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ABSTRACT 
This paper represented Autoregressive Neural Network (ARNN) and meant threshold methods for recognizing eye 
movements for control of an electrical wheelchair using EEG technology. The eye movements such as eyes open, eyes 
blinks, glancing left and glancing right related to a few areas of human brain were investigated. A Hamming low pass 
filter was applied to remove noise and artifacts of the eye signals and to extract the frequency range of the measured 
signals. An autoregressive model was employed to produce coefficients containing features of the EEG eye signals. The 
coefficients obtained were inserted the input layer of a neural network model to classify the eye activities. In addition, a 
mean threshold algorithm was employed for classifying eye movements. Two methods were compared to find the better 
one for applying in the wheelchair control to follow users to reach the desired direction. Experimental results of con-
trolling the wheelchair in the indoor environment illustrated the effectiveness of the proposed approaches. 
 
Keywords: Autoregressive NN Model; Threshold algorithm; EEG Technology; Eye Activity and Electrical  

Wheelchair 

1. Introduction 
Human brain plays an important role in controlling all 
body activities [1]. Moreover, it is a complex structure, 
in which there are about around 100 billion neurons 
which communicate from one to another with or without 
external excitations to make control decisions (cognition, 
motion, pattern recognition, etc.). For these reasons, non- 
invasive technologies such as EEG, functional Magnetic 
Resonance Imaging (fMRI) and functional Near-infrared 
Spectroscopy (fNIRS) have been investigated to quantify 
motor processing function of human brain [2-4]. Thus the 
exploration of these technologies can allow us to perform 
rehabilitative problems or brain simulator leading to im- 
prove or recover the motor/cognitive functions of tetrap- 
legic patients with spinal cord injuries and degenerative 
nerve diseases. 

In recent years, EEG technology has quickly devel- 
oped and also attracted many researchers related to hu- 
man brain. Many Brain-computer Interface (BCI) appli- 
cations as well as Brain-based diagnoses have been suc- 
cessfully represented, in which BCI problems have been 
investigated to implement on human in recent years. In 
particular, a BCI system can allow people to communi- 
cate and to control external devices [5-7]. It means that 
one can translate brain activities into messages or com- 
mands to control devices [8-10]. Blankertz et al. devel-  

oped the non-invasive BCI system, in which the key fea- 
tures were considered to predict the laterality of upcom- 
ing left vs. right hand movements to produce the result of 
very high information transfer rate. 

An EEG system has been used to measure delta signal 
of human brain corresponding to eye blinks [11]. However, 
to determine the problem of eye activities, a threshold 
algorithm was employed to control electric wheelchair. 
In this paper, we develop a neural network model [12-14], 
in which the inputs of the network are AR coefficients 
[15] which were determined based on the filtered EEG 
signals using a Hamming lowpass filter from the identi- 
fied outputs of the network. In addition, a threshold algo- 
rithm is employed to find the mean thresholds for eye move- 
ments. In this research, two of these methods will be com- 
pared to determine the best one to control the wheelchair. 

2. Materials and Methods 
2.1. Data Acquisition 
Data at Fp1, F7, F8 areas of human brain were obtained 
from an Active-Two system as shown in Figure 1. Nine 
subjects (males and females, average age: 22 ± 5.33) 
were invited to participate into this study. The subjects 
informed consents agreement after reading and under- 
standing of the experiment protocol and the EEG tech- 
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Figure 1. Subject with electrodes for obtaining data on the 
system. 
 
nique. Offline data were obtained at some positions such 
as at Fp1, F7, F8, CMS and DRL (see Figure 2) on head 
of each subject through the Active-Two system. The 
subjects were instructed to perform their eye activity 
times (opening eyes, blinking two eyes, glanced left, 
glanced right), each subject performed his/her eye ac- 
tivity in 5 seconds. 

