Characterization of Corrinoid Compounds in the Edible Cyanobacterium *Nostoc flagelliforme* the Hair Vegetable

Fei Teng¹, Tomohiro Bito¹, Shigeo Takenaka², Hiroyuki Takenaka³, Yuji Yamaguchi³, Yukinori Yabuta¹, Fumio Watanabe¹*

¹Division of Applied Bioresources Chemistry, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; ²Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan; ³MAC Gifu Research Institute, MicroAlgae Corporation, Gifu, Japan.

Email: *watanabe@muses.tottori-u.ac.jp*

Received November 26th, 2013; revised December 26th, 2013; accepted January 2nd, 2014

Copyright © 2014 Fei Teng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Fei Teng et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian.

ABSTRACT

Vitamin B₁₂ contents in the edible cyanobacterium *Nostoc flagelliforme*, also known as hair vegetable, were assayed using a microbiological method. We detected high vitamin B₁₂ contents in samples of naturally grown cells (109.2 ± 18.5 μg/100g dry weight) and cultured cells (120.2 ± 53.6 μg/100g dry weight). However, commercially available hair vegetable samples, which comprised fake substitutes and *Nostoc*, had variable contents (4.8 - 101.6 μg/100g dry weight) because concomitant fake items contain very low vitamin B₁₂ contents. To evaluate whether natural and cultured *N. flagelliforme* samples contained vitamin B₁₂ or pseudovitamin B₁₂, corrinoid compounds were purified and identified as pseudovitamin B₁₂ (approximately 72%) and vitamin B₁₂ (approximately 28%) using silica gel 60 TLC bioautography and LC/MS. The results suggested that *N. flagelliforme* contains substantial amounts of pseudovitamin B₁₂, which is inactive in humans.

KEYWORDS

Edible Cyanobacteria; Hair Vegetable; *Nostoc flagelliforme*; Pseudovitamin B₁₂; Vitamin B₁₂

1. Introduction

Nostoc flagelliforme is an edible cyanobacterium, which grows naturally in some semidesert regions of China and Mongolia. When dried, the cyanobacterium resembles black hair and hence the name hair vegetable ("Facai" in Chinese), which is one of the most expensive ingredients in Chinese cuisine [1]. At present, fake items and mixtures of pure *N. flagelliforme* with fake substitutes (approximately 90%) are flooding the market [1].

N. flagelliforme contains many nutrients [2], including a novel acidic polysaccharide (nostoflan) that has potent antiviral activity [3]. Takenaka *et al.*, [4] demonstrated the oral acute and subacute safety of dried *N. flagelliforme* in rats. Therefore, *N. flagelliforme* is also suitable for pharmaceutical use. Several studies [5,6] have reported that most of the corrinoids found in certain edible cyanobacteria may not be bioavailable in mammals. Watanabe *et al.* [7] also demonstrated that pseudovitamin B₁₂ (adeninylcyanocobamide or pseudo B₁₂; Figure 1),

![Figure 1. Structures of vitamin B₁₂ (B₁₂) and pseudovitamin B₁₂ (pseudo B₁₂). (a) B₁₂; (b) pseudo B₁₂.](image-url)
which is inactive in humans, is the predominant corrinoid in the edible cyanobacteria used as a health food by humans. *N. flagelliforme*, hair vegetable, is already used as health food, but there is no information on about B₁₂ contents in pure *N. flagelliforme* and commercially available hair vegetable, or whether the corrinoids are authentic B₁₂ or inactive corrinoids.

In the present study, we characterized corrinoid compounds from *N. flagelliforme* sources, including naturally grown samples, cultured samples, and commercially available hair vegetable samples.

2. Materials and Methods

2.1. Materials

Authentic B₁₂ was obtained from Sigma (St Louis, Missouri, USA). Silica gel 60 thin-layer chromatography (TLC) aluminum sheets were obtained from Merck (Darmstadt, Germany). All other reagents were high-grade commercially available reagents. *N. flagelliforme* Born. et Flah. was harvested from Alxa, Inner Mongolia, China, during the summer of 1996. After washing in water, the cyanobacterium was dried in sun and used for the assays. First, 0.5 g of each sample was suspended in 40 mL of distilled water and homogenized with an ultrasonic disruptor UD-200 (Tomy, Tokyo, Japan). Total corrinoids were extracted after boiling at pH 4.8 in the presence of 4.0 × 10⁻⁴ M KCN and determined using the *Lactobacillus delbrueckii* ATCC 7830 microbiological assay method, according to the method described in the Standard Tables of Food Composition in Japan. *L. delbrueckii* ATCC 7830 can utilize deoxyribose, deoxyribo nucleotides (known as alkali resistant factor), and B₁₂. Thus, accurate B₁₂ contents were calculated by subtracting the results for alkali resistant factor from those of total B₁₂ [8].

