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Abstract 
Floods are one of the major hazards worldwide. They are the source of huge risks in rural and ur-
ban areas, resulting in severe impacts on the civil society, industry and the economy. The Elbe 
River has suffered from many severe floods during recent decades. In this study, the zones flooded 
during 2011 were analyzed using TerraSAR-X images and a digital elevation model for the area in 
order to identify possible ways to mitigate flood hazards in the future, regarding sustainable land- 
use. Two study areas are investigated, around the Walmsburg oxbow and the Wehningen oxbow. 
These are located between Elbe-Kilometer (505-520) and (533-543), respectively, within the 
Lower Saxonian Elbe River Biosphere Reserve. Those areas are characterized by several types of 
land use, with agricultural land use being predominant. The study investigated the possibility of 
using a Decision-Tree object-based classifier for determining the major land uses and the extent of 
the inundation areas. The inundation areas identify for 2011 submerged some agricultural fields 
that must be added to existing flood risk maps, and future cultivation activities there prevented to 
avoid the possible economic losses. Furthermore, part of the residential area is located within the 
high flood zone, and must be included in risk maps to avoid the possible human and economic 
losses, to achieve sustainable land use for the areas studied. 
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1. Introduction 
The Elbe River is the fourth largest river basin in Europe, after the Danube, the Vistula, and the Rhine [1]. The 
Elbe runs through Austria, the Czech Republic, Poland, and Germany. The river is about 1094 km long, with 
about 727 km, or 66% of its length, being in Germany. The river basin area covers about 148,000 km2. 65% of 
the catchment lies in Germany, with an area of about 97,000 km2 [2]-[4]. The Elbe has several gauges to meas-
ure water levels along the river, as shown in Figure 1 [5]. The Czech-German state border marks the zero point 
for the Elbe kilometrage, with the numbers increasing in the upstream direction on the Czech side, and increas-
ing in the downstream direction on the German side [1] [6]. 

The Elbe floodplain was designated as a Biosphere Reserve (Flusslandschaft Elbe) by UNESCO in 1997. It 
consists of four reserves, namely the Biosphärenreservat Mittelelbe in Sachsen-Anhalt, the Biosphärenreservat 
Flusslandschaft Elbe-Brandenburg, the Biosphärenreservat Flusslandschaft Elbe—Mecklenburg-Vorpommern, 
and the Biosphärenreservat Niedersächsische Elbtalaue [7] [8]. The Elbe River Biosphere Reserve in Lower 
Saxony reaches from Schnackenburg in the southeast, at Elbe-km 472.5, to Hohnstorf in the northwest, at 
Elbe-km 569, and has an area of about 568 km2. The elevation of the terrain ranges from 5 m to 109 m above 
mean sea level. The floodplains are used in various ways, with a predominance of agricultural land use. Equal 
portions of 34% are covered by agricultural fields and grassland areas, while a portion of 22% is covered by 
forest. The rest is divided equally between water bodies and residential areas [9]-[11]. The Elbe floodplain suf-
fered from large-scale century flooding in 2002, which caused huge damage in hazardous areas of the Elbe cat-
chment. Consequently, many studies have been conducted to improve flood-risk management plans for the Elbe 
basin [12] [13]. 

In Germany, 21 people were killed, 100 people were injured, and 200,000 people were evacuated from the 
300 km2 inundation extent area along 800 km of the river, resulting in economic losses of 11.6 billion, caused by 
the large-scale century flooding in 2002 [14]-[17]. Since 2002, Germany has conducted several measures to im-
prove flood-risk management and reduce the flood hazards [18] [19]. Therefore, although the two extreme cen-
tury floods in 2011 and 2013 were actually higher than that in 2002, they did not cause as much damage as the 
one in 2002 [14]. In recent years, flood protection structures throughout Germany have been extensively up-
graded. Flooding occurred in 2011 and resulted in damage in the catchments of the Rhine, the Danube, the Weser,  
 

 
Figure 1. Gauge locations along the Elbe [5]. 
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and the Elbe. However, in spite of the extent of the flooding, disastrous damage did not occur. The total damage 
was estimated to be more than 100 million Euro in Germany, an amount that was much smaller than the 11.6 
milliard Euro in 2002, for example [12] [20]. Likewise, in some areas, damage was minimal or almost com-
pletely avoided during the floods in 2013. Nevertheless, the 2013 floods also caused severe problems in other 
areas: eight people were killed, and 52,000 were evacuated across parts of the 200 km2 drowned area, leading to 
a loss of approximately 12 milliard Euro [21]-[23]. 

Comparing of the areas affected in 2013 with existing flood hazard and risk maps, one can see that these flood 
maps are usually reliable [24]. However, some investigations in flooded areas showed that some people affected 
by the flood of 2013 had already forgotten about the damage that occurred in the 2002 floods and, faced with the 
recurrent flooding in 2013, were unable to deal with the disaster since many believed they could only have in-
frequent exposure to century floods [14]. Awareness of flood risks played a major role in how serious the dam-
age caused by the 2013 flood was in any given area. Thus, it is essential that people are aware of flooding as an 
intrinsic part of their environment, an awareness that can be achieved through flood hazard and risk maps that 
give them an idea about flood prevention and protection plans [24] [25]. These maps should be made more 
widely accessible and used more actively. To ensure efficient use of flood maps and risk awareness programs, 
they must be integrated into the planning processes for risk mitigation policies and new construction projects. 
There was no real legislative limitation on building new construction in areas designated as hazardous by flood 
maps. After the 2002 flood, legislative limitations were declared limiting new settlements in flood-prone areas; 
however, they were undermined to a very considerable scale by several exceptions. The extreme flood of 2013 
and the consequent damages demonstrate that new flood risk management plans are required [14]. 

Flood risk is the combination of the probability of a flood event and of the possible deleterious consequences 
to human health, the environment and economic activity associated with the flood event. Flood risk management 
includes the comprehensive and continuous assessment and evaluation of flood hazard and flood risks, to miti-
gate the floods and/or the impact of floods. The flood risk management programs integrate five measures name-
ly, prevention, protection, awareness, emergency response, and recovery. Prevention measures seek to prevent 
damage caused by floods by avoiding construction of houses and industries in present and future flood-prone 
areas, by adapting future developments to the risk of flooding, by promoting proper land-use, and by adapting to 
changing risk factors such as climate change. Protection measures seek to take both structural and non-structural 
measures to mitigate the impact of floods in a specific location by construction of flood dikes, and early warning 
systems. Awareness measures seek to inform the population about flood risks, settlement expansion in safe 
places using suitable forms of construction, and what to do in the event of a flood. Emergency response meas-
ures seek to develop emergency response plans in the case of a flood. Recovery measures seek to return to nor-
mal conditions as soon as possible and mitigate both the social and economic impacts on the affected population 
[26]-[29]. For effective and efficient flood risk management, comprehensive information about the existing ha-
zards and risks throughout the river basin, including flood type, the probability of a particular flood event (low, 
medium, high), the flood extent, water depth, flow velocity and possible damages, is required [26] [30] [31]. 
Therefore, flood maps are useful tools that provide information about hazards, vulnerabilities, and risks of a 
given area. 

