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ABSTRACT 
Omics data provides an essential means for molecular biology and systems biology to capture the systematic properties 
of inner activities of cells. And one of the strongest challenge problems biological researchers have faced is to find the 
methods for discovering biomarkers for tracking the process of disease such as cancer. So some feature selection me-
thods have been widely used to cope with discovering biomarkers problem. However omics data usually contains a 
large number of features, but a small number of samples and some omics data have a large range distribution, which 
make feature selection methods remains difficult to deal with omics data. In order to overcome the problems, we present 
a computing method called localized statistic of abundance distribution based on Gaussian window (LSADBGW) to test 
the significance of the feature. The experiments on three datasets including gene and protein datasets showed the accu-
racy and efficiency of LSADBGW for feature selection. 
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1. Introduction 
With the advent of high-throughput measurement tech-
niques such as transcriptome by microarray and prote-
ome by mass spectrometry, the omics, which mean com-
prehensive analysis of a specific layer in a cellular sys-
tem and are emerging as essential methodological ap-
proaches for molecular biology and systems biology, have 
been accumulated rapidly and make it possible to capture 
the entire snapshot of cell-wide activity [1,2]. The in-
crease in data acquisition has lead to a demand for prac-
tical and effective data mining methods for in silico analy-
sis. One of the strongest challenge problems biological 
researchers have faced is to find the methods for disco-
vering biomarkers for tracking the process of disease 
such as cancer [3,4], as the biomarkers selection can be 
viewed as a major bottleneck of supervised learning and 
data mining on omics data [5,6]. 

Feature selection approaches, which aim to find a set 
of features that best discriminate biological samples of 
different types, have been widely applied to cope with 
discovering biomarkers problem [3,4,7-9]. The selected 
features are “biomarkers”, and they form “marker panel” 
for analysis. The fold-change and p-value are two com-
monly known criteria to select differentially expressed 
features under two experimental conditions. In the fold- 
change method, a feature is viewed as a “biomarker” if 
the ratio in absolute value of the expression levels be- 

tween two classes exceeds a certain threshold, e.g., a 2- 
fold change. The p-value ranking is an alternative ap-
proach for feature selection. Often the p-value is the pro- 
bability outcome from a statistical testing procedure that 
there is no difference between two conditions for an in-
dividual feature. A variety of statistical tests including 
two-sample t test [10-16], X2 test [10,17], the one-way 
analysis of variance [18,19], the Wilcoxon signed rank 
test [20-23] and Mann-Whitney test [23] have been used 
to obtain the p-values. Though great success have been 
obtained using these approaches in selecting biomarkers, 
it still remains difficult to deal with omics data. As we 
know that omics datasets always belong to small sample 
datasets, because the number of features significantly out-
numbers the number of samples. Then the p-value me-
thods based on statistical tests sometimes are failed to 
deal with the omics data, for example, if the sample num-
ber of the dataset only equals to 1 for each class the sta-
tistical tests miss their efficiency. And [24] indicates that 
some omics data have a large range distribution, so the 
same criteria for different range data which is the strate-
gy employed by fold-change approach is incorrect, for 
example, the significance of 2-fold change from 2 to 1 is 
not equal to the significance of 2-fold change from 20,000 
to 10,000. 

In order to overcome the large range problem, [24] de- 
veloped a computing method called Localized Statistics 
of Protein Abundance Distribution (LSPAD) to eva- 
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luate the statistical significance of protein-abundance 
bias between two classes, by which are differentia signi-
ficance of a particular protein should be calculated through 
its local protein-abundance distribution-window rather 
than through whole distribution range from the lowest to 
highest protein abundances. In fact, even though the sam-
ple number of the dataset only equals to 1 for each class 
LSPAD also shows good performance which is validated 
in [24]. However LSPAD is under-utilized practice and 
there are two shortcomings in LSPAD. The first is that 
the strategy of selecting local distribution window is too 
rough, which postulated a width of the local window for 
statistics as 33%, i.e. only neighbored proteins within the 
33% A-axis around a particular protein should be used 
for calculation. And the second is that LSPAD employs 
the fisher exact test to check the statistical significance. 
Fisher exact test is a statistical significance test used in 
the analysis of contingency tables where sample sizes are 
small. However if the data type is float rounding opera-
tion must be performed which may make Fisher exact 
test fail to deal with the omics data and fisher exact test 
should be time-consuming when the sample sizes are 
large. 