2.4. Bioautography of Corrinoid Compounds Using Vitamin B₁₂-Dependent *Escherichia coli* 215

Bioautography of corrinoid compounds was performed as previously described [9]. B₁₂ extracts (20 mL) prepared as mentioned above were partially purified and concentrated using a Sep-Pak® Plus C18 cartridge (Waters Corp., Milford, USA), which was washed with 5 mL of 75% (v/v) ethanol and equilibrated with 5 mL of distilled water. The C18 cartridge was washed with 5 mL of distilled water, and B₁₂ compounds were eluted using 2 mL of 75% (v/v) ethanol. The eluate was evaporated in a centrifugal concentrator (Integrated SpeedVac® System ISS110; Savant Instruments Inv., NY, USA). The residual fraction was dissolved in 5.0 mL of distilled water. Concentrated B₁₂ extracts (1 μL) and authentic and pseudo B₁₂ (each 50 μg/L) were spotted onto the silica gel 60 TLC sheet and developed in the dark using 2-propanol/acetone/CH₃COOH (7:1:2 v/v) at room temperature (25°C). After drying the TLC sheet, it was overlaid with agar containing basal medium and precultured *E. coli* 215, and incubated at 37°C for 20 h. The gel plate was then sprayed with methanol solution containing 2,3,5-triphenyltetrazolium salt, and B₁₂ compounds were visualized as red, indicating *E. coli* growth.

2.5. Liquid Chromatography-Electrospray Ionization/Multistage Mass Spectrometry (LC/ESI-MS/MS) Analysis

Each extract (40 mL) was partially purified and concentrated using a Sep-Pak® Plus C18 cartridge (Waters Corp) as described above. The eluate was evaporated in a centrifugal concentrator (Integrated Speed VacR System ISS110), and the residual fraction was dissolved in 5.0 mL of distilled water. The purified extract was loaded onto an immunoaffinity column [EASI-EXTRACT® Vitamin B₁₂ Immunoaffinity Column (P80) R-Biopharm AG, Darmstadt, Germany], and the corrinoids were purified according to the manufacturer’s recommended protocol. *Nostoc* corrinoids, authentic pseudo B₁₂, and B₁₂ were dissolved in 0.1% (v/v) acetic acid and filtered using a Nanosep MF centrifuge device (0.4 μm, Pall Corp., Tokyo, JAPAN) to separate small particles. We analyzed an aliquot (2 μL) of the filtrate using a LCMS-IT-TOF coupled with an Ultra-Fast LC system (Shimadzu, Kyoto, JAPAN). Each purified corrinoid was injected into an Inert Sustain column (3 μm, 2.0 × 100 mm, GL Science,
Tokyo, JAPAN) and equilibrated with 85% solvent A [0.1% (v/v) acetic acid] and 15% solvent B (100% methanol) at 40°C. Corrinoid compounds were eluted using a linear gradient of methanol (15% solvent B for 0 - 5 min, increasing the concentration from 15% to 90% solvent B for 5 - 11 min, and decreasing the concentration from 90% to 15% solvent B for 11 - 15 min). The flow rate was 0.2 mL/min. ESI conditions were determined by injecting authentic pseudo B12 or B12 into the MS detector to determine the optimum parameters for detecting the parent B12 compound and daughter ions. ESI-MS was operated in the positive ion mode. Argon was used as the collision gas. Pseudo B12 (m/z 672.777) and B12 (m/z 678.292) as [M+2H]2+ were confirmed by comparing the observed molecular ions and the retention times.

