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ABSTRACT

In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric
spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Number Theory, trigo-
nometric series, summability theory, probability theory, optimization and approximation theory. In this article we in-

troduce the double sequence spaces ,¢;(f),,c'(f) and ,I.(f) for a modulus function f and study some of the

properties of these spaces.
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Solid Double Sequence Spaces

1. Introduction

The notion of I-Convergence is a generalization of the
concept statistical convergence which was first intro-
duced by H. Fast [1] and later on studied by J. A. Fridy
[2,3] from the sequence space point of view and linked it
with the summability theory. At the initial stage 1-Con-
vergence was studied by Kostyrko, Salat and Wilezynski
[4]. Further it was studied by Salat, Tripathy, Ziman [5]
and Demirci [6]. Throughout a double sequence is de-
noted by X= (Xij ) Also a double sequence is a double
infinite array of elements X, € R for all k,leN. The
inital works on double sequences is found in Bromwich
[7], Basarir and Solancan [8] and many others.

2. Definitions and Preliminaries

Throughout the article IN, IR, ¢ and @ denotes the
set of natural, real, complex numbers and the class of all
sequences respectively.

Let X be a non empty set. A set 1 <2* (2% de-
noting the power set of X) is said to be an ideal if | is
additive i.e ABel=AUBel and hereditary i.e.
Ael,Bc A=Bel.

A non-empty family of sets £(1)<=2” is said to be
filter on X if and only if ® ¢ £(1), for A Be £(1) we
have ANBef£(l) andforeach Ae£(l) and AcB
implies B £(1).

Copyright © 2013 SciRes.

AnlIdeal | c2* is called non-trivial if | #2% .

A non-trivial ideal | =2* is called admissible if
{{X}:XeX}g l.

A non-trivial ideal | is maximal if there cannot exist
any non-trivial ideal J # | containing | as a subset.

For each ideal I, there is a filter £(1) corresponding
to I.

ie. £(1)={K<cN:K°el}, where K*=N-K.

The idea of modulus was structured in 1953 by Na-
kano (See [9]).

A function f :[0,00) »[0,00) is called a modulus if

(1) f(t)=0 ifandonlyif t=0,

(2) f(t+u)<f(t)+f(u) forall t,u>0,

(3) f isnondecreasing, and

(4) f iscontinuous from the right at zero.

Ruckle [10] used the idea of a modulus function f
to construct the sequence space

K015 1 () <]

This space is an FK space , and Ruckle[10] proved that
the intersection of all such X (f) spaces is ¢, the
space of all finite sequences.

The space X(f) is closely related to the space |, which
is an X(f) space with f(x)=x for all real x>0. Thus
Ruckle [11] proved that, for any modulus f .

e
k=1
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X(f)cland X ()" =1,
where
X (f)’ :{y:(yk)ea):kz f (|ykxk|)<oo}
=1
The space X (f) is a Banach space with respect to
the norm

=3 (% ]) < (See [10]).
k=1

Spaces of the type X (f) are a special case of the
spaces structured by B. Gramsch in [12]. From the point
of view of local convexity, spaces of the type X (f)
are quite pathological. Therefore symmetric sequence
spaces, which are locally convex have been frequently

studied by D. J. H. Garling [13,14], G. Kothe [15] and W.

H. Ruckle [10,16].

Definition 2.1. A sequence space E is said to be solid
or normal if (Xij)e E implies (aijxij)e E for all se-
quence of scalars (aij) with |aij|<l for all i, jeIN
(see [17])

Definition 2.2. Let

K
={(n.k;):i,j e INsny <, <ng<--and k <k, <k}

is™j
c INxIN

and E be a double sequence space. A K -step space of
E is a sequence space

A ={ (aijxij):(xij)e E}.

Definition 2.3. A cannonical preimage of a sequence
(Xni,kj ) € E 1is asequence (bn’k ) € E defined as follows

_{an’k,for nk ek,
nk —

see [18]).
0, otherwise. (see [18])

Definition 2.4. A sequence space E is said to be
monotone if it contains the cannonical preimages of all
its stepspaces (see [19]).

Definition 2.5. A sequence space E is said to be
convergence free if (yij)e E, whenever (Xij)e E and
X; =0 implies y; =0.

