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ABSTRACT 

A novel coordinated controller is proposed in the paper for SVC, excitation and steam valving for a single machine in-
finite system. Firstly, the nonlinear mathematic model of the system including the itation and steam valving is exactly 
linearized via state feedback. Then, the quasi-linearized system after the exact lineariztion is controlled by the sliding 
model controller based on Lyapunov direct method. At last, the novel coordinated controller is compared with a tradi-
tional linear controller and a nonlinear optimal controller respectively by simulations. The simulation results show that 
the proposed controller gives better dynamic response and stronger robustness. 
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1. Introduction 

[1,2] presented a novel nonlinear optimal excitation con-
troller and a nonlinear variable structure excitation con-
troller. [3] applied nonlinear robustness excitation con-
troller with voltage regulation. [1,4-6] adopted SVC con-
troller to restrain the system sub-synchronous oscillation, 
and damp the voltage fluctuation. [7-9] designed a coope- 
rated controller for a SVC and excitation controller to 
improve system stability. The excitation controller and 
steam valving controller are proposed to increase the per-
formance of the system in [10].  

 

In this paper, a novel coordinated sliding mode control 
based on Lyapunov method is used to generate the con-
trol schemes for the SVC, Excitation and Steam Valv-
ing. In order to achieve superior performance for the 
power system, the coordination between the SVC, Ex-
citation and Steam Valving is studied to avoid poor 
interaction. 

2. Mathematical Model 

A single generator—infinite bus power system with SVC 
is shown in Figure 1. 

For a generator set connected to a single generator infi-
nite bus power system with SVC, traditional transient 
behavior equations can be described as follows [1,6]: 
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(1) 

where, Td0 is the direct axis transient short circuit time 
constant, Pm0 the initial mechanical power, PH the me-
chanical power generated by the HP turbine in per unit, H 
the inertia coefficient, D the damping constant, q  the 
transient EMF in the quadrature axis of the generator. CH 
and CML are the power distribution coefficients of the HP 
and the MP/LP steam turbine subsystems. THΣ and TMΣ are 
the equivalent time constants of the HP and MP/LP steam 
value control system respectively. δ is the rotor angle in 
radian/s and ω the radial speed of the machine. TC is the 
time constant of SVC regulator. dx  is the direct axis 
transient. xd is the direct axis reactance of the generator, 
BL is the susceptance of the inductor in SVC, BC is the 
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susceptance of the capacitor in SVC, u1 is the control in-
put of the excitation system. u1 is the control input of 
SVC. u1 is the control input of the HP steam turbine sub-
systems. 
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Pm is the mechanical power. Pe is the active electrical 
power delivered by the generator, and given by: 

eP
sinq s

d

E V

x










   

 

The equations above describe a five-order three-input 
three-output affine nonlinear system and can be rewritten 
in a normal form as follows:  
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3. Global Linearization 

The output functions have a significant relationship with 
state variables which will be controlled. The output func-
tions may be state variable or the system actual output 
variable, but system actual output variable must be the 
function of state variables. In this paper, we choose output 
functions considering the following aspects: 

1) Consider the Stability of δ, we can choose  

y h

2) Consider the impact of stream valve on active elec-
trical power, we can choose, 

 2 2 e 0my h x P P    

3) Consider the Stability of SVC Connection point 
voltage, y3 is adopted as follows:  

 3 3 refmy h x V V  
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According to circuit principle,  is given by: 
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where  
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V

, 

ref

First, calculate the relative degree of the system as fol-
lows: 

 is the reference voltage. 

   

 

 

 
   

   

   

   

1 1

1

1

1

2 2

2 2

3 3

0 1
1 1

2 0
1

0

0
2

0

2
2 1 20

3

0

0 1
1 1

2 00
1 3

0 1
1 1

0,  0,

sin
0,

sin
0,

cos
0;

0,  0,

0,  0

0;  

g f g f

s
g f

d d

s
g f

d d

q s
g f

d d

g f g f

H
g f g f

H

g f g f

L L h x L L h x

V
L L h x

HT x

V
L L h x

T x

x E V x x
L L h x

T x x

L L h x L L h x

C
L L h x L L h x

H T

L L h x L L h x

 

















 

  


 


 
 



 

  



   

 
 
 

 
 

3

3

3

0 1 22
1 2

1 20
3 2

1 20
2 2

0,

sin
0

0,

sin
0;

q s
g f

C d

g f

C d

q s
g f

d C

E V x x
L L h x

HT x

X x x
L L h x

T x

E V x x
L L h x

x T

 














  

  

  


  



 

 

The matrix: 
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Figure 1. The single machine infinite system with SVC. 
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Thus, a Brunowsky canonical form is written as: 

                  (4) 

the model for the power system described in Equation (2) 
can be rewritten as: 
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A and B are constant matrix, and V is a vector of virtual 
inputs. 
where 
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the output for the power system described in Equation (2) 
is represented as follows:： 
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4. Sliding Mode Controller Based on 
Lyapunov Method 

Consider the equation of the system described in Equation 
(5), A is decomposed into three Jordan sub-matrix as 

 

The system is decomposed into three sub-system for 
controllers design independently. At First, for the corre-
sponding subsystem A11, Sliding mode control based on 
Lyapunov method is used to design the anticipated dy-
namic characteristics. 