In this study we present a computing method called 
localized statistic of abundance distribution based on Gaus-
sian window(LSADBGW) which also employs the loca-
lized statistic strategy used by LSPAD but propose a 
Gaussian window as the local abundance distribution 
window and a simpler and more general statistic ap-
proach to test the significance of the feature. By using the 
Gaussian window, the selection of local abundance dis-
tribution window is more reasonable and persuasive. And 
LSADBGW not only can deal with the integral data but 
also the float data, which furthers the application range 
comparing with LSPAD. The experiments on three data-
sets including gene and protein datasets and the compar-
ison with the LSPAD show the accuracy and efficiency 
of LSADBGW for feature selection. 

In summary, our contributions are: 1) We extend the 
application range of localized statistic strategy to all om-
ics, which is opposite to LSPAD is only oriented towards 
the protein tandem mass spectrometry data processed by 
SEQUEST [25]; 2) We propose a new strategy of select-
ing local abundance distribution window which employs 
the Gaussian window. By using the Gaussian window our 
method is more reasonable and persuasive than LSPAD; 
3) We proposed a simpler but more effective statistic test 
instead of the fisher exact test used in LSPAD. The rest 
of the paper is organized as the follows. A brief not on 
the LSPAD is given in Section 2. Our method is pre-
sented in Section 3 and the datasets and experiments are 
given in Section 4. We show the experimental results and 
discuss the results in Section 5. Finally Section 6 con-
cludes. 

2. Related Work 
The concept of localized statistic used in feature selec-
tion of omics is firstly proposed by [24], in which human 
serum of non-diabetic and diabetic cohorts was analyzed 
by proteomic approach. To analyze total 1377 high-con- 
fident serum-proteins, they developed a computing strat-
egy called localized statistics of protein abundance distri- 
bution (LSPAD) to calculate a significant bias of a par-
ticular protein-abundance between these two cohorts. 

The LSPAD method can be divided to two steps. First- 
ly, since the peptide-spectral-count distributions of iden-
tified serum-proteins were widely spread out to the range 
of 105, they developed M-A plotting referring to micro-
array analysis in order to display a relative protein-abun- 
dance distribution of each protein. The M and A values 
are defined as follows: 

1 2

1 2

1 2 1

2 2 2

( ) / 2

log ( 1)

log ( 1)

A Y Y
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Y X

Y X
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= −

= +
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             (1) 

wherein X1 and X2 respectively represent the peptide 
spectral counts in diabetic serum and in non-diabetic se- 
rum, M represents differential protein abundance between 
diabetic and non-diabetic serum, and A represents the 
average protein abundance. 

Then the differential significance of a particular pro-
tein is calculated based on the proteins fell into its local 
protein-abundance distribution-window using fisher’s ex-
act test. And [24] postulates a width of the local window 
for statistics as 33% A-axis. 

3. Method 
In order to overcome the under-utilized in practice and 
the unreasonable window selection strategy, we proposed 
a more practical and reasonable method of selecting sig-
nificant features called localized statistic of abundance 
distribution based on Gaussian window (LSADBGW). In 
fact, the M value used in Equation (1) can be employed 
as statistic value; on the contrary, M value is ignored by 
LSPAD. Because of the generality and simplicity of the 
normal distributions, it has been widely used in various 
areas, including the omics data such as gene expression 
data [26]. And we propose a Gaussian window in 
LSADBGW instead the local window used in LSPAD. 

3.1. The Significant Test Method Using M Value 
We assume that the M value obeys the normal distribu-
tion, and this is reasonable which can be validated in Fig- 
ure 1. 

With the assuming a Gaussian distribution, the signi- 
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(a)                                                       (b) 

Figure 1. The M values distribution. (a) represents the M values distribution of serum SELDI MS data (Ovarian, 07 August 
2002); (b) represents the M values distribution of wing sarcoma and rhabdomyosarcoma in the dataset small round blue cell 
tumors which is a DNA microarray dataset. 

 
ficance of a feature can be given by 
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W
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wherein S represents the significance value, Mdata represents 
the M value of the feature tested, “MW” represents the 
mean value of the M values fell in the statistical window 
and Wσ  represents the standard deviation of the M val-
ues fell in the statistical window. 

