI

values [58].

4.2. Semivariogram Analysis

All six TCGI images were used for the geostatistical analysis. First, empirical se-
mivariograms for the six periods were established. The rationale for using a se-
mivariogram model was the similarity in spatial structure of most of its va-
riables, gradually increasing or decreasing as a function of the increasing dis-
tance from the river until the boundary of the watershed, and the typical shape
of the variogram. In the current case, the presence or absence of sill may be an
indicator of presence or absence of forested areas. The level of sill may be related
to the level of spatial correlation within the watershed. Therefore, if semi-va-
riance reaches its maximum point (sill), beyond that, the data may not be corre-
lated. The range may be the defining boundary of the watershed since it incor-
porates all the pixel values within the image that are correlated.

Results of the cross-validation analyses of the semivariogram models are pre-
sented in Tables 2-6. For an ideal model, the Mean prediction error should be
near 0 (this investigates bias), Root Mean Square (RMS) prediction error should
be small, average standard error should be close to RMS error, Mean-standar-
dized prediction error should be near 0 and RMS standardized prediction error
should be near 1, indicating that the estimated prediction uncertainty is consis-
tent [59]. In Table 2, the RMS ranged from 0.043 to 0.088, average standard er-
ror ranged from 0.036 to 0.084, which is not very close to the RMS values.
Mean-standardized prediction error values ranged from 0.041 to 0.057. RMS
standardized prediction error values were greater than 1 for years 1976 to 1991,
ranging from 1.690 to 1.721. This model did not prove the ability to reproduce
the observed values accurately. In Table 3, the RMS ranged from 0.008 to 0.031,

Table 2. Semivariogram parameters for Gaussian Geostatistical Simulation models fitting
the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek watershed
(Nugget = 0; Lag = 1000 m).

Gaussian model 1976 1991 2000 2005 2011 2015
Sill 0.0023 0.0018 0.0021 0.0021 0.0024 0.0017
Range (m) 765.5 762.5 797.9 1030.7 1079.1 1101
Root-mean-square (RMS) 0.051 0.088 0.067 0.047 0.048 0.043
Average standard error 0.052 0.066 0.036 0.070 0.073 0.084
Mean standardized 0.044 0.043 0.041 0.057 0.047 0.045
Root-mean-square-standardized 1.690 1.721 0457 0.513 0.72 0451
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Table 3. Semivariogram parameters for Spherical Geostatistical Simulation models fitting
the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek watershed
(Nugget = 0; Lag = 1000 m).

Spherical model 1976 1991 2000 2005 2011 2015
Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010

Range (m) 700.5 766.5 799.9 1040.7 1099.1 1101
Root-mean-square (RMS) 0.031 0.008 0.017 0.017 0.028 0.023
Average standard error 0.002 0.056 0.016 0.060 0.063 0.054
Mean standardized 0.021  0.003 0.001 0.027 0.007 0.015
Root-mean-square-standardized 1.501 1.281 1.057 1.213 1.172 0.951

Table 4. Semivariogram parameters for Circular Geostatistical Simulation models fitting
the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek watershed
(Nugget = 0; Lag = 1000 m).

Circular model 1976 1991 2000 2005 2011 2015
Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010
Range (m) 700.5 762.5 7979 1100.7 1079.1 1200.6
Root-mean-square (RMS) 0.031 0.038 0.017 0.017 0.028 0.023
Average standard error 0.002 0.006 0.016 0.060 0.013 0.054
Mean standardized 0.001  0.033 0.021 0.017 0.007 0.015
Root-mean-square-standardized 1.591 1.681 1.657 1.613 1.672 1.651

Table 5. Semivariogram parameters for J-Bessel Geostatistical Simulation models fitting
the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek watershed
(Nugget = 0; Lag = 1000 m).

J-Bessel model 1976 1991 2000 2005 2011 2015
Sill 0.0009 0.0006 0.0008 0.0008 0.0003 0.0004

Range (m) 842.,5 7625 7979 1030.7 1079.1 1100
Root-mean-square (RMS) 0.001  0.008 0.007 0.007 0.008 0.013
Average standard error 0.012 0.066 0.056 0.070 0.073  0.024
Mean standardized 0.011  0.053  0.051 0.007 0.007 0.005
Root-mean-square-standardized 1.091 1.081 1.007 1.613 0.772  0.858