2.6. Analytical High Performance Liquid Chromatography (HPLC)

Each immunoaffinity-purified B12 fraction (10 μL) was analyzed with a reversed-phase HPLC column (Wakosil-II 5C18RS, 4.6 × 150 mm; 5 μm particle size; Wako Pure Chemical Industries, Osaka, Japan). Corrinoids were isocratically eluted with 20% (v/v) methanol solution containing 1% (v/v) acetic acid at 40°C and monitored by measuring the absorbance at 361 nm. The flow rate was 1 mL/min. Retention times of authentic B12 and pseudo B12 were 8.6 min and 10.7 min, respectively. The relative content ratio of B12 and pseudo B12 in various N. flagelliforme samples was calculated on the basis of peak areas with identical retention times of B12 and pseudo B12.

2.7. Evaluation of True and Fake N. flagelliforme

Because fake materials generally contain starch [2], commercially available hair vegetable samples were tested using the iodine-starch reaction. The dried samples (0.1 g) were added to 10 mL of distilled water and boiled for 30 min. The treated samples were cooled to a room temperature and centrifuged at 10,000 × g for 10 min at 25°C. Each supernatant solution (0.2 mL) was added to 1.4 mL of distilled water and treated with 0.4 mL of 25% Lugol solution (MP Biomedicals, LLC, Ohio, USA). The solution was allowed to stand for 30 min, and absorbance was measured at 600 nm. Microscopic analysis was performed using a BH-2 type microscope (Olympus Corp., Tokyo, Japan) with a digital camera QV-200 (Casio Computer Co. Ltd, Tokyo, Japan), as previously described [2].

3. Results and Discussion

3.1. Vitamin B12 Contents

B12 contents were analyzed in various sources of N. flagelliforme i.e., naturally grown samples, cultured samples, and commercially available hair vegetable samples, using the L. delbrueckii ATCC 7830 microbiological assay method (Table 1). High B12 contents were detected in naturally grown cells (109.2 ± 18.5 μg/100g dry weight) and cultured cells (120.2 ± 53.6 μg/100g dry weight). However, commercially available hair vegetable samples had very variable and lower B12 contents [45.1 ± 40.6 (range, 4.8 - 101.6) μg/100g dry weight]. B12 contents of natural and cultured cells were similar to those of other edible cyanobacteria, i.e., Spirulina sp. (127.2 - 244.3 μg/100g dry weight) [10], Suizenji-nori (Aphanathece sacrum, 143.8 μg/100g dry weight) [11], and Ishikurage (Nostoc commune, 98.8 μg/100g dry weight) [12].

3.2. E. coli 215 Bioautography Analysis

Corrinoids found in all Nostoc samples were analyzed using the E. coli 215 bioautogram after separation by silica gel 60 TLC (Figure 2). Corrinoids found in all Nostoc samples and the commercially available hair vegetable sample K were separated to yield two spots, the Rf values of which were identical to those of authentic pseudo B12 and B12, respectively. No or faint spots were obtained with commercially available hair vegetable samples L-N because of their lower B12 contents.

3.3. LC/ESI-MS/MS Analysis

N. flagelliforme extracts were purified using a B12 immunoaffinity column and analyzed by LC/ESI-MS/MS (Figure 3). Authentic B12 and pseudo B12 were eluted as

Table 1. Vitamin B12 contents of various sources of Nostoc flagelliforme (naturally grown and cultured samples and commercially available hair vegetable samples).

<table>
<thead>
<tr>
<th>Vitamin B12 content (μg/100g dry weight)</th>
<th>Naturally grown cells</th>
<th>Culture cells</th>
<th>Commercially available hair vegetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92.6</td>
<td>F</td>
<td>K</td>
</tr>
<tr>
<td>B</td>
<td>109.4</td>
<td>G</td>
<td>L</td>
</tr>
<tr>
<td>C</td>
<td>89.5</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>D</td>
<td>133.2</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td>E</td>
<td>120.5</td>
<td>J</td>
<td>144.1</td>
</tr>
</tbody>
</table>

Mean ± SD 109.2 ± 18.5 Mean ± SD 120.2 ± 53.6 Mean ± SD 45.1 ± 40.6

*Total corrinoids were extracted from 0.5 g of each sample by boiling at pH 4.8 in the presence of KCN and determined using the Lactobacillus delbrueckii ATCC 7830 microbiological assay method. Because L. delbrueckii ATCC 7830 can utilize deoxyribosides, deoxyribonucleotides (known as alkaline resistant factor), and B12, B12 values were corrected by subtracting the results for alkaline resistant factor from those for total B12. B12 was assayed in triplicate for each sample, and the data is presented as mean values.