After S value is obtained by Equation (2), the signi-
ficance can be calculated through S e.g. |S| ≧ 2.6 can be 
treated as significant at a level of 99% assuming a Gaus-
sian distribution. 

3.2. The Gaussian Window 

Since the Significance calculation of particular differen-
tial features should be localized to a certain range of re-
lated abundance level [24], the selection of appreciate 
local abundance distribution window plays an important 
role in localized statistics method. However choosing a 
local window for localized statistics appropriate to all 
kinds of data distribution, which ensures that all the data 
fell into it are under the same range, is difficult or im-
possible, as the concept of the same range is puzzled. 
Then we consider the interaction between different range 
samples instead of accurate the same range partition, that 
is, the correlation between samples located nearby with 
each other is higher than the samples located far. For 
example, under the data partition of [24], the correlation 
between low level and high level of protein abundance 
samples is lower between two high level samples. 

However, how to accurately define and quantify the 
correlation between two samples according to their range 

distance is also a problem. Fortunately, it is known that 
there is close relationship between data range and data 
distribution, that is, the problem of estimating the corre-
lation between two different range samples may be rede-
fined and carried out from the view of the density esti-
mation of distribution. So the correlation between two 
samples can be performed according to the contribution 
to the density estimation of each sample point for each 
other. For example, if sample point A has a higher con-
tribution for the density estimation of sample C than the 
point B, we can say that the relationship between A and 
C is higher than A and B. 

So from the point view of density estimation, the se-
lection of location range window can employ the same 
strategy of location density estimation window. In fact, 
LSPAD employs rectangle window which the width is 
the 33% of all the range length. However this seems not 
reasonable, that is, it is difficult to say that using 33% is 
better than using 25% or others. We focus on the Gaus-
sian window instead of rectangle window. 

With a generalized weight kernel function K(x) the 
density estimator ˆ ( )p x  is given by 

1

1ˆ ( ) ( )
N

i

i

x x
p x K
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wherein N is the sample number, h is called smoothing 
parameter or window width and the kernel function K(x) 
is required to be a normalized probability density. If K(x) 
is the Gaussian kernel, the density estimator is given by 
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The choice of the bandwidth h is crucial to the density 
estimator, that is, if h is chosen to small spurious fine  
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structure becomes visible, while if h is too large all detail, 
spurious or otherwise is obscured. There are some me-
thods for choosing an appropriate bandwidth available, 
however most of these methods suffer a considerable 
computational burden [27]. As a tradeoff between com-
putational effort and performance one may choose the 
optimal bandwidth as the one that minimizes the mean 
integrated square error, assuming the underlying distribu- 
tion is Gaussian. An optimal Gaussian bandwidth hopt is 
given by [28] 

1 1
5 54( ) 1.06

3opth N
N

σ σ
−

= ≈         (5) 

We employ the Gaussian window as the local abun-
dance distribution window. In fact the Gaussian window 
used is not the original local window, on the contrary, it 
is a whole window but the weight for each sample point 
is different. The sample set used to localized statistics is 
constructed by the follow strategy 

( )
i

i i

i

for each sampe x

if random P x

then select x to staDataset

end if

endfor

<

    (6) 

wherein randowi is a random number obey the uniform 
distribution between 0 and 1, staDataset represents the 
sample set used to localized statistics and P(xi) is given 
by 

( ) 2*(1 ( , ,| |))i opt ip x normcdf x h x= −     (7) 

wherein norcdf (x, hopt, |xi|) is defined as the normal cu- 
mulative distribution function, x represents the mean of 
the normal distribution function, hopt represents the stan- 
dard deviation and |xi| means the absolute value of the 
sample xi. 

4. Materials and Experiments 
4.1. Datasets 
Three datasets are deployed here: 

Dataset1: Ovarian cancer Dataset (07 August 2002), 
which was collected using WCX2 protein array. The 
sample set included 91 controls and 162 ovarian cancers. 
The SELDI MS data for each case is an ASCLL file 
containing 15,155 points of m/z values with correspond-
ing intensities. 

Dataset2: Small Round Blue Cell Tumors (SRBCTs), 
which was obtained from glass-slide cDNA microarrays. 
The data consisted of expression measurements on 6567 
genes (2308 genes after filtering for minimal level of ex- 
pression). The tumors are classified as Burkitt lymphoma 

(BL, 11 samples), Ewing sarcoma (EWS, 29 samples), 
neuroblastoma (NB, 18 samples) and rhabdomyosarcoma 
(RMS, 25 samples). As we only focus on the binary clas- 
sification problem, EWS and RMS are selected to form a 
new two class dataset. 