Flood maps include flood hazard maps, which identify the extent of flooded areas at different flood probabili-
ties. They also include flood risk maps, which indicate the possible harmful consequences associated with floods 
of different probabilities, especially when correlated with land use maps. Furthermore, detection maps can show 
the inundation extents of former floods [30]-[32]. These flood maps should be included into spatial and emer-
gency planning beside the information from Geographic Information Systems (GIS) to achieve reduction and 
mitigation of possible damage [28] [33]. Historical flood detection maps, land use maps, and other sources of 
historical information about former flood areas are essential in identifying flood hazards and to create risk maps 
that can serve as a basis for crucial flood protection, land zoning, and development restrictions in flood hazard 
areas. In short, there is a need for up-to-date flood detection and land use maps [28] [34]-[37]. Furthermore, 
flood-detection mapping is required in many applications such as disaster management, risk damage assessment, 
and rehabilitation processes. Flood-mapping monitoring techniques use pre- and post-satellite imagery [38]-[40]. 
Floods often happen in combination with heavy rains and dense cloud cover which affect optical satellite images. 
Synthetic Aperture Radar (SAR) imagery is not affected by these weather conditions because it does not rely on 
sunlight, and thus can also be used at night. Hence, SAR imagery is especially practical in flood detection map-
ping. Therefore, there are many studies about using this type of imagery as a flood detection tool [41] [42]. 
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Generally, flood mapping is obtained using image classification, where each individual pixel is classified 
based on all existing information using the grey values and spatial information of an image [26] [30]-[32]. The 
satellite imagery can be classified on a pixel-based or object-based basis. Pixel-based image processing classi-
fies single pixels according to their spectral reflectance. Object-based image processing has two steps: segmen-
tation and classification. Segmentation is the process of dividing an image into a network of homogeneous im-
age objects by grouping together neighboring pixels with similar feature values such as brightness, texture, color, 
etc. The segments ideally correspond to real-world objects and contain additional information relevant to classi-
fication, such as shape, texture and relationships to neighboring objects. Image texture provides information 
about the spatial arrangement of color or intensities in an image or selected region of an image. The classifica-
tion of image objects (contextual classification) is carried out after segmentation. The contextual classification is 
based not only on spectral statistics, but also on the additional information including shape, texture and network 
relationship, and this enables the segmented image objects to be related to land cover classes. Contextual classi-
fication offers some advantages over traditional classification, because segmentation reduces the total number of 
elements that need to be handled during classification, thus significantly reducing the work needed to perform 
classification. Moreover, classification segmenting with homogeneous regions reduces salt-and-pepper noise in 
the classification results [35] [43]-[45]. 

Several studies have investigated the effect of the surface roughness on the radar backscattering. Surface 
roughness is the main factor affecting radar backscattering and determines the angular distribution of surface 
scattering, as shown in Figure 2 [46]. The greater the roughness of a surface, the more the incident radiation 
will be backscattered to the radar; thus, the rougher a surface, the lighter it will appear in radar imagery. Smooth 
surface boundaries, such as water areas, act as mirrors and scatter the energy away from the sensor. In this case, 
the angle of reflection, θe, is equal to the angle of incidence, leading to a very low signal return, in turn produc-
ing relatively dark pixels in radar data. With an increasing roughness, the fraction of backscatter to the sensor 
grows larger. Very rough surfaces scattered the energy equally in all directions, including back to the sensor, 
and thus return a significant part of the transmitted energy back to the sensor [43] [45] [47]. 

Several studies have also investigated the effect of the wavelength of SAR sensors on mapping water and the 
vegetation canopy. The longer the system’s wavelength, the greater the ability of the signal to penetrate the ve-
getation canopy, as shown in Figure 3 [43] [46]. L-band SAR sensors, with wavelengths of 19 to 77 cm, are ef-
fective for mapping flooding in forest environments. By contrast, C-band sensors, with wavelengths of 4.8 to 7.7 
cm, and X-band sensors, with wavelengths of 2.8 to 5.2 cm, cannot penetrate the vegetation canopy, because 

 

 
Figure 2. Radar reflection of (A) smooth, (B) moderately roughened and (C) strongly roughened surfaces [43] [46]. 
 

 
Figure 3. Conceptual illustration of the major sources of backscatter from vegetation and effect of flooded vegetation on X- 
and L-band SAR [43] [46]. 
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these wavelengths produce more surface scattering from the top layer of the forest canopy. Therefore, neither 
C-band nor X-band SAR sensors are effective for mapping flooding in forest environments [45] [48] [49]. 

The effectiveness of different SAR and optical images in water delineation and flood detection applications 
has been evaluated in the literature using several classification methods. Numerous studies used optical images 
in identifying the extent of water areas. Reference [50] used Landsat TM imagery in extracting contour lines that 
mapped the bed of the High Aswan Dam Reservoir and allowed the lake’s current morphology to be determined. 
Reference [42] created the Modified Normalized Difference Water Index (MNDWI) using Shuttle Radar Topo-
graphic Mission (SRTM) DEM and ASTER and LANDSAT satellite images to identify moist surfaces or satu-
rated areas to separate flooded and non-flooded areas and to generate a flood hazard map. Reference [51] used 
Landsat TM imagery to map Lake Kyoga from 1972 till 2004, and Aster imagery in 2008 and 2009, to study the 
history of problematic aquatic plants in the lake. Supervised classification was performed for each image to 
identify the lake boundary. 

Numerous studies have investigated the effectiveness of SAR imagery in identifying flooded areas. Several 
investigations applied Thresholding—methods to SAR imagery in order to locate flooded areas. Reference [32] 
used Threshold-based image segmentation and texture analysis methods in processing Multi-temporal NOAA 
AVHAR and RADARSAT images to achieve real-time and all-weather monitoring of floods. Reference [44] 
studied the possibility of optimizing the threshold ranges for the classification of flood water in SAR images for 
quick flood inundation mapping and response during flood disasters. For different polarizations, the mean back-
scattering signature profiles of various water bodies were analyzed to discriminate flood water from other water 
bodies. The study showed that using HH polarization imagery enables better delineation of the land-water sur-
face. 