OPEN ACCESS
Characterization of Corrinoid Compounds in the Edible Cyanobacterium *Nostoc flagelliforme* the Hair Vegetable

337

![Figure 2](image)

Figure 2. *Escherichia coli* 215 bioautogram analysis of corrinoids found in various *Nostoc flagelliforme* samples. (a) 1, authentic B12; 2, authentic pseudo B12; A-E, naturally grown samples; (b) 1, authentic B12; 2, authentic pseudo B12; F-J, cultured samples; (c) 1, authentic B12; 2, authentic pseudo B12; K-N, commercially available hair vegetable samples. One microliter of concentrated cell extracts and authentic B12 and pseudo B12 (each 50 μg/L) were spotted onto a silica gel 60 TLC sheet and developed in the dark using 2-propanol/NH₄OH (28%)/water (7:1:2 v/v) at 25°C. After drying the TLC sheet, it was overlaid with agar medium containing pre-cultured *E. coli* 215 and incubated at 37°C for 20 h. B12 compounds on the gel were visualized as red spots using 2,3,5-triphenyltetrazolium salt. The data are representative of typical bioautograms from three independent experiments.

peaks with retention times of 7.55 and 7.42 min, respectively. Mass spectrum of authentic B12 indicated that a doubly-charged ion with an *m/z* of 678.2897 [M+2H]⁺ was prominent (Figures 3(a) and (b)). The exact mass calculated from its formula ([C₆₃H₈₈CoN₁₄O₁₄P]) was calculated from its formula (C₆₃H₈₈CoN₁₄O₁₄P) was obtained using a B12 immunoaffinity column and analyzed with a reversed-phase HPLC column (Wakosil-II 5C18RS, 4.6 × 150 mm; 5 μm particle size). B12 compounds were isocratically eluted with 20% (v/v) methanol solution containing 1% (v/v) acetic acid at 40°C and monitored by measuring the absorbance at 361 nm. The relative content ratio of B12 and pseudo B12 of each sample was calculated on the basis of peak areas with identical retention times of B12 and pseudo B12. Total corrinoids were extracted from 0.5 g of each sample by boiling at.

Table 2. Relative content ratio of B12 and Pseudo B12 in various *Nostoc flagelliforme* samples

<table>
<thead>
<tr>
<th>naturally grown</th>
<th>Cultured cells</th>
<th>Commercially available hair vegetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>B12 (%)</td>
<td>Pseudo B12 (%)</td>
<td>B12 (%)</td>
</tr>
<tr>
<td>A</td>
<td>28.0</td>
<td>72.0</td>
</tr>
<tr>
<td>B</td>
<td>29.3</td>
<td>70.7</td>
</tr>
<tr>
<td>C</td>
<td>28.5</td>
<td>71.5</td>
</tr>
<tr>
<td>D</td>
<td>25.1</td>
<td>74.9</td>
</tr>
<tr>
<td>E</td>
<td>26.2</td>
<td>73.8</td>
</tr>
<tr>
<td>Mean</td>
<td>27.4</td>
<td>72.6</td>
</tr>
<tr>
<td>± SD</td>
<td>1.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

nd: not detected. Each B12 fraction (10 μL) was purified using a B12 immunoaffinity column and analyzed with a reversed-phase HPLC column (Wakosil-II 5C18RS, 4.6 × 150 mm; 5 μm particle size). B12 compounds were isocratically eluted with 20% (v/v) methanol solution containing 1% (v/v) acetic acid at 40°C and monitored by measuring the absorbance at 361 nm. The relative content ratio of B12 and pseudo B12 of each sample was calculated on the basis of peak areas with identical retention times of B12 and pseudo B12. Total corrinoids were extracted from 0.5 g of each sample by boiling at.