2.2. Signal Pre-Processing 
In the EEG signal processing, the original signal is 
passed through a band-pass filter with an impulse re- 
sponse in order to produce the output of the filter, ][ng . 
For the convolution operation between the EEG signal 
and the impulse response of the Hamming low pass filter, 
it is described as follows: 

[ ] [ ] [ ] [ ] [ ]H H
n

g n x n h n x k h n k
∞

=−∞

= × = −∑    (1) 

where ][nx  is the EEG signal and ][nhH  is the im- 
pulse response, kn,  = 1,2,…N. 

The impulse response of the actual Hamming filter is 
calculated as follows: 


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=
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where ][nw  is the Hamming window and ][nh  de- 
notes the ideal impulse response. 

To reject influence by voltage drift, the output signal is 
calculated using the following formula: 
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ngny

N

n
∑
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][][            (3) 

In this paper, the number of the EEG signal samples is 
N = 1024. The original signal and the filtered signal at 
position of F8 are processed as shown in Figure 3. 

After filtering noise by the filter, the filtered EEG sig-
nals corresponding to eye events such as opening eyes, 
blinking eyes, glancing left and glancing right (see Fig-
ures 4 and 5) are calculated to determine coefficients for 
the recognition of eye activities using neural networks. 

 
Figure 2. Five electrodes were installed at 5 positions. 

 

 
Figure 3. Original signal (F8) and the filtered noisy signal. 

 
2.3. AR Model for Feature Extraction 
In this paper, an Autoregression (AR) model is used to 
extract the features of the EEG signal. In the AR model, 
coefficients are determined using the equation: 

)2()1()( 21 −+−= nyanyany          (4) 

where )(ny is the filtered EEG signal, n = 1, 2, …, 1a  
and 2a  are two coefficients of the AR model. 

In the EEG signals collected at three channels FP1, F7, 
F8, each channel has two AR coefficients. Hence in four 
experiments (blinked, opened eyes, glanced left and 
glanced right), one will create four vectors and each vec-
tor has 6 AR coefficients as shown in Table 1. 

2.4. Neural Network Model 
Classification is an important step to determine the acti- 
vity of the eye. After being extracted the signal features 
of the eye activities using the AR mode, it produces the 
coefficients, which will be transmitted directly into back 
propagation neural networks with two hidden layers (see 
Figure 6) for training [15]. 

The back-propagation network is to minimize the error 
function in the weight space by the reduced gradient me- 
thod. Because this method of calculating the gradient of 
the error function at each iteration requires that the error 
function should be continuous and indivisible. One of the 
activation function used in this paper is the sigmoid 
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Table 1. Vector of ar coefficients for four experiments. 

Opening eyes (ao) Blinking eyes (ab) Glancing left (al) Glancing right (ar) 

Fp1 F7 F8 Fp1 F7 F8 Fp1 F7 F8 Fp1 F7 F8 

ao11 ao71 ao81 ab11 ab71 ab81 al11 al71 al81 ap11 ar71 ar81 

ao12 ao72 ao82 ab12 ab72 ab82 al12 al72 al82 ap12 ar72 ar82 

 

 
(a) 

 
(b) 

Figure 4. (a) Filtered signal y[n] in case of opening eyes; (b) 
Filtered signal y[n] in case of blinking eyes. 
 
function, which is described as follows: 

xe
xS −+
=

1
1)(                 (5) 

Consider a back-propagation neural network with n 
input, m output, contains a number of hidden layer neu- 
rons to form the training data set (on - off), in which the 
desired set, (x1,d1), (x2,d2),..., (xp,dp) contains P m × n pair 
of vectors. The weights will be chosen at random. When 
the data set xi are trained to create the different output set 
(Oi,di), then the error function E is calculated by the fol- 
lowing formula: 

∑
=

−=
P

i
ii dOE

1

2)(α              (6) 

where P is the number of samples, O is the network out- 
put, d denotes the desired output and α is constant. 

 
(a) 

 
(b) 

Figure 5. (a) Filtered signal y[n] in case of glancing left; (b) 
Filtered signal y[n] in case of glancing right. 
 