Reference [52] developed an algorithm to map flooded areas from COSMO-SkyMed X-band SAR imagery 
based on fuzzy logic that can integrate theoretical knowledge about the radar return from inundated areas, de-
scribed by means of three electromagnetic scattering models, with simple hydraulic considerations and contex-
tual information using also auxiliary data, such as a land cover map and a digital elevation model. Reference [35] 
tested three different speckle noise removal filters including Lee, Frost, and Gamma MAP filters. The Gamma 
MAP filtered image had the best results and was segmented using Gray Level Co-occurrence Matrix (GLCM) 
and Mean Shift Segmentation (MSS). It was found that MSS is efficient for flood mapping. 

Although many procedures have been studied in the literature, the present research focuses on Decision-Tree 
methodology, which has not been comprehensively evaluated. The present research employs remote sensing 
tools in identifying the detection maps and land use/land cover LULC maps using TerraSAR-X (TSX) imagery 
for two study areas within the Elbe Biosphere reserve in Lower Saxony “Niedersächsische Elbtalaue”. Both the 
LULC and flood-detection maps are generated using a Decision-Tree object-based classifier. These maps can be 
used in updating the flood hazards and risk maps of this area, and to enable sustainable use of the land resources 
in the study area. 

2. Methods and Materials 
2.1. Study Area 
Two pilot areas are selected, around the Wehningen Oxbow, lying between Elbe-Kilometers (505-520), and the 
Walmsburg Oxbow, between Elbe-Kilometers (533-543), within the Lower Saxonian Elbe River Biosphere Re-
serve (Figure 4). 30% of this area is covered by forests, which must be maintained to ensure the sustainability of 
the flood plain environment. Over 65% of this area is covered by agricultural fields and grasslands. 

2.2. Data Collection 
The water levels measured by Wasser- und Schifffahrtsverwaltung des Bundes (WSV), and provided by Bunde-
sanstalt für Gewässerkunde (BfG), at the Neu Darchau gauge (Walmsburg Oxbow) and at the Damnatz gauge 
(Wehningen Oxbow) were collected for the periods from January 2010 until December 2012 and during June 
2013. The readings of both gauges were converted to real water levels above mean sea level. The TerraSAR-X 
images (TSX) used were acquired during the period from March 2010 to January 2012 provided by the German 
Aerospace Centre (DLR). These images are acquired by the German Earth observation satellite. Its orbit passes 
over the same location every 11 days. It uses an X-band SAR, with 31 mm wavelength and 9.6 GHz, frequency 
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Figure 4. Location of study areas within the Lower Saxonian Elbe River Biosphere Reserve. 
 
providing high-quality topographic information [53]. Orders were submitted to obtain images covering the flood 
peaks but, due to some technical problems, images of the peak water levels were not available. The TSX images 
were Dual Polarization Spotlight products, generated by the DLR as Multi-look Ground-range Detected (MGD) 
products with Spatially Enhanced (SE) processing. MGD has reduced speckle and approximately square resolu-
tion cells on the ground. The dual polarization TSX imagery collects data at HH for horizontal transmit and ho-
rizontal receive and VV—for vertical transmit and vertical receive. The image coordinates are oriented along the 
flight direction and the ground range. Geometric projection is in the azimuth-ground range without terrain cor-
rection [53]. The images are of high resolution, with a descending angle of 40˚ which leads to a higher range and 
an azimuth pixel spacing of 1 m. Figure 5 and Figure 6 show the recorded water levels and the acquired images 
according to date. 

At Walmsburg Oxbow, the highest water level of 13.58 m above sea level (asl) was measured on 11 June 
2013. During the high flood in January 2011, the highest water level of 13.16 m asl was measured on 23 January, 
while, the maximum accessible water level among the TSX images of 12.35 m asl was acquired on 19 January 
2011 for that particular flood. The lowest water level of 6.98 m asl was measured on 2 September 2012 while 
the least accessible water level among the TSX images of 7.24 m asl was acquired on 22 June 2011. All the ac-
quired images were taken in the same descending orbit direction. Therefore, the image acquired on 22 June 2011 
was used for determining the pre-flood status, and the image acquired on 19 January 2011 was used for investi-
gating the post-flood status. 

At Wehningen Oxbow, the highest water level of 17.02 m asl was measured on 11 June 2013. During the high 
flood in January 2011, the highest water level of 16.57 m asl was measured on 23 January, while the maximum 
accessible water level among the TSX images of 16.17 m asl was acquired on 25 January 2011. The lowest wa-
ter level of 10.59 m asl was measured on 22 July 2010, while the least accessible water level among the TSX  
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Figure 5. The water levels measured at Neu Darchau gauge around Walmsburg Oxbow from January 2010 to December 
2012 in m above sea level. 
 

 
Figure 6. The water levels measured at Damnatz gauge around Wehningen Oxbow from January 2010 to December 2012 in 
m above sea level. 
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images of 10.88 m asl was acquired on 25 July 2010. Some of the acquired images were taken in descending or-
bit direction while others were acquired in the ascending orbit direction. The image acquired on 25 July 2010 
was taken in the ascending orbit direction whereas the image acquired on 25 January 2011was taken in the des-
cending orbit direction. It is better to process pre- and post-images with same orbit direction. Hence, another 
image with low water level was chosen to study the pre-flood status. On 28 June 2011, the image was acquired 
in the descending orbit direction, and the measured water level was 11.05 m asl. Therefore, the image acquired 
on 28 June 2011 was used for determining the pre-flood status, and the image acquired on 25 January 2011 was 
used for investigating the post-flood status. 

For both oxbows, the pre-flood images were used to define land use, while the post-flood images were used in 
mapping the flooded areas. The land-use/land cover LULC maps and the detection maps were used in evaluating 
the hazards resulting from the January 2011 flood and to identify the risk zones, as shown in Figure 7. These 
images must first be processed, and then classified, to generate the LULC maps and detection maps for both 
areas; subsequently, the risk zones can be defined. 

2.3. Image Processing 
For both study areas, the images with both their acquisitions were coregistered so that relative translational shift 
and rotational and scale differences could be corrected through performing spatial registration and, potentially, 
resampling. This was done using the SARSCAPE module of the ENVI program after importing the images as 
TerraSAR-X standard formats. The coregistered images were geocoded to provide a radiometric calibration and 
a cartographic reference system. The resultant geocoded images for both the HH and VV polarizations were 
stacked together to provide two images for pre-flood and post-flood status at both Walmsburg Oxbow and Weh-
ningen Oxbow. Image rectification and georeference transformation were applied to the four stacked images us-
ing ERDAS Imagine 9.3 software. The images were loaded into ERDAS Imagine for data preparation and re-
projection. The SAR images were geometrically transformed to the Universal Transverse Mercator (UTM) pro-
jection with spheroid WGS 84 and zone 32 North, and resampled into one meter pixel size using the projective 
transform model under the Geocorrect image Tool. The four images were filtered with the Lee filter in order to 
remove or decrease speckle noise. The Lee-filter was applied using the ERDAS Imagine software through the 
Speckle Suppression option under the Radar Interpreter menu. The coefficient of variation for the subset of the 
geocoded images was calculated for each image. The Lee filter was selected from the list of available filters and 
the value for the coefficient of variation was inserted. The window size was set to seven pixels. 

