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Abstract 
This work concerns a dynamic modeling and a numerical simulation of the 
operation of an adsorption solar refrigeration system using the zeolite-water 
couple. For this, a mathematical model representing the evolution of heat and 
mass transfer at each component of the solar adsorption refrigerator has been 
developed. We have adopted the Dubinin-Astakhov model for the adsorption 
kinetics of the zeolite/water pair. This model allows to describe the pheno- 
menon of adsorption and to calculate the rate of adsorbate (water) in the zeo-
lite (adsorbent) as a function of the temperature and the pressure. The equa-
tions governing the operation of the solar adsorption refrigerator, deduced 
from the thermal and mass balances established at the collector adsorber, 
condenser and evaporator components, were solved by an implicit finite dif-
ference scheme and Gauss Seidel’s iterative method. We have validated the 
model established by applying it to the model of Allouhi et al. 2014. We ana-
lyzed the influence of the adsorbate/adsorbent couples, the solar flux, the am-
bient temperature on the adsorption and desorption process. The temperature 
profiles obtained representing the temperature evolution of the glass, the ab-
sorbent plate, the zeolite-water mixture, the condenser, the evaporator, as well 
as the pressure and the adsorbed mass allowed us to evaluate the performance 
of the solar adsorption refrigerator. SCOP is higher the higher the solar flux 
captured by the collector-adsorber. 
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1. Introduction 

Cold production is mainly achieved by compression machines whose operation 
requires the use of refrigerants and excessive consumption of electrical energy. 
These refrigerants, CFCs (chlorofluorocarbons), HCFCs (hydrochlorofluoro- 
carbons) and HFCs (hydrofluorocarbons) are harmful to the ozone layer and 
contribute to an increase in the greenhouse effect. Since the Montreal Protocol 
in 1987, international agreements have been signed to reduce emissions of these 
refrigerants [1]. Thus, research efforts focused on the development of refrige- 
ration technologies, which respond to environmental and energy concerns, have 
been undertaken. Solar adsorption refrigeration machines have been the subject 
of numerous studies [2] [3] [4]. 

These machines are an alternative to solve both ecological and energy prob-
lems. Indeed, the technology of these machines is simple, maintenance is easy, 
and the materials used, are recyclable [5]. In addition, these machines use refri-
gerants such as water [6], methanol [7] and ammonia [8], which have no effect 
on the environment. For countries such as Burkina Faso, with favorable sunshine 
with an average irradiation between 5.5 kWh·m−2·day−1 and 65 kWh·hm−2·day−1 
[9], solar adsorption refrigeration is a promising solution to meet important 
needs such as food preservation, pharmaceuticals, air conditioning, etc. and also 
to reduce electricity consumption. 

However, some disadvantages have become obstacles to the actual application 
and marketing of these machines such as discontinuous cycle operation [10] 
[11], low coefficient of performance, poor heat and mass transfer in the bed Ad-
sorbent [12], low thermal conductivity of the adsorbent [13] [14] [15], poor 
contact between the surface of the adsorber and the adsorbent [16] [17]. 

To improve the performance of solar adsorption refrigeration machines, nu-
merous research axes have been proposed, studied and tested. Thus, several solar 
collector models have been used by researchers to optimize the solar radiation 
received through use: vacuum tube collectors [18] [19] [20] of the single-glazed 
or double-glazed (TIM) flat plate collectors [21] [22] [23], cylindro-parabolic 
collectors [24] [25].  

Other approaches based on the shape of the adsorber have been used to im-
prove the efficiency of solar radiation. Thus, flat, tubular adsorbers, equipped 
with external or internal fins, have been used in several prototypes of adsorption 
solar refrigerators. These fins act as thermal bridges between the absorbent plate 
and the reactive (porous) medium and thus optimize the heat and mass transfer 
in the adsorbent bed [12] [17] [26] [27] [28]. 