 
Figure 6. The structure of a NN model with two hidden 
layers. 
 

The back-propagation algorithm is used to find the lo- 
cal minima of the error function. Therefore, the gradient 
of the error function is calculated to change the initial 
weight values for the network. The weights are the pa- 
rameters changed to reduce errors and then each weight 
will increase a typical value: 

w
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where the weight vector w is in the network, η  denotes 
the learning rate (constant), wE ∂∂ /  is the derivative of 
the error function w. 

Although there are many rules to optimize the neural 
networks developed, the network architecture was often 
derived from trial and error approach. Another factor 
affecting the convergence of back propagation algorithm 
is the learning rate, η . With the large value of η , the 
network will increase the learning rate, but the network 
with the too large value will not be able to converge. 
Inversely, small values can ensure the convergence algo- 
rithm, but the learning rate is very slow. For this reason, 
the algorithm with adaptive learning rate is applied and 
described as follows: 

ηηη ∆+=+ )()1( kk            (8a) 

and error of learning rate 
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

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η
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where a is the increase coefficient, b is the decrease 
coefficient, )(kη  is the kth learning rate. 

2.5. Mean Threshold Algorithm 
In this project, a threshold algorithm will be applied to 
determine cases of open eye, two eyes blinking, glanced 
left, glanced right. The average value M of open eye sig-
nals is calculated using the following equation: 

N

N

n
y(n)

M
∑
== 1                  (9) 

where y(n) is the set of EEG signals (rejected voltage 
drift) and N denotes the number of samples. 

From Equation (9), the standard deviation SD in case 
of open eye signal can be calculated as follows: 

N

N

n
Mny∑

=
−

= 1
))((

SD             (10) 

A mean threshold algorithm ThM is built to determine 
cases of eyes open, eyes blinks, the left and right glance: 

SDa*−= MThM             (11) 
where a is the coefficient of the standard deviation.  

This paper shows the detection of eye states based on 
the change of amplitude of signals with its frequency 
range (0.5 to 3.5 Hz) at Fp1, F7 and F8 positions. There- 
fore the mean threshold determined based on EEG sig- 
nals in the open eye case plays an important role. 

To reduce the error of eye blinking recognition, the 
threshold value ThM was calculated in the case of open 
eye by comparing with the maximum values in the 

measured times of eye movements to determine the coef- 
ficient a. Therefore, the mean thresholds ThM at the po- 
sitions Fp1, F7 and F8, were calculated as follows: 

Fp1

OFp1 BFp1

(OFp1, RFp1, LFp1)Max Max

ThM Max

=

< <
      (12) 

( )
RBF7 OF7 F7Min < <Min

=Min OF7,LBF7,BF7
ThM

              (13) 

( )
RBF8 OF8 F8Min < <Min

=Min OF8,LBF8,BF8
ThM

              (14) 

where Max is the maximum amplitude at Fp1 of the eye 
opening signal (OFp1), right glance signal (RFp1), left 
glance signal (LFp1) and MaxBFp1 denotes the maximum 
amplitude in the case of blinking eye at Fp1. 

3. Results and Discussion 
EEG signals were collected at three channels FP1, F7 
and F8, in which each channel is processed to extract 
features. Mainly two methods of the ARNN model and 
the mean threshold algorithm were applied to find the 
best method for the wheelchair control. 

3.1. Features of Eye Movements Using AR Mode 
From the EEG signals of eye movements, each channel 
has two AR coefficients. Hence one of the eye states 
created a vector with six AR coefficients as shown in 
Table 2. Time for an eye activity is less than 1 second, 
so the eye activity is just set 1 second. The vectors are 
inputs of the feedforward neural networks. 

Figures 7(a), 7(b), 8(a) and 8(b) showed the AR 
model coefficients of the signals corresponding to eye 
open time at 1 second. From the figures, we see that in 
the case of eye open and eye blinks, the signals are the 
same, so the coefficients of three channels are nearly 
equal. While Figures 9(a), 9(b), 10(a) and 10(b) re- 
present different coefficients of glancing left and right. 
All different coefficients generate four vectors (in Table 
2). 