2.4. Image Classification 
The object-based classification method investigated for mapping the land-use/land-cover LULC maps for both 
study areas, as shown in Figure 8. The object-based classification method was processed by the rule-based clas-
sifier in the ENVI EX program. The LULC maps initially produced were enhanced using the neighborhood  
 

 
Figure 7. Methodology for identifying the risk zones based on January 2011 flood. 
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Figure 8. The methodology flow chart for producing LULC maps using pre-flood imagery. 

 
filter. It is difficult to obtain up-to-date reference maps for LULC. The available maps were old and did not ac-
curately represent the current land cover. Therefore, reference LULC maps were digitized from the TSX im-
agery using the ARCGIS program to assess the classification accuracy, as shown in Figure 9. The resulting en-
hanced LULC maps were analyzed using the spatial module in ARCGIS through calculating cross-tabulated 
areas between the digitized and the resultant LULC classifications. The resulting tables were processed in Mi-
crosoft Excel to estimate the error matrix (or confusion matrix), which is a method for determining the accuracy 
of classified classes with respect to the reference data [43]. The results of the object-based classification were 
compared in order to determine the optimum method for mapping the LULC classification. 

As discussed in the introduction, the roughness of a surface affects the backscatter from it. The greater the 
roughness, the more scattering back to the radar there is, and the lighter the surface appears in radar imagery, 
leading to variation in the image texture [45]. Image texture measures the relationships between pixels and their 
neighbors and plays an important role in interpreting SAR imagery, especially high spatial resolution images 
[43]. SAR imagery has a single band which is based on intensity of grey level formed from radar backscatter, 
and thus texture is the main source of information used to study land cover and land use in pixel-based analysis 
[45]. To derive further information beyond the spectral information of SAR imagery, object-oriented image 
analysis can be used to extract information regarding shape, size and relationship of image objects [43]. There-
fore, object-based analysis was used in this study. 

Envi EX has a tool that utilizes object-based processing named Feature Extraction. Feature Extraction is a tool 
for extracting information from high-resolution panchromatic or multispectral imagery based on spatial, spectral, 
and texture characteristics. It uses an object-based approach to classify imagery. It is a combined process of 
segmenting an image into regions of pixels, computing attributes for each region to create objects, and classify-
ing the objects (with rule-based or supervised classification) based on those attributes, to extract features. The 
workflow consists of two main steps: Find Objects and Extract Features. The Find Objects task is subdivided 
into four steps: Segment, Merge, Refine, and Compute Attributes. During the segmentation process, pixels with 
similar feature values (brightness, texture, color, shape) are grouped into small objects. During the region- 
merging process, small adjacent segments are aggregated into larger, textured areas based on a combination of  
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Figure 9. Reference maps for LULC classifications at Wehningen Oxbow and Walmsburg Oxbow. 

 
spectral and spatial information. During the Compute-Attributes process, spatial, spectral, and texture attributes 
are computed for each object. After completing this task, the Extract Features task can be performed; this con-
sists of supervised or rule-based classification. In the supervised classification process, the training data (sam-
ples of known identity) are used to assign objects of unknown identity to one or more known features. The 
training data can be defined manually or through importing ground truth data in the form of point and polygon 
shape files. The supervised classifier uses either the K-Nearest-Neighbor method or the Support Vector Machine 
method. In the rule-based classification process, features are defined by building one or multiple rules based on 
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object attributes. This requires human knowledge and reasoning about the extracted features. Finally, the classi-
fication results can be exported to shape files and/or raster images [54]. 

The Decision-Tree method builds classification in the form of a tree structure. The Decision Tree classifier 
performs multistage classifications by using a series of binary decisions to place pixels or objects into classes. 
Each decision divides the pixels in a set of images into two classes based on an expression. Each new class can 
be divided into two more classes based on another expression. As many decision nodes as needed can be utilized. 
The results of the decisions are classes. The Decision-Tree classification method can be applied to pixel-based 
classification in the same way as traditional classification algorithms would be applied. It can also be used to 
generate rules for knowledge-based and object-based classification with different types of attributes [43]. The 
main features of the LULC map are water, forest, vegetated lands and residential areas. Each feature has differ-
ent roughness and texture characteristics. 

In this research, a Decision-Tree classification algorithm was applied using the rule-based classifier, as shown 
in Figure 10. The pre-flood images in both study areas were used to identify the land uses. The radar signals re-
turned from water bodies, such as rivers and lakes, have low backscatter. These areas, therefore, are mostly dark 
on the TSX imagery. The backscatter from forests and residential areas is mainly volume scattering. The back-
scatter from vegetation-covered areas, such as grasslands, croplands and bare soil fields, depends on the crop 
types and their distribution on the fields. The scattering from roads is affected by the trees on either side, so they 
show up as bright lines on radar imagery. In contrast, roads not lined with trees are less visible and may be mis-
taken for water. Generally, the land cover types in both study areas are complex or mixed, so that different co-
verages may show similar physical scattering mechanisms. Therefore, the water class and land class were de-
fined in a first step. Then, the land class was isolated and classified as either flat terrain, such as vegetated lands, 
or uneven terrain, including forests and residential areas. Lastly, the uneven terrain class was detached and fur-
ther classified as either forest class or residential class. Land classified as vegetated was also subdivided as ei-
ther cropland or grass; this classification was imported here from previously performed and reported work [55]. 

The Decision-Tree approach requires comprehensive knowledge of data about the features of the terrain and, 
furthermore, physical understanding of these. Since each class corresponds to a specific scattering property, de-
cision boundaries were determined based on knowledge acquired experimentally by the analysis of the scatter-
ing characteristics of each class. The feature extraction workflow computed spectral, textural, and spatial 
attributes for the merged objects. In order to locate decision boundaries for separation of the various classes, the 
histograms of the computed attributes were analyzed to identify peaks, valleys, shoulders, and curvatures. The 
concepts of natural breaks and clustering were used to define the decision boundaries. Natural breaks and clus-
tering are both methods of manual data classification through dividing data into classes based on natural groups 
in the data distribution. Natural breaks occur in the histogram at the low points of valley, while cluster divisions 
occur at the midpoints between peaks or at the shoulders of the histogram [56]. The histograms created for spec-
tral, texture, and spatial characteristics of the TSX imagery were analyzed at the peaks, valleys and shoulders. 
The effective points which separate classes were employed as decision boundaries, as shown in Figure 11. 
 