In addition, some researchers have focused on improving the thermal con-
ductivity of adsorbents through the development of composite adsorbent. The 
technique for preparing the consolidated composite adsorbents consists in add-
ing a material having a higher thermal conductivity to the powder of the con-
ventional solid adsorbent. By this technique, thermal conductivity of the order of 
5 to 15 W/m·k can sometimes be reached and a heat exchange coefficient with 
the metal walls of the adsorber ranging from 200 to 3000 W/m2·k [26] [29] [30] 
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[31] [32] [33]. 
In addition, to overcome the intermittent character of the solar adsorption re-

frigeration cycle, prototype models of machines have been developed. These 
machines consist of two beds of adsorbents operating so that one adsorbs the re-
frigerant and the other one desorbs it. Thus, they make it possible to produce 
cold continuously [7] [34] [35] [36]. 

The efficiency of the operation of the refrigerating machines is also linked to 
the climatic conditions of the site in which the machine is located. Thus, several 
experimental studies on prototypes of adsorption solar refrigerators have been 
proposed and tested, in order to find their actual behavior [23] [37] [38] [39] 
[40]. 

The main objective of this study is to contribute to the understanding of the 
solar refrigeration system by adsorption through a dynamic modeling of a solar 
adsorption refrigerator model operating under the climatic conditions of Bur- 
kina Faso. 

2. Materials and Methods 
2.1. Description of the Cycle of Operation of the Solar Adsorption 

Refrigerator 

A solar refrigerating adsorption machine operates in a cycle. It consists in a flat 
plate collector containing the zeolite/water mixture and plays a role of capturing 
and releasing the heat. It is connected to a condenser and an evaporator. The 
principle of operation of these machines is based on the phenomena of adsor- 
ption-desorption of a gas (water vapor) in a solid (zeolite). This chemical reac- 
tion is exo or endothermic according to its direction of unwinding. This ideal 
cycle represents the evolution of the state of the adsorbent/adsorbate mixture 
contained in the collector-adsorber. Each cycle includes two main stages gover- 
ning the operation: one stage for heating the zeolite/water mixture and another 
for cooling the same mixture. 

2.1.1. Heating Phase 
• Isosteric heating phase (1 → 2) 

At the beginning of the cycle (point 1), the zeolite/water mixture is at its 
minimum temperature aT  (adsorption temperature) and at the pressure evP  
(evaporation pressure); at this time, the collector-adsorber is isolated. Under 
heating, the pressure and temperature of the mixture increase, while the total 
mass of adsorbed water remains constant along the transformation (1 → 2) and 
equal to maxq . This pressurization phase ends as soon as the pressure becomes 
equal to that prevailing in the condenser cdP  (point 2). The temperature 
reached is called desorption threshold temperature 1sT . 
• Condensation desorption phase (2 → 3)  

This phase begins when the pressure of the mixture in the adsorber reaches 
the condensation pressure cdP  (saturation pressure corresponding to the tem-
perature of the condenser), the adsorber is placed in communication with the 
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condenser and the desorption of the refrigerant begins, which condenses in the 
condenser thereafter. The adsorber is then in high pressure and follows the iso-
bar imposed by the condenser. While continuing heating, the temperature of the 
mixture in the adsorber increases to the maximum temperature gT  (regenera-
tion temperature) at point 3, set for the corresponding cycle. This phase is gen-
erally called generation because it is that which makes the adsorber conducive to 
a new phase of refrigeration production. 

2.1.2. Cooling Phase 
• Isosteric cooling phase (3 → 4) 

In contrast to the first phase, cooling of the zeolite/water mixture begins at 
point 3, where the temperature and pressure decrease until the pressure becomes 
equal to that in the evaporator. The temperature reached is referred to as the 
adsorption threshold temperature 2sT  (point 4). The total mass of the adsorbed 
fluid remains constant during this phase and is equal to minq . 
• Adsorption-evaporation phase (4 → 1), 

This phase is the motor phase of the cycle during which the cold is produced. 
At point 4, the evaporation of the refrigerant begins, producing cold in the eva-
porator. The vapor produced is adsorbed again in the adsorber until the temper-
ature of the zeolite water mixture becomes minimal aT , set for the correspond-
ing cycle. During the transformation (4 → 1), the system follows the isobara im-
posed by the evaporator and which corresponds to the saturation pressure of the 
refrigerant (water) at the evaporation temperature. At this point, the machine is 
ready for a new cycle. 