3.4. Relative Content Ratios of B12 and Pseudo B12 in Various *Nostoc* Samples

Table 2 summarizes the relative contents ratios of B12 and pseudo B12 in various *Nostoc* samples. The ratios of B12 (approximately 28%) and pseudo B12 (approximately 72%) are shown for naturally grown (A-E) and cultured (G and H) samples and for commercially available hair vegetable samples (K-M). Pseudo B12 was the predominant corrinoid in cultured samples F and J. In contrast, sample I contained approximately 76% of B12. The variable ratios of B12 and pseudo B12 in the cultured samples...
Figure 3. Liquid chromatography-electrospray ionization/multistage Mass spectrometry (LC/ESI-MS/MS) of authentic B$_{12}$ and pseudo-B$_{12}$, B$_{12}$ and pseudo B$_{12}$ were analyzed with LCMS-IT-TOF (Shimadzu) as described in the text. The total ion chromatograms (TIC) of authentic B$_{12}$ and pseudo B$_{12}$ are shown in panels (a) and (d), respectively. The mass spectra of each ion peak from B$_{12}$ and pseudo B$_{12}$ are shown in panels (b) and (e), respectively. The magnified mass spectra from m/z 678 to 680 in B$_{12}$ and from m/z 672 to 675 in pseudo B$_{12}$ are shown as inserts. The MS/MS spectra of the peaks of B$_{12}$ and pseudo B$_{12}$ are shown in panels (c) and (f), respectively.

OPEN ACCESS
Characterization of Corrinoid Compounds in the Edible Cyanobacterium *Nostoc flagelliforme* the Hair Vegetable

Figure 4. Liquid chromatography-electrospray ionization/multistage mass spectrometry (LC/ESI-MS/MS) of the purified corrinoids from naturally grown *Nostoc* sample (sample E). Total ion chromatograms (TIC) and reconstructed chromatograms for m/z 678.29 (×10) and 672.77 (×10) of the *Nostoc* corrinoids are shown in panel (a). The mass spectra of the ion peaks of the *Nostoc* corrinoids at retention times of 7.2 min and 7.4 min are shown in panel (b) (the magnified mass spectrum from m/z 672 to 675 is shown as an insert) and panel (d) (the magnified mass spectra from m/z 678 to 680 are shown as an insert), respectively. The MS/MS spectra for the peaks of the *Nostoc* corrinoids at m/z 672.7735 and at m/z 678.2888 are shown in panels (c) and (e), respectively.

Figure 5, microscopic analysis indicated that although naturally grown and cultured *N. flagelliforme* possessed a bead-like morphology, no such morphology was found in the commercially available hair vegetable sample N (fake item only). The remaining hair vegetable samples K-M contained both *Nostoc* and fake substitutes. These microscopic data coincided with the results of iodine-starch reaction. Our results indicated that because naturally grown *N. flagelliforme* contain substantial amounts of

may have been due to differences in the culture conditions, but we have no detailed information on the key factor that affected B_{12} and pseudo B_{12} ratios. These results indicate that most *Nostoc* samples and commercially hair vegetable samples contained pseudo B_{12} (major) and B_{12} (minor).

3.5. Evaluation of True and Fake *N. flagelliforme*

Because hair vegetable is one of the most expensive ingredients in Chinese cuisine, certain fake items represent a large proportion of the commercially available hair vegetable [2]. No color change was observed in all cultured samples, whereas all commercially available hair vegetable samples (K-N) exhibited significant staining by the iodine-starch method (optical densities of 0.29, 0.65, 0.34, and 1.19, respectively, at 600 nm). As shown in Figure 5, microscopic analysis indicated that although naturally grown and cultured *N. flagelliforme* possessed a bead-like morphology, no such morphology was found in the commercially available hair vegetable sample N (fake item only). The remaining hair vegetable samples K-M contained both *Nostoc* and fake substitutes. These microscopic data coincided with the results of iodine-starch reaction. Our results indicated that because naturally grown *N. flagelliforme* contain substantial amounts of
pseudob12, which is inactive in humans [7] and because the fake items have very low B12 contents, commercially available hair vegetable is not suitable for use of B12 source, regardless of the presence of the fake items.

Cyanobacteria have the ability to synthesize pseudob12 [13], which functions as a coenzyme of methionine synthase to catalyze the synthesis of methionine from homocysteine and N5-methyltetrahydrofolate [14]. In the present study, the cultured nostoc sample I predominantly contained B12 but not pseudob12 (Table 2), suggesting that nostoc flagelliforme may synthesize both B12 and pseudob12 de novo. Further biochemical and genetic studies are required to elucidate the detailed physiological functions of each corrinoid in this terrestrial cyanobacterium.

REFERENCES