 
Figure 10. A Decision-Tree classification algorithm for mapping LULC using the pre-flood imagery. 
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Figure 11. Identifying decision boundaries according to the valley, peak and shoulder of the attributes histogram in the fea-
ture extraction workflow under ENVI EX. 
 

For mapping the flood extent areas for both study locations, the optimum classification methods with respect 
to the LULC classification results were applied. The flood extent maps initially produced were corrected using 
the digital elevation model (DEM) for this area and the resulting LULC maps. The DEM was used to remove the 
regions misclassified as water within the area around the river that had a land level higher than the water level 
measured at the gauges. The LULC maps were used to remove the forest and residential areas which were mis-
classified as water due to the limitations of x-band imagery in mapping the water areas beneath forest and urban 
coverage [43] [57]. It is difficult to obtain a reference map for extent of a given flood event due to accessibility 
problems during the flood. Therefore, a reference flood map was digitized from the TSX imagery using the 
ARCGIS program to assess the classification accuracy. The resulting corrected flood maps were analyzed using 
the spatial module under ARCGIS to calculate cross-tabulated areas between this digitized reference map and 
the resulting classifications and subsequently to estimate the confusion matrix for the water class. The flood ex-
tent areas generated in 2011 were compared to the flood extent areas for June 2013 created by [58]. Finally, the 
LULC maps were used in determining if the inundated land was vegetated or residential, and hence in defining 
the risk zones in January 2011 and June 2013. The results of the classifications produced are presented and ex-
plained below. 

3. Results and Discussion 
3.1. LULC Classification 
For both study areas, the raw and Lee-filtered images were processed to identify the land use classes using the 
object-based approach. The land uses were delineated manually to evaluate the accuracy of the resulting classi-
fication. The reference digitized LULC maps for both study areas have four main classes, as previously stated. 
The images at Walmsburg Oxbow has 5% water extent, 66% vegetated lands, 23% forests and 6% residential 
areas. The images at Wehningen Oxbow has 8% water extent, 71% vegetated lands, 17% forests and 4% resi-
dential areas. In order to generate the rule-based classifications, the workflow for feature extraction in ENVI EX 
was applied six times for each study area, using HH−, VV−, and HH/VV− polarization of the raw and 
Lee-filtered images. Three different combinations of class pairs were chosen for feature separation to represent 
the three branches of the Decision-Tree. These combinations are 1) water and land, 2) vegetated lands and un-
even lands, and 3) residential areas and forests. 
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For branch (1), 64 classifications were generated to map the water and land classes. From the spectral-attributes, 
the band-average was used; the mean and variance were used from the texture-attributes; and solidity, convexity, 
compact and elongation were used from the spatial-attributes. In addition, some rule sets were used to combine 
certain attributes together to enhance the classification results. Rule set 11 combined the band-average and 
mean-texture; rule set 12 included texture-mean and solidity-attributes; rule set 13 added the roundness to tex-
ture-mean and solidity-attributes; rule set 4 incorporated elongation with texture-mean-attributes, solidity and 
roundness-attributes. The producer accuracy and the total accuracy are shown in Table 1. For branch (2), the  
 
Table 1. Summary of producer accuracy (%) for water class and land class (Vegetated Land, Forest, Resedential Areas) ap-
plying the object-based procedure. 

   Producer Accuracy % 

Polarization Rules Filter 
Type 

Wehningen Oxbow Walmsburg Oxbow Average 

Water Land Total Water Land Total Water Land Total 

HH 

Average Band > 45 
Raw 86 99 98 92 99 99 89 99 99 

Lee 83 94 93 87 99 99 85 97 96 

Average Band > 55 
Raw 92 97 97 94 98 98 93 97 97 

Lee 88 92 92 91 99 98 89 95 95 

VV 

Average Band > 45 
Raw 87 99 98 91 99 99 89 99 99 

Lee 84 94 93 87 99 99 85 97 96 

Average Band > 55 
Raw 92 95 95 94 98 98 93 97 96 

Lee 89 90 90 90 97 97 90 93 93 

HH/VV 

Average Band 
Raw 92 97 97 94 98 97 93 97 97 

Lee 90 89 89 92 97 97 91 93 93 

Rule Set 11 
Raw 92 98 97 94 98 97 93 98 97 

Lee 88 92 92 92 97 97 90 95 95 

Texture Mean > 55 
Raw 92 98 97 94 98 98 93 98 98 

Lee 88 93 92 90 99 98 89 96 95 

Texture Variance 
Raw 87 99 98 84 99 99 86 99 98 

Lee 77 94 93 68 99 98 72 97 96 

Texture Mean > 45 
Raw 84 99 99 94 98 98 89 99 98 

Lee 83 94 93 90 99 98 86 97 96 

Solidity 
Raw 65 99 97 74 99 98 69 99 98 

Lee 38 95 90 68 99 98 53 97 94 

Convexity 
Raw 64 49 50 99 62 64 82 56 57 

Lee 68 88 86 68 84 83 68 86 85 

Compact 
Raw 64 99 97 72 99 97 68 99 97 

Lee 74 87 86 68 99 98 71 93 92 

Elongation 
Raw 76 26 29 73 99 99 74 63 64 

Lee 77 95 94 69 99 98 73 98 96 

Rule Set 12 
Raw 85 99 98 92 99 99 88 99 99 

Lee 83 94 93 87 99 99 85 97 96 

Rule Set 13 
Raw 87 98 97 92 99 99 90 98 98 

Lee 84 94 93 87 99 99 85 97 96 

Rule Set 14 
Raw 82 94 93 86 99 98 84 97 96 

Lee 82 94 93 82 99 99 82 97 96 
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land class mask was used to isolate the land areas from each image. The masked images were used in generating 
different classifications for the vegetated land and uneven land classes. 52 classifications were generated to map 
the vegetated lands and uneven lands. From the spectral-attributes, the band-average was used; the mean, va-
riance and entropy were used from the texture-attributes; and area, solidity, convexity, compact, elongation and 
roundness were used from the spatial-attributes. In addition, one rule set was used to combine the band-average 
and mean-texture. The producer accuracy and the total accuracy are summarized in Table 2. For branch (3), the 
uneven land class mask was used to isolate the uneven lands from each image. The masked images were used in 
generating different classifications for the residential area and forest classes. 44 classifications were generated to  
 
Table 2. Summary of the producer accuracy (%) for Vegetated Land and Uneven Land classes (Forest, Residential Areas) 
applying the object-based procedure. 