Figure 1 shows the basic thermodynamic route of such a machine in the Cla-
peyron diagram (LnP; -1/T) (Figure 2). 

 

 
Figure 1. Theoretical cycle of an adsorption machine. 
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Figure 2. Photography of solar adsorption refrigerator. 

2.2. Modelisation 

The mathematical model presented below simulates the real operation of the so-
lar adsorption refrigeration system taking into account the variation in solar 
radiation and the ambient temperature during the day. Thus, we present the 
modeling of the transfer of heat and mass in the adsorbent bed, and the balance 
equations at each compartment of the system (glass, absorbent plate, condenser, 
and evaporator). 

2.2.1. Assumptions 
The formulation of some assumptions is necessary for an approximate simula-
tion of the system. Thus we assume that: 
• The porous material (adsorbent) is assimilated to a medium having a tem-

perature T and equivalent thermal conductivity, 
• Heat transfer is unidirectional, 
• The convective heat transfer and the pressure losses are neglected in the 

porous medium, 
• The pressure remains constant in the condenser and in the evaporator. 

2.2.2. Equations Balances 
The heat transfer equations at each part of the refrigerator can be written as fol-
lows: 

The glass  

[ ]

[ ]

.v
v pv v n v p v v p v cv v ext v v amb

r v ciel v v ciel

dT
m C G s U s T T h s T T

dt
h s T T

α − − −

− −

 = ⋅ ⋅ + ⋅ − − − 

− ⋅ −
     (1) 

The absorbent plat 

( ) ( ). .
p

p
p p p v p n p v v p v p ads p p zeo

dT
m C s G U s T T U s T T

dt
α λ − −= ⋅ ⋅ − − − −     (2) 

The adsorbent bed 
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During the isosteric heating and desorption phase 

( )

( )

zeo
eq peq p ads p p zeo

d d

des ads ads pl zeo cd

dT
m c U s T T

dt
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dt dt
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+ ∆ + − 
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     (3) 

During the isosteric cooling phase and adsorption 
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( )
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dt
dq dqH m m c T T
dt dt
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 
+ ∆ − − 
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     (4) 

With:  
=0δ : During isosteric heating and cooling;  
=1δ : During desorption and adsorption; 

The condenser  

( )

( ) ( )( )
( ) ( )  

cd
cd pcd d pl

d

ads cd cd pl eau cd
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dT
m c M t c
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dt

h S T T h S T T− − − −
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− ⋅ − − ⋅ −

       (5) 

The evaporator  

( )( )

( ) ( ) ( )

. ev
ev pev d ads pl

ads ev ev pl eau ev cv ev air ev ev air

dT
m c M t q m c

dt
dqm L T c T T h S T T
dt − −

 + − ∆ 

 = − + − − − 

    (6) 

2.2.3. Model of Adsorption Kinetics 
Several theories of adsorption have been proposed in the literature to describe 
the process of the adsorption and desorption phenomenon. The Dubinin-As- 
takhov equation is used successfully to describe the adsorption of gas vapor on 
the adsorbent. Thus, this equation is used to calculate the rate of adsorbate (wa-
ter) in the zeolite (adsorbent) as a function of temperature and pressure. 

( ) ( )
0 exp ln

n
s

l

P T
q w T D T

P
ρ

  
 = −     

               (7) 

where ( )l Tρ  is the density of the adsorbate (water) and ( )sP T  is the satura-
tion pressure. 0w  is the maximum adsorption capacity; D and n are constants 
pedending on the adsorbent/adsorbate couple used. 