Figure 11 represents six coefficients versus the am- 
plitude of signals. The classification of four coefficient 
vectors shows that they are the same shape of signals but  
 

Table 2. AR coefficient vectors. 

Eye activity Coefficient vectors 

Opening eyes −1.101 0.203 −1.059 0.189 −1.158 0.186 

Blinking eyes −1.952 0.956 −1.715 0.720 −1.566 0.569 

Glancing left −1.252 0.396 −1.205 0.266 −1.710 0.892 

Glancing right −1.078 0.109 −1.369 0.372 −1.159 0.162 
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(a) 

 
(b) 

Figure 7. (a) Signals of opening eyes; (b) AR model coeffi-
cients. 
 

 
(a) 

 
(b) 

Figure 8. (a) Signals of blinking eyes; (b) AR model coeffi-
cients. 

 
(a) 

 
(b) 

Figure 9. (a) Signals of glancing left; (b) AR model coeffi-
cients. 
 

 
(a) 

 
(b) 

Figure 10. (a) Signals of glancing right; (b) AR model coef-
ficients. 
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Figure 11. Representation of six coefficients of the eye ac- 
tivities. 
 
their amplitudes are different. These coefficient vectors 
will be applied to inputs of the neural network model for 
recognizing the eye activities. 

3.2. Identification of Eye Movements Using NN 
Subjects worked out their tasks for recordings, in which 
20 times blink eyes, 15 times glanced left, glanced right 
15 times and 20 times to open eyes. Thus, we have a total 
of 70 vector samples, in which 50 sample vectors (eye 
blinking_15, glancing left_10, glancing right_10 and 
opening eyes_10) will be used to train the Artificial 
Neural Networks (ANNs) and the 20 remaining vectors 
will be applied to check the training results. 

The experiment using a two hidden layers network 
structure with sigmoid function has its output is a linear 
function as described in Table 3. In this experiment, the 
number of hidden layer neurons was chosen as in Table 
4, in which the first hidden layer with 15 neurons and the 
number of neurons in the second hidden layer will be 
changed for investigating the accuracy of the network. 
From Table 4, we see that the network with the 25 neu-
rons in the 2nd hidden layer is the highest with the aver-
age accuracy of 94%. 

In this paper, the feed forward neural networks with 
back-propagation learning rule using gradient reduction 
algorithm were used, in which learning rate is 0.001 
(learning rate is the smaller, training time is longer, but 
the obtained results are more accurate). While the num-
ber of iterations is 1000 (the number of iterations is as 
large as possible, because the error of the network out-
puts and the real outputs is smaller), the increasing ratio 
of learning rate is a = 1.07 and the decreasing ratio of 
learning rate b = 0.7. 

3.3. Eye Movements Using Mean Threshold 
From Equations (11), (12) and (13), one determined the 
coefficients a, in which 3.5 < aFp1 < 13.75 and we chose 
aFp1 = 11 at the Fp1 position for the case of eye blinks and 
similarly, aF7 = −4 and aF8 = −4 were chosen for the posi- 
tions, F7 and F8. Based on the values aFp1 = 11, aF7 = −4 
and aF8 = −4, the mean thresholds were calculated as 

Table 3. Description of the NN outputs. 

Eye activity Desired outputs 

Opening eyes 1 0 0 0 

Blinking eyes 0 1 0 0 

Glancing left 0 0 1 0 

Glancing right 0 0 0 1 

 
Table 4. Results using neural networks. 

Number of 
hidden layer 

neurons 

Accuracy (%) 
Eyes 
open 

Eyes 
Blinks 

Left 
Glance 

Right 
Glance Average 

15 * 10 95 95 78 85 89 

15 * 20 95 90 90 85 90 

15 * 25 90 97 92 95 94 

15 * 30 90 95 90 90 92 

 
shown in Table 5 In similarity, the mean threshold val- 
ues were obtained on nine subjects as shown in Table 6. 