   Producer Accuracy % 

Polarization Rules Filter 
Type 

Wehningen Oxbow Walmsburg Oxbow Average 

Vegetated 
Land 

Uneven 
Land Total Vegetated 

Land 
Uneven 

Land Total Vegetated 
Land 

Uneven 
Land Total 

HH Average Band 
Raw 80 59 75 87 63 80 83 61 77 

Lee 87 67 83 90 48 79 90 58 81 

VV Average Band 
Raw 86 40 76 85 52 75 86 46 75 

Lee 88 64 82 88 46 75 88 55 79 

HH/VV 

Average Band 
Raw 80 62 76 80 64 75 80 63 75 

Lee 87 68 83 85 72 81 86 70 82 

Rule Set 21 
Raw 80 54 74 80 64 75 80 59 75 

Lee 87 56 79 86 51 75 86 53 77 

Texture Mean 
Raw 80 58 75 82 76 73 81 67 74 

Lee 88 61 82 83 67 79 86 64 80 

Texture Variance 
Raw 80 74 77 76 71 74 78 72 75 

Lee 92 76 88 86 74 84 89 75 86 

Solidity 
Raw 81 56 75 87 50 75 84 53 75 

Lee 75 58 70 80 44 69 77 51 70 

Convexity 
Raw 80 43 71 84 48 73 82 45 72 

Lee 86 63 80 81 56 74 84 60 77 

Compact 
Raw 80 52 74 87 35 71 84 43 72 

Lee 86 61 80 74 55 68 80 58 74 

Elongation 
Raw 87 68 82 85 66 80 86 67 81 

Lee 86 57 79 88 51 77 87 54 78 

Area 
Raw 85 47 76 80 35 66 82 41 71 

Lee 88 68 84 86 65 80 87 66 82 

Round 
Raw 79 53 73 77 64 73 78 58 73 

Lee 92 38 79 86 50 75 89 44 77 

Texture Entropy 
Raw 87 59 76 77 62 72 82 60 74 

Lee 91 77 87 87 81 84 89 79 86 
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map the forests and residential areas. From the spectral attributes, the band average was used, the mean, variance 
and entropy were used from the texture-attributes; and solidity, convexity, rectangle fit and roundness were used 
from the spatial-attributes. In addition, one rule set was used to combine the band-average and texture-mean 
attributes. The producer accuracy and the total accuracy are summarized in Table 3. 

As shown in Tables 1-3, using dual-polarization HH/VV led to higher total producer accuracy than the total 
producer accuracies employing either HH− or VV− polarization only. In contrast to the vegetated/uneven land 
classification results, using raw images facilitated higher producer accuracies than the Lee-filtered images in the 
results of both land/water and forests/residential classifications. The most useful features for separating the wa-
ter class from the land class were texture-mean and band-average. Other attributes are not efficient in separating 
water from land. Applying either rule set 11 or texture-mean attributes enabled slightly better producer accuracy 
for the land class than employing the average band attributes. The best producer accuracy for the water class was 
94% using the raw images with either single or dual polarization based on the average-band-attribute and tex-
ture-mean-attribute rules at Walmsburg Oxbow, while the lowest producer accuracy, of only 38%, was achieved 
at Wahgingen Oxbow when using Lee-filter images based on the convexity-attribute rule. The best total produc-
er accuracy was 99%, using the raw images with single or dual polarization based on many rules at Walmsburg  
 
Table 3. Summary of producer accuracy (%) for the Forest and Residential Area classes applying the object-based procedure. 

   Producer Accuracy % 

Polarization Rules Filter 
Type 

Wehningen Oxbow Walmsburg Oxbow Average 

Forests Residential 
Areas Total Forests Residential 

Araes Total Forests Residential 
Araes Total 

HH Average Band 
Raw 86 63 82 79 60 76 83 62 79 

Lee 85 45 78 78 34 68 82 40 73 

VV Average Band 
Raw 85 76 82 81 73 77 83 75 80 

Lee 83 53 78 76 45 69 80 49 74 

HH/VV 

Average Band 
Raw 84 76 83 81 74 80 83 75 82 

Lee 83 53 77 79 48 72 81 51 75 

Rule Set 31 
Raw 85 76 83 82 75 80 84 76 82 

Lee 83 52 77 79 50 75 81 51 76 

Texture Mean 
Raw 83 78 82 80 75 79 82 77 81 

Lee 75 60 72 76 59 70 76 60 71 

Texture Variance 
Raw 61 52 59 11 71 27 36 62 43 

Lee 64 59 62 66 43 69 65 51 66 

Texture Entropy 
Raw 71 69 71 68 56 66 70 63 69 

Lee 68 38 62 86 26 73 77 32 68 

Solidity 
Raw 70 65 69 86 39 76 78 52 73 

Lee 85 23 77 77 27 67 81 25 72 

Convexity 
Raw 40 73 46 53 54 53 47 64 50 

Lee 44 63 48 58 49 56 51 56 52 

Rectangle-fit 
Raw 89 50 82 80 48 76 85 49 79 

Lee 75 38 68 79 24 67 77 31 68 

Round 
Raw 46 74 53 78 35 69 62 60 61 

Lee 62 40 58 84 18 70 73 29 64 
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Oxbow, while the lowest total producer accuracy of only 50% was achieved, again at Wehningen Oxbow, using 
the Lee-filter images based on the convexity-attribute rule. 

The objects misclassified into the water class corresponded to the shadow of the forest areas. The shadow 
areas have less texture-mean than the water areas of the Elbe River. Therefore, rule set 12 was applied with a 
lower texture-mean value to isolate the main river, as shown in Figure 12. Figure 12(A) shows the TSX im-
agery at Wehningen Oxbow. Figure 12(B) shows the land class in yellow, based on a texture means greater than 
55. Several areas of the forest shadow which were misclassified as water are circled. Figure 12(C) shows the 
land class in green based on a texture mean greater than 45. Several water areas which were misclassified as 
land are circled. Figure 12(D) shows the land class, in red, based on rule set 13. Several water areas which were 
correctly re-classified as water are circled. Using the solidity-attribute in rule set 12 improved the water class by 
1%. Moreover, the roundness-attribute improved the water class by 2% in rule set 13. On the other hand, em-
ploying more attributes, such as elongation and length, failed to enhance the water class results and led to lower 
producer accuracies. 