Dataset3: Stem Cell Matrix (SCM) [29], which is a 
database of global gene expression profiles. The database 
consisted of 218 samples which belong to 17 cell lines. 
As the operation in dataset2, ES cells_undifferentiated 
and ES_differentiated neural stem cells are selected to 
form a new two class dataset. IPS cells also are selected 
to further our method and this will be discussed in the 
latter section. 

4.2. The Classification Results and Discussion 
The LSADBGW currently is suitable for the two column 
data, so the mean vectors of two classes must be calculat- 
ed firstly and form a new mean dataset. In fact, this oper-
ation may ignore the differences among the same class 
data which are useful for feature selection. Leave-one- 
out-cross-validation (LOOCV) method and liner-SVM 
are employed in our classification experimental frame-
work. 

As the mean vectors are only used for three methods, 
the differences between the same classes samples are ig- 
nored which may be an obstacle for classification. After 
the feature selection, we cluster the features selected to 
10 classes by k-mean cluster method, and then we select- 
ed the top 1 feature of each class to form a feature sets 
for classification. 

In Figures 2-4 we respectively list the results obtained 
from the dataset 1, dataset 2 and dataset 3 using  
LSADBGW, LSPAD’ and LSPAD. Here, all the p values 
used in three methods were equal to 0.95. 

The results in Figure 2 showed that the LSPAD per-
formed better than LSPAD’, which seems that the fisher’ 
exact test was better than using simple statistical test us-
ing M values. However, in Figured 3 and 4, the results 
generated by LSPAD were not represented. This is be-
cause that the LSPAD did not generate good significant 
features set which were illustrated in Figures 5 and 6. 
The results in Figure 5 showed that only two features 
were selected while in Figure 6 showed that almost all 
the features were selected, this phenomena indicated that 
the LSPAD using the fisher’ exact test was not a stable 
strategy for omics data, on the contrary, the LSPAD’ us- 
ing simple statistical test were much more stable. 

It was also showed that the performance of using Gaus-
sian window performed better than rectangle window, 
especially in Figure 2. However the results in Figure 4, 
LSPAD’ seems a little better than LSADBGW. We then 
respectively used the top 10 and top 20 features without 
clustering to investigate the performance of LSADBGW 
and LSPAD’, and the results were showed in Figure 7  
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Figure 2. The classification performance comparison on the ovarian cancer dataset. 

 

 
Figure 3. The classification performance comparison on the small round blue cell tumors dataset. 

 

 
Figure 4. The classification performance comparison on the stem cell matrix dataset. 

 

 
Figure 5. M-A plotting of small round blue cell tumors dataset, red dots represented statistically significant overpresented 
genes in EWS and Green dots represented statistically significant under-represented genes in EWS. 

 
and 10. The new results, especially in Figure 8, indicated 
that the performance of LSADBGW was better than 
LSPAD’, which meant that the strategy employing the 
Gaussian window performs better than employing the 
rectangle window. 

The comparative study of three feature selection me-
thods indicated that the strategy employing simple statis-
tical test using M values was much more stable than fi- 
sher’ exact test and employing the Gaussian window is 
much more accurate than rectangle window. 
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Figure 6. M-A plotting of stem cell matrix dataset, red dots represented statistically significant over-presented genes in ES 
cells_undifferentiated and green dots represented statistically significant under-represented genes in ES cells_undifferen- 
tiated. 

 

 
Figure 7. The classification performance comparison on the stem cell matrix dataset using the top 10 features without clu- 
stering. 

 

 
Figure 8. The classification performance comparison on the stem cell matrix dataset using the top 20 Features without clus-
tering. 

 
5. Conclusion 
In this article, we proposed a new localized statistical 
approach to deal with biomarkers selection called loca-
lized statistic of abundance distribution based on Gaus-
sian window (LSADBGW). Comparing with the localiz- 
ed statistics of protein abundance distribution (LSPAD), 
LSADBGW employs the more reasonable local statistic-
al window selection strategy and a more generalized and 
simpler statistical test method. The classification experi-
mental results prove that our approach perform well than 
LSPAD. In conclusion, we hope that our LSADBGW 
method could present useful alternatives in the analysis 
of the omics data. 
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