The mean threshold values were applied into eye tasks 
and we recognized the eye activities times (see Figure 
12). 

From Table 7, the ANN method gives the higher per- 
formance. However, time for training data is more ex- 
pensive. Therefore, which method chosen here is depen- 
dent on each typical application. 

The author et al. applied the SVMs and ANNs for the 
eye movements using EEG and showed the classification 
accuracies, in which the SVMs is 90.8% and accuracy of 
86.8% is of the ANNs [13]. While based on AR coeffi- 
cients, the ANNs have accuracy of 93.5% and the accu- 
racy of the mean threshold is 86.25% in this paper. This 
means that our proposed methods are the effectiveness. 

3.4. Wheelchair Control Strategy 
In a Brain-Computer Interface (BCI) system for control 
of an electric wheelchair as shown in Figure 13, the user 
was concentrating to drive the wheelchair by the eye 
movements. Figure 14 shows the directions of the elec-
tric wheelchair, in which the wheelchair can be driven to 
move with commands such as forward, backward, stop, 
turning left and turning right. 

The wheelchair was designed to move with the speed 
of 5 km/h in the indoor environment. For the smooth 
movement of the wheelchair, when the wheelchair rece- 
ives a typical command to move to the left or the right, it 
was designed to follow a curve around the inflection 
point of the cubic equation. 

4. Conclusion 
This paper investigated an AR neural network algorithm 
and the mean threshold algorithm in an EEG-controlled  
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Table 5. Experimental results. 

Times 

Fp1 F7 F8 

Eye Blink Eye open Right glance Eye open Left glance Eye open 

MaxFp1 MaxBFp1 ThMOFp1 MinRBF7 MaxOF7 ThMOF7 MaxRBF8 MinOF8 ThMOF8 

1 56 166 121 −91 −32 −120 −112 −45 −56 

2 30 182 154 −103 −33 −128 −146 −24 −64 

3 39 171 154 −112 −38 −44 −89 −35 −84 

4 29 164 143 −133 −61 −80 −125 −39 −108 

5 58 147 110 −110 −59 −76 −117 −33 −112 

6 29 163 110 −112 −22 −76 −109 −25 −112 

Mean 40 165.5 132 −110 −40 −84 −116 −33.5 −89 

 
Table 6. The mean thresholds. 

Subject ThMOF1 ThMOF7 ThMOF8 

S1 132 −84 −89 

S2 134 −100 −93 

S3 145 −89 −87 

S4 156 −80 −80 

S5 160 −112 −100 

S6 142 −102 −87 

S7 115 −98 −85 

S8 143 −87 −80 

S9 165 −90 −98 

Mean 143 −93 −88 

 
Table 7. Results of two methods. 

Method 
Accuracy (%) 

Eyes 
open 

Eyes 
Blink 

Left 
Glance 

Right 
Glance Average 

ANN 90 97 92 95 93.5 

ThM 85 90 85 85 86.25 

 
wheelchair for severely disabled people. From original 
signals, the Hamming low pass filter was applied to pro- 
duce the frequency bands for feature extraction. The 
coefficients, which bring the feature of each eye activity, 
are extracted using the AR model. These coefficients 
generated the feature vectors for connecting to inputs of 
the neural network which was employed to recognize the 
eye movements such as opening eyes, blinking eyes, 
glancing left and glancing right. After recognizing these 
characteristics, user can drive the wheelchair to reach the 
target. Experimental results showed that the wheelchair 
user can move in the indoor environment. 

  
(a) 

 
(b) 

 
(c) 

Figure 12. (a) The threshold ThMOFp1; (b) The threshold
 ThMOF7; (c) The threshold

 
ThMOF8. 
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Figure 13. A user is controlling the wheelchair. 

 

 
Figure 14. The directions of the wheelchair motion. 
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