The most useful features for separating vegetated lands class from the uneven lands class were, first, tex-
ture-entropy, followed by texture-variance and band-average, respectively. Elongation and area spatial-attributes 
succeeded to a certain degree in differentiating the two classes. Other attributes were only negligibly successful 
in separating them. Applying rule set 21, led to less total producer accuracy than employing the band-average- 
attributes. The elongation-attribute rule enabled better classification results for raw imagery while the texture- 
entropy-rule enabled higher classification accuracy for Lee-filtered images. The greatest producer accuracy for 
vegetated lands class was 92%, using the Lee-filtered dual-polarized images at Wehningen Oxbow based on the 
texture-variance-rule, while the lowest producer accuracy, of only 74%, was achieved at Walmsburg Oxbow  

 

 
Figure 12. (A) The dual polarization TSX imagery at Wahgingen Oxbow; (B) Land 
class produced based on texture mean greater than 55 and the forest shadows which are 
misclassified as water; (C) Land class produced based on texture mean greater than 45 
and several water areas which are misclassified as land; (D) Land class produced based 
on rule set 13 and several water areas which are corrected and classified as water. 
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using the Lee-filtered images based on the compact-attribute rule. The maximum producer accuracy for the un-
even land class was 81%, using the Lee-filtered dual-polarized images at Walmsburg Oxbow based on the tex-
ture-entropy-rule, while the lowest producer accuracy of only 35% was achieved at same study area, again when 
using the raw images based on the compact-attribute-rule. The best total producer accuracy was 88%, using 
Lee-filtered images at Wagingen Oxbow based also on texture-variance-rule, while the lowest total producer 
accuracy, of only 66%, was achieved once more at Walmsburg Oxbow using raw images based on the 
area-attribute-rule. The objects misclassified as vegetated lands in the uneven land class mostly correspond to 
existing vegetated areas within the residential areas (e.g. parks or gardens), as shown in Figure 13. Figure 13(A) 
shows the TSX imagery at Wehningen Oxbow. Figure 13(B) shows the uneven land class produced at the same 
position based on texture-entropy overlaid on the TSX image in red. Figure 13(C) shows the reference map at 
the same position for the uneven land class, in red, and vegetated lands class, in green. Here, for the uneven land 
class, it is difficult to separate vegetated areas from buildings within the residential areas. In general, the vege-
tated areas comprise 15% to 30% of the residential areas in the cities and the villages. Therefore the producer 
accuracy of the uneven land class was limited to about 80%. Nonetheless, the classification has higher accuracy 
with more details than the reference map. 

The effective features for separating the forest class from the residential area class were texture-mean, band- 
average, and their combination in rule set 31. Other attributes were not able to differentiate the two classes. Ap-
plying rule set 31 led to slightly better total producer accuracy than employing the band-average-attribute or 
texture-mean attribute individually. This rule set produced the highest classification accuracy for both raw and 
Lee-filtered images. The greatest producer accuracy for the forest class was 89%, using the dual-polarized raw 
images at Wehningen Oxbow based on the rectangle-fit rule, while the lowest producer accuracy, of only 11%, 
was achieved at Walmsburg Oxbow using raw images based on the texture-variance-attribute rule. The best 
producer accuracy for the residential area class was 78%, using the dual-polarized raw images at Wehningen  

 

 
Figure 13. (A) The dual polarization TSX imagery at Wehningen Oxbow; (B) Uneven 
land class produced at the same position based on texture entropy overlaid on the TSX 
image in red; (C) The reference map at the same position for the uneven land class (in 
red) and the vegetated land class (green). 
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Oxbow based on the texture-mean-attribute rule, while the lowest producer accuracy of only 23% was achieved 
at the same study area using the Lee-filtered images based on the solidity-attribute rule. The highest total pro-
ducer accuracy was 83%, using the raw images at Wehningen Oxbow based on the average-band-attributes rule, 
while the lowest total producer accuracy, of only 27%, was achieved at Walmsburg Oxbow using the raw im-
agery based on the text-variance-attribute rule. The objects misclassified as forests in the residential area class 
correspond to vegetated areas within the residential areas, as shown in Figure 13. Therefore, the producer accu-
racy of the residential area class was limited to about 78%. Based on the classification results from the three 
branches, the ultimate Decision-Tree for identifying the major land uses using the raw imagery is shown in Fig-
ure 14. 

3.2. Flood Detection Maps 
Based on the LULC classifications results for identifying water areas, using the average band attribute and/or the 
texture-mean attribute in the rule-based classifier enabled identification of about 90% of the water cover. 
Therefore, post-flood images in January 2011 were processed to be used as the pre-flood ones, and classified 
using the rule-based classifier with the average-band attribute and the texture-mean-attribute. The initial flood 
extent areas were corrected using the DEM and the LULC maps. The confusion matrices for both areas before 
and after post-classification are shown in summary in Table 4. 

In Table 4, the NH enhancement method refers to the producer accuracies obtained by applying the neigh-
borhood filter, and the residential method refers to the producer accuracies resulting from correcting for areas 
misclassified as water within the residential area; the forest method refers to the producer accuracies resulting 
from correcting areas misclassified as water within the forests, while the LULC method means those producer 
accuracies obtained by correcting areas misclassified as water within the forest and residential areas. In addition, 
the DEM method gives the producer accuracies after correcting the areas misclassified as water at altitude high-
er than the gauge water level for this area around the river. The LULC & DEM method provides the producer 
accuracies when corrected according to both DEM and LULC. As Table 4 reveals, the results of the rule-based 
classifier using the texture-mean attribute presented slightly higher total producer accuracies than the rule-based 
classifier with the average-band attribute. Using the Lee-filtered images led to lower producer accuracies for the 
water class. Correcting areas misclassified as water within the residential areas enhanced the total producer ac-
curacy by about 0.1%, while correcting areas misclassified as water within the forest resulted in an increase in 
the land producer accuracy of about 1.5% and, consequently, in the total producer accuracy of about 1%. On the 
other hand, the DEM method did not improve the classification results, and consequently the combined LULC 
& DEM method only had results similar to the LULC enhancement method alone. 
 

 
Figure 14. Suggested Decision-Tree classification algorithm for mapping LULC using pre-flood raw imagery. 
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Table 4. Summary of producer accuracy (%) for water and land classes applying the object-based procedure for post-flood 
imagery. 