2.2.4. System Performance  
The solar performance coefficient (SCOP) of a solar refrigerating machine is de-
fined as the ratio between the amount of cold produced at the evaporator and 
the total solar energy incident for a full day. 

. .
ss

sr

f
t

s n
t

Q
SCOP

A G dt
=

∫
                     (8) 
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where As is the collecting surface and Gn is the solar flux in W/m2 fQ  is the 
amount of cold produced at the evaporator, given by:  

( ) ( )
cd

ev

T

f ads ev l
T

Q m m L T Cp T dT
 

= ∆ − 
  

∫               (9) 

2.3. Numerical Methodology 
2.3.1. Initial and Boundary Conditions  
For all 0t t , 0t  being the instant from which the collector-adsorber is sub-
jected to the solar flux, we have: 

 

( ) ( ) ( ) ( ) ( )0 0 0 0 0v p ev cd ambT t T t T t T t T t T= = = = =       (10) 

( ) ( )0 ev s evP t P P T= =                    (11) 

( ),amb evq q T P=                      (12) 

2.3.2. Method of Resolution  
The method of solving the system of equations which describes the transient 
behavior of the model is purely numerical and based on the implicit finite dif-
ference method and the Gauss Seidel iterative method. We have developed and 
written in Fortran a computer program to model and simulate the adsorption- 
desorption kinetics of the zeolite/water pair and on the other hand the operation 
of each element of the refrigerator during a day. 

3. Results and Discussion 
3.1. Validation of the Model  

In order to validate our numerical code, we applied our code to the solar adsorp-
tion refrigerator model presented by A. Allouhi et al. [41]. This model describes 
a parallelepiped-shaped collector-adsorber refrigerator using the silicagel-water 
couple. A comparison between the changes in the temperature in the adsorbent 
bed as a function of its pressure, describing the Clapeyron cycle of the solar ad-
sorption refrigerator, shows good quantitative agreement. Indeed, the maximum 
deviation observed for the temperatures is of the order of 1.1% and 2.4% for the 
pressure (Figure 3). 

3.2. Climatic Data 

Solar radiation and ambient temperature are parameters that affect the perfor-
mance of solar refrigeration systems. Thus, using the weather data provided by 
the General Direction of Meteorology in Burkina Faso (DGM), which include 
the values of the monthly global radiation densities on a horizontal plane in 
J/cm2, we used the method of Liu and Jordan to transform these data in order to 
obtain the hourly values of the global radiation on an inclined plane of angle 
12.2˚ with respect to the horizontal. For ambient temperature, we used the data 
of E. Ouédraogo et al. [42], who carried out a statistical study to develop an 
hourly weather file for the city of Ouagadougou. Thus, Figure 4(a) and Figure 4(b)  
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Figure 3. Comparison of the Clapeyron cycle given by A. Allouhi and our calculation 
code. 

 

Table 1. Main parameters used in the simulation. 

Symbols Paramters Values Units 

Properties of the adsorbent/adsorbate (zeolite/water) 

Cpads Chaleur spécifique 0.836 [kJ·kg−1·K−1] 

mads Masse 32 [kg] 

ρads Densité 620 [kg·m−2] 

Cpl Chaleur spécifique 4.18 [kJ·kg−1·K−1] 

Collector-adsorber 

εv Emissivity of the glass 0.9 [-] 

τv Transmitivity of the glass 0.95 [-] 

αv Absorptivity of the glass 0.05 [-] 

ev Thickness of the glass 0.04 [m] 

S Area 1 [m2] 

Cpv Specific heat of the glass 0.75 [kJ·kg−1·K−1] 

Cpp Specific heat of the absorbent plate 0.896 [kJ·kg−1·K−1] 

ep Thickness of absorbent plate 0.05 [m] 

αp Absorptivity of absorbent plate 0.95 [-] 

εp Emissivity of the absorbent plate 0.9 [-] 

Parameters of Dubinin-Astakhov 

D 
Characteristic parameter of the  

adsorbent/adsorbate couple 
4.15 10−7 [-] 

n 
Characteristic parameter of the  

adsorbent/adsorbate couple 
2 [-] 