 11 1,AHere, B  is Controllable, LTZ is introduced to 
obtain 

z 11 1 1= A z + B v                (8) 
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where, 11 11 1 1 1  Here, ,  A = A + B L v z . v L 11A igen-
values are –2 and –1 ± 2j. According to pole allocation 
method for the controllable canonical form system, we 
can get  
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where, P is the solution of the Lyapunov equation as 
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Q in (11) is a positive definite matrix.  
Switching hypersurface equation is chosen as 
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On the sliding mode hypersurface, we can get easily 

1 1  according to Equations (10) and (11), 
we can know as 
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In Equation (13), V is positive and  is negative, so 
sliding mode movement is asymptotically stable. The 
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1 1 1 10, 0k k ε

 is out of service on the switching 
hypersurface. 

To get better performance, the index asymptotic law 
control is adopted as follows: 
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For the subsystem A22 and A33, we can design inde-
pendently two controller v2 and v3 according to pole al-
location of linear system. Switching hypersurface equa-
tions are taken as follows: 
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where, k4 and k5 are constants, respectively. 
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Then, 
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To eliminate the chattering phenomenon on the sliding 
mode surface, we substitute the sign function with a satu-
ration function as 
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where, Δ is the boundary of the saturation function, and 
 sat s  is the switching control term. 

Therefore, according to Equations (16) and (17), we 
can formulate the final control laws of the whole system 
as 
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5. Simulation Results 

A simulation case is given as follows: H = 8, D = 5, Vs = 
1, xd = 0.779, x`d = 0.14, Td0 = 6.9, xL1 = 0.38, xL2 = 0.54, 
xT = 0.01, Tc = 0.2, BL0 = 0.3, Bc = 1.22, Vref = 1, CH = 0.4, 
TH∑ = 0.45, ε1 =ε2 = ε3 = 0.1, k1 = k2 = k3 = 5, k4 k5 = 1, Q = I, 
Δ = 0.2, 0 ≤ E΄q ≤ 3.3, 0 ≤ BL ≤ 1.5. The parameters of 
equilibrium point are chosen as Pm0 = 0.79，δ0 = 60˚，ω0 = 
314.16. 

Case 1: by comparing traditional linear controller 
(TLC) with the controller (NSVC) designed in this paper, 
we study the controller’s dynamic performances. It is as-
sumed that a short circuit fault occurs at the high voltage 
side of the transformer at 1s and is cleared at 1.2 s. The 
swing curves of the dynamic system are given in Figure 
2. 

It can be seen from Figure 2 that the novel sliding 
mode controller based on Lyapunov method for coordi-
nating SVC, excitation, and steam valving improves pow- 
er angle stability, damps the system frequency oscillation 
and prevents active electrical power and SVC voltage 
from fluctuation. 

Case 2: the proposed controller is compared with 
NOPC in references [1]. It is assumed that the short cir-
cuit fault occurs on xL2 at 1 s, and the faulting line is  
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Figure 2. Responses of system under the disturbance 1. 
 
opened at 1.2 s to supply the power with a single line. The 
second line returns successfully at 1.9 s. The swing curves 
of the dynamic system are given in Figure 3. 

Figure 3 shows that the novel coordinated controller 
gives better dynamic response and stronger robustness. 

 
 

 
 

 
 

 

Figure 3. Responses of system under the disturbance 2. 

6. Conclusions 

This paper proposes a set of novel coordinated sliding 
mode stabilizers based on Lyapunov method for a syn-
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chronous generator. The basic idea is that a global lin-
earization is used to transfer the dynamic equations of a 
nonlinear system into ones of a linear system. Then, the 
index asymptotic sliding mode control technique based on 
Lyapunov method is used. A systematic procedure is used 
to determine the switching function of the sliding mode 
controller based on Lyapunov method.  

The main difference from the previous methods is that 
in the global linearization process, excitation controller, 
steam valving controller and SVC controller are simulta-
neously taken account into. Though the dynamic system 
is nonlinear, by strict mathematic deductive process, we 
can obtain a very simply proportional excitation controller, 
linear steam valving controller, and SVC controller.  

After applying the three coordinated controllers into a 
single generator-infinite bus power system, the simulation 
results show that one of the main advantages of the pro-
posed controllers is that the dynamic performance of the 
system and robustness of the stabilizers against system 
disturbances are greatly effective. The sliding mode con-
trol approaches based on Lyapunov method are theoreti-
cally very promising. The approaches may be extensively 
applied to large-scale power system control with the aid 
of microcomputer control on line. 
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