   Producer Accuracy % 

Rule Enhancement Means Filter 
Type 

Wehningen Oxbow Walmsburg Oxbow Average 

Land Water Total Land Water Total Land Water Total 

Average Band 

NH 
Raw 97.9 96.4 97.5 97.3 98.0 97.4 97.6 97.2 97.5 

Lee 98.1 94.0 97.0 98.2 97.8 98.2 98.2 95.9 97.6 

Residential 
Raw 98.0 96.4 97.6 97.6 97.9 97.7 97.8 97.2 97.6 

Lee 98.2 94.0 97.1 98.6 97.8 98.4 98.4 95.9 97.8 

Forest 
Raw 99.1 96.4 98.4 98.7 97.9 98.6 98.9 97.2 98.5 

Lee 99.1 94.0 97.8 99.4 97.8 99.1 99.2 95.9 98.5 

DEM 
Raw 97.9 96.4 97.5 97.4 97.8 97.5 97.7 97.1 97.5 

Lee 98.2 94.0 97.1 98.3 97.7 98.2 98.2 95.8 97.6 

LULC 
Raw 99.2 96.4 98.5 99.0 97.9 98.8 99.1 97.2 98.6 

Lee 99.3 94.0 97.9 99.7 97.8 99.4 99.5 95.9 98.6 

LULC & DEM 
Raw 99.2 96.4 98.5 99.0 97.9 98.8 99.1 97.2 98.6 

Lee 99.3 94.0 97.9 99.7 97.8 99.4 99.5 95.9 98.6 

Texture Mean 

NH 
Raw 97.9 97.0 97.7 97.5 97.9 97.5 97.7 97.4 97.6 

Lee 98.0 94.5 97.1 97.9 98.5 98.0 98.0 96.5 97.6 

Residential 
Raw 98.0 97.0 97.7 97.7 97.8 97.7 97.8 97.4 97.7 

Lee 98.2 94.5 97.2 98.3 98.5 98.3 98.2 96.5 97.8 

Forest 
Raw 99.1 97.0 98.6 98.8 97.8 98.6 99.0 97.4 98.6 

Lee 99.1 94.5 97.9 99.2 98.5 99.1 99.1 96.5 98.5 

DEM 
Raw 97.9 96.9 97.7 97.6 97.7 97.6 97.7 97.3 97.6 

Lee 98.1 94.5 97.1 98.1 98.4 98.1 98.1 96.4 97.6 

LULC 
Raw 99.2 97.0 98.6 99.0 97.8 98.8 99.1 97.4 98.7 

Lee 99.2 94.5 98.0 99.6 98.5 99.4 99.4 96.5 98.7 

LULC & DEM 
Raw 99.2 97.0 98.6 99.0 97.8 98.8 99.1 97.4 98.7 

Lee 99.2 94.5 98.0 99.6 98.5 99.4 99.4 96.5 98.7 

3.3. Hazard Areas during the Floods of 2011 and 2013 
The flood detection maps produced for January 2011 were compared to the flood extent areas in June 2013 as 
represented by DLR (2013), and to the high flood zone maps. The flood extent areas were approximately iden-
tical for 2011 and 2013 floods, as shown in Figure 15 and Figure 16. Therefore, the flooded areas as shown in 
the maps produced for 2011 were used in defining the hazard areas for the winter flood in January 2011 and the 
summer flood in June 2013. The reference LULC maps, and the agricultural land use maps during the summer 
of 2011, produced by Farghaly et al. (2014), were overlaid onto the flooded areas identified for January 2011 in 
order to determine the hazard areas, as also shown in Figure 15 and Figure 16. 

Figure 15 was used to study the area around Walmsburg Oxbow. The residential areas did not experience any 
hazards. On the other hand, four large cultivated fields were fully or partially submerged in 2011. These fields 
may be expected to be entirely submerged in future high floods since they are located within the high flood zone.  
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Figure 15. The flood extent of the flood in 2013 created by DLR overlaid with the flood ex-
tent in June and January 2011, the residential areas and agricultural land use in Summer 2011 
at Walmsburg Oxbow. 

 
In spite of the fact that these fields were flooded in January 2011, they were cultivated with maize and potatoes 
in summer 2011. During the flood of summer 2013, these cultivated areas were again inundated and caused 
economic losses to the owners of the land. To achieve sustainable land use in this area, these fields must be in-
cluded in the flood hazard maps and regulations established to prevent cultivation in these areas, permitting the 
fields to be used only as grassland, in order to avoid economic losses. 

In Figure 16, the cultivated area around Wehningen Oxbow, in contrast to the Walmsburg Oxbow, was not 
submerged and did not endure any hazards. On the other hand, part of the residential area in the Strachauer Rad, 
in the city of Dannenberg, Lower Saxony, is located within the high flood zone. However, this area was not  
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Figure 16. The flood extent due to the floods in 2013 produced by DLR overlaid with the flood 
extent in June 2011 and January 2011, the residential areas and the agricultural land use in 
summer 2011 at Wehningen Oxbow. 

 
submerged during the most recent high floods, in 2011 and 2013. Nevertheless, this part of the city should be 
added to the hazard and risk maps to avoid the possible human and economic losses that may occur due to high-
er floods. This flood mapping will support sustainable land use in this area. 

4. Concluding Remarks 
In order to achieve sustainable land use on the Middle Elbe River floodplain, up-to-date land use maps during 
the pre-flood period are essential to determine the hazards that may arise during the post-flood period. In partic-
ular, the locations of residential areas must be verified against the maps to ensure that they are safely removed 
from the high flood zone. Therefore, the residential areas that lie within the extent of flood zone must be in-
cluded on the risk maps to support the regulatory prevention of (further) building within these risk zones. 
Moreover, the arable land which has suffered partially or fully from flood events must also be added to the ha-
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zard maps to decrease potential economic losses and to achieve sustainable land use. 
The merging of similar pixels into objects diminishes the problem of speckle noise in the TSX imagery and, 

thus, enables high producer accuracies from the raw images without filtering. The raw images lead to similar or 
even better results than the Lee-filtered images. Therefore, it is recommended to use the object-based classifier 
with the raw images to save time and effort. Especially during flood events, flood extent maps are immediately 
required to identify hazard areas to help reduce human and economic losses. Further, the use of dual-polarized 
images enhances the classification results and leads to higher producer accuracies than the mono-polarized im-
ages. Therefore, it is recommended to use dual-polarization images to attain more accurate LULC maps. 

The resulting Decision-Tree procedure, using the rule-based classifier in ENVI EX, resulted in considerably 
better total producer accuracies, such that about 95% of the water area was accurately defined, as well as about 
90% of vegetated lands being correctly determined, and around 80% of the forest and the residential area classes 
recognized. The 20% misclassified areas within the forest and residential areas were due to the existence of ve-
getated areas and trees within the residential areas around the buildings. 

The use of texture and spatial attributes with the spectral attributes enhanced the classification results. Apply-
ing rules based on the band-average, as a spectral attribute, and the texture-mean facilitated correct identification 
of about 95% of the flood extent for post-flood imagery. Furthermore, the use of the texture-entropy attribute 
enabled recognition of about 90% of the vegetated lands. The texture-mean attribute enabled efficient distin-
guishing of residential areas and forest classes. 

To conclude, the results show that similar rule sets can be used for the Decision-Tree procedure on two re-
mote study areas in the Elbe River flood plains to achieve higher classification producer accuracies. Thus, the 
suggested Decision-Tree should be applicable to other remote areas. Therefore, it is recommended to conti-
nuously monitor the entire Biosphere Reserve using TSX imagery to deal with construction and/or cultivation 
within the flood zone. Construction and cultivation in flood plains should be carefully planned according to the 
flood risk maps to ensure sustainable land use within the Elbe Biosphere. 
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