average standard error ranged from 0.002 to 0.063, which is not very close to the
RMS values. Mean-standardized prediction error values ranged from 0.001 to
0.027. RMS standardized prediction error values were greater than 1 for years
1976 to 2011, ranging from 1.057 to 1.501. This model also did not prove the
ability to reproduce the observed values accurately. In Table 4, the RMS ranged
from 0.017 to 0.038, average standard error ranged from 0.002 to 0.054, which is
not very close to the RMS values. Mean-standardized prediction error values
ranged from 0.001 to 0.033. RMS standardized prediction error values were
greater than 1 for years 1976 to 2015, ranging from 1.591 to 1.681 which was not
considered to be a best fit. In Table 5, the RMS ranged from 0.001 to 0.013, av-
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erage standard error ranged from 0.012 to 0.073, which is not very close to the
RMS values. Mean-standardized prediction error values ranged from 0.001 to
0.013. RMS standardized prediction error values were greater than 1 for some
datasets, ranging from 0.772 to 1.613. This model did not prove the ability to re-
produce the observed values accurately. In Table 6, the RMS ranged from 0.001
to 0.128, average standard error ranged from 0.010 to 0.042, which is not very
close to the RMS values. Mean-standardized prediction error values ranged from
0.005 to 0.033. RMS standardized prediction error values were greater than 1 for
years 1976 to 2015, ranging from 1.001 to 1.672 which implied that this model
was not found to be a good fit.

In Table 7, the RMS ranged from 0.017 to 0.038, average standard error
ranged from 0.016 to 0.063, which is quite close to the RMS values. Mean-stan-
dardized prediction error values ranged from 0.007 to 0.041. RMS standardized
prediction error values were closer to 1 ranging from 0.591 to 0.681. The slope
coefficient was very close to unity and the intercept coefficient was very close to
zero, proving the ability of the chosen exponential model to reproduce the ob-
served values [60] [61]. The least-squares measure of fit was used, incorporating
exponential model, as shown in Figure 3.

All semivariograms were processed with 20 lags of 1000 m each. Because of the
irregular distribution of forests and non-forests, data values exactly separated by

1000 m could not be expected, thus the range of 1000 m to 20,000 m was selected.

Table 6. Semivariogram parameters for K-Bessel Geostatistical Simulation models fitting
the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek watershed
(Nugget = 0; Lag = 1000 m).

K-Bessel model 1976 1991 2000 2005 2011 2015

Sill 0.0005 0.0002 0.0007 0.0001 0.000 0.000

Range (m) 893.5 7625 7979 1030.7 1079.1 1002
Root-mean-square (RMS) 0.001 0.018 0.027 0.117 0.128 0.123
Average standard error 0.042 0.046 0.036 0.010 0.013 0.014
Mean standardized 0.021  0.033 0.011 0.027 0.007 0.005
Root-mean-square-standardized 1.001  1.001 1.105 1214 1.672 1.651

Table 7. Semivariogram parameters for Exponential Geostatistical Simulation models fit-
ting the Tasseled Cap Greenness Index (TCGI) products for the pipestem creek wa-
tershed (Nugget = 0; Lag = 1000 m).

Exponential model 1976 1991 2000 2005 2011 2015
Sill 0.0015 0.0012 0.0007 0.0011 0.0008 0.0010
Range (m) 7425 7625 7979 1030.7 1079.1 1101
Root-mean-square (RMS) 0.031 0.038 0.017 0.017 0.028 0.023
Average standard error 0.062 0.056 0.016 0.060 0.063 0.054
Mean standardized 0.041 0.033 0.021 0.027 0.007 0.015
Root-mean-square-standardized 0.591 0.681 0.657 0.613 0.672 0.651
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Lag values were determined by trial and error process to optimize the above-
mentioned criteria. Ordinary Kriging interpolation maps were produced based
on the exponential models with the parameters presented in Table 7. Figure 2
shows the scatterplots generated for cross validation of the Exponential model.
These graphs show the spatial correlation of the data. Most of the data values lie
along the line in the scatterplots indicating how closely related the data is. Dur-
ing ground truthing and field observations, no evidence was found to support an
anisotropic pattern, as in [62] study, that may explain the direction of forest re-
duction or the direction in which the agricultural lands are increasing. So, iso-
tropic distribution was assumed in all cases. Figure 3 depicts the final results for
the distribution of the TCGI values for the six periods. The dark-red areas in the
images are related to forested areas. The surrounding light red and yellow belts
represent a mixed zone where forested areas and non-forested areas overlay each
other or create a stable spectral balance. The zone colored by blue tones is con-
sidered to be non-forested areas that include mostly agricultural land. Forested
areas are more concentrated in the 1976 image and is gradually seen to reduce

for the rest of the images through 2015.

5. Conclusion

TCGI was selected to describe the spatial surface patterns since it produced the
best contrast in terms of separability among the spectral indices. It produced the
best contrast in terms of separability among all examined spectral indices. TCGI
was able to compare between the different sensors with different spectral bands,
as it reduced their different spectral bands to one normalized layer of TCGI val-
ues. The semivariance analysis was found to be a suitable method for gaining in-
sight to the spatial structure present in the imagery for a given date and location.
The similarity between the shape of the semivariogram and the directional
change of the environmental variables is a logical reason for using this method.
The Kriging interpolation technique using the Exponential Geostatistical Simu-
lation model was used as a smoothing filter in which each pixel was being re-
placed with the solution for the semivariogram equation (exponential model in
the current case) calculated from all other pixels in the image. As a result, it re-
duced spatial errors and fine scale variability and helped to better identify the

transition from forest to non-forested areas.
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