Wo Maximum adsorption capacity 0.269 10−3 [m3·kg−1] 
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(a) 

 
(b) 

Figure 4. Hourly evolution of solar radiation and ambient temperature. 
 
shows the hourly evolution of global solar radiation and the ambient tempera-
ture for December, August, October and March. It can be seen that the radiation 
is maximum in March and minimal in August, this can be explained by the clear 
sky in March and by a sky low in October and December. In August, this is due 
to the presence of dust and clouds. These values thus obtained and the values in 
Table 1 were used for the simulation of our model. 

3.3. Dynamic Behavior of the Solar Refrigerator 

Figure 5 shows the evolution of the temperature of the glass, the absorbent plate 
and the adsorbent bed (zeolithe) as a function of time during the four phases of  
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Figure 5. Time evolution of the temperature of the various components of the solar 
refrigerator for the month of March. 

 
the cycle. At the beginning of the cycle (the initial state), the temperatures are 
uniform and equal to the adsorption temperature, which in turn equals the am-
bient temperature at sunrise. When the solar flux increases, the collector-ad- 
sorber heats up and the temperatures of its various components increase rapidly 
with time. They each reach a maximum (Tv = 358 K, Tp = 396 K, Tzeo = 395 K) 
at about 13 o’clock. The maximum temperature of the adsorbent bed is referred 
to as the regeneration temperature, that is to say the temperature at which there 
is no heat exchange between the plate and the adsorbent bed. When the solar 
flux decreases, the collector-adsorber cooling begins. The temperatures of the 
various compartments decrease until the temperature reaches 300 K. This tem-
perature represents the temperature in which there is no exchange between the 
glass pane, the plate and the adsorbent bed. 

The evolution of the temperature of the condenser during the cycle is also 
shown in Figure 5. At the beginning of the cycle, the temperature of the con-
denser is the same as that of the ambient. This is explained by the fact that the 
condenser is isolated from the collector-adsorber during this period. When the 
desorption-condensation phase begins, the self-contained valve opens and the 
desorbed water vapor flows into the condenser, resulting in an increase in its 
temperature. At about 14 o’clock, the temperature of the condenser reaches its 
maximum at Tcd = 320 K, after which it begins to decrease. This increase in 
condenser temperature is due in large part to the latent heat of condensation of 
the water. The decrease of the temperature after 14 o’clock is due, on the one 
hand, to the cessation of the desorption process and, on the other hand, to cool-
ing by means of the convection and the radiation which the condenser ex-
changes with the ambient medium. The temperature of the condenser begins to 
follow that of the ambient temperature during the rest of the day. 
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The evolution of the temperature of the evaporator is also shown in the same 
Figure 5. The temperature of the evaporator decreases from 297 K to 275 K. 
This cooling of the evaporator is due to the evaporation of the condensate (wa-
ter) from the evaporator to the adsorbent bed. Thus, the adsorbate withdraws 
the needed heat for phase change of the refrigerating enclosure where the eva-
porator is located. This results in cooling. 

Figure 6 shows the variation of the pressure within the adsorbent bed as a 
function of time. During the phases of the operating cycle, the pressure has a 
logical behavior with the evolution of the temperature. It increases rapidly from 
the evaporation pressure Pev = 872 Pa (equal to the saturation pressure at the 
evaporation temperature) up to a maximum value corresponding to the con-
densation pressure Pcd = 7376 Pa (equal to the saturation pressure at the con-
densation temperature). During the desorption phase, the pressure remains con-
stant and equal to the condensation pressure until the temperature of the adsor-
bent bed reaches the maximum regeneration temperature. Then, it begins to de-
crease to the low initial evaporation pressure. 

The distribution of the quantity of water adsorbed during the four phases of 
the cycle is also shown in the same figure. During the cycle, the total quantity of 
water adsorbed in the adsorbent bed decreases during the desorption phase and 
then increases during adsorption. It remains constant during the isosteric heat-
ing and cooling phases. 

3.4. Comparison of the Results of the 4 Months  

The evolution of the temperature, the pressure and the quantity of water ad-
sorbed in the adsorbent bed are respectively represented in Figures 7-9. It is 
clear that the climatic data have a great influence on the Performance of the so-
lar refrigerator. Indeed, for the month of March, the values of the temperature,  
 

 
Figure 6. Evolution of the pressure and the adsorbed mass for the month of March. 
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Figure 7. Comparison of the evolution of the adsorbed mass during the 4 months. 

 

 
Figure 8. Comparison of the evolution of the pressure during the 4 months. 

 

 

Figure 9. Comparison of the evolution of the temperature of the zeolite during the 4 
months. 
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Table 2. Coefficient of performance of the solar adsorption refrigerator. 

Month August October December March 

Qf [MJ] 2,1098 3,0965 4,642 6,391 

Gn-moy (W/m2) 435,597 479,980 514,916 589,636 

SCOP 0,113 0,151 0,211 0,253 

 
of the quantity of desorbed adsorbate, are higher compared to the other three 
months. This is due to the fact that the solar flux density is maximum during 
this month (990 W/m2). The performances of the solar adsorption refrigerator 
for the four months are also shown in the Table 2. For the month of March, the 
SCOP reached is 0.25, while for the other months the SCOP is equal to 0.21 for 
the month of December, 0.15 for the month of October and 0.11 for the month 
of August. 

4. Conclusions 

This work presents the modeling of a system of solar refrigeration by adsorption 
which uses the couple zeolite and water. Thus, through a mathematical model, 
we wrote the equations of balance at each part of the refrigerator and developed 
a program written in Fortran language in order to simulate the behavior of the 
refrigerator taking into account the climatic conditions of the city of Ouaga-
dougou. The temperature changes of the glass, the absorbent plate, the conden- 
ser, the evaporator, the adsorbent bed and its pressure and the adsorbed mass 
were discussed. 

The key findings are: 
• For March and December, the average solar flux densities are 590 W/m2 and 

514 W/m2 respectively. The amount of cold produced during these months is 
6.391 MJ for the month of March and 4.642 MJ for the month of December. 
This gives a SCOP of 0.25 and 0.21 for the months of March and December. 

• With an average daily solar flux density of 436 W/m2 and 480 W/m2 respec-
tively for the months of August and October, the SCOP reached by our solar 
refrigeration system is 0.11 and 0.15, with a total product amount of 2.12 and 
3.1 MJ. 

The dynamic model thus developed allows to predict the real operation of the 
solar adsorption refrigerator and to evaluate its performance according to the 
climatic conditions of the city of Ouagadougou (Burkina Faso) for the hottest 
months and the coldest months of the year. The results obtained are very en-
couraging to continue to improve the performance of the solar adsorption refri-
gerator in order to use it in industrial and domestic domains. 
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Nomenclature 

Cp Spécific heat (J/kg.K) ΔH 
Heat of  

adsorption/desorption (J/kg) 

D 
Constant in the Dubinin-Astakhov 

Equation 
Subscripts  

Gn Solar radiation (W/m2) a adsorption 

m mass (kg) ads adsorbent 

n 
Constant in the Dubinin-Astakhov 

Equation 
d desorption 

P Pressure (Pa) cd condenser 

Ps Saturation Pressure (Pa) ev evaporater 

Qf Cold production (J) v glass 

q 
Water concentration inside the 

zéolithe (kg/kg) 
ext outside 

S Area (m2) amb ambient 

T Température (K) zeo zeolithe 

t Time (s) min/max minimum 

Wo 
Parameter of Dubinin-Astrakhov 

Equation (m3/kg) 
max maximum 

L(T) Latent heat of vaporization (J/kg) g generation 

Greek Letters: cv convection 

α absorptance moy average 

τ Transmitance eau water 

Δt Time step (s)   
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