Definition 2.6. A sequence space E is said to be a
sequence algebra if (Xij Yi ) € E whenever

(Xij)e E(yij)e E.
Definition 2.7. A sequence space E is said to be
symmetric if (Xﬂ(i)”( j))e E whenever (Xij)e E where

z(i) and 7(j) isapermutation on N.
Definition 2.8. A sequence (Xij)ew is said to be
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I-convergent to a number L if for every e>0 .
{(i, j)e INxIN :|Xij - L| Ze} el . In this case we write
I-lim x; =

The space ¢' of all I-convergent sequences to L is
given by

¢! :{(xij)ea):{(i,j)e IN x IN :|xij—|_|26}e|,
forsomeLe\G\}

Definition 2.9. A sequence (X)ij ew is said to be
I-nullif L =0. In this case we write I-lim x; =0.

Definition 2.10. A sequence (X)ij ew is said to be
I-cauchy if for every e>0 there exists a number

m=m(e)and n=n(e) such that
{(i,)) € INXIN 2| = x| =€} el .

Definition 2.11. A sequence (X), € is said to be
I-bounded if there exists M >0 sucfl that

{(i,J) e INxIN:[x | > M} el

Definition 2.12. A modulus function f is said to
satisfy A, condition if for all values of u there exists a
constant K >0 such that f(Lu)<KLf(u) for all
values of L>1.

Definition 2.13. Take for | the class I, of all finite
subsets of IN . Then |, is a non-trivial admissible
ideal and |; convergence coincides with the usual con-
vergence with respect to the metric in X (see [4]).

Definition 2.14. For I=1; and AcIN with
5(A)=0 respectively. |, is a non-trivial admissible
ideal, I, -convergence is said to be logarithmic sta-
tistical convergence (see [4]).

Definition 2.15. A map 7% defined on a domain
Dc X ie h:Dc X —> IR is said to satisfy Lipschitz
condition if |h(x)—h(y)| <K|x—y| where K is known
as the Lipschitz constant. The class of K-Lipschitz func-
tions defined on D is denoted by 7e(D,K) (see [20]).

Definition 2.16. A convergence field of I-convergence
is a set

mn

F(I):{X:(Xk)eloc : there exists | —limx e IR}.

The convergence field F(1) is a closed linear sub-
space of |, with respect to the supremum norm,
F(1)=1,Nc" (See[5]).

Define a function 7:F(1)— IR such that
n(x)=1-limx, for all xeF (1), then the function
n:F(1)— IR isa Lipschitz function (see [20]).
(c.f[18,20-30])

Throughout the article 1,,c',cy,m' and m; repre-
sent the bounded, I-convergent, I-null, bounded I-con-
vergent and bounded I-null sequence spaces respectively.

In this article we introduce the following classes of
sequence spaces.

ENG



V. A. KHAN, N. KHAN 37

,c! (f):{(xij)ea): I —limf(|xij|):Lf0rsome L}el
2C('J(f):{(xij)ea): | —limf(|xij|):0}el
2IS'O(f):{(Xij)ea):s%pf(|xij|)<oo}eI

We also denote by
om' ()= ¢ (F)N,1,(f)
and
My ()=, ()N, ()
The following Lemmas will be used for establishing
some results of this article.
Lemma (1) Let E be a sequence space. If E is solid
then E is monotone.
Lemma (2) LetKe£(1) and McN . If Mel,
then M(N gl
Lemma (3) If 1c2and M cN. If Mgl, then
MNOANegl.
3. Main Results

Theorem 3.1. For any modulus function f, the classes of
sequences ,c' (f),,cy(f),,m'(f) and ,my(f) are
linear spaces.

Proof: We shall prove the result for the space

c'(f).
2
The proof for the other spaces will follow similarly.
Let (Xij),(yij)e ,¢'(f) and let a,f be scalars.
Then

| —lim f <|Xij - L1|) =0, for some L, ec;
| —lim f (|yij - L2|) =0,for some L, ¢;

That is for a given € >0, we have

A :{(i,j)e INxIN : f(|Xij—L,|)>§}e L, (1)

A, ={(i,j)e INXIN: £ (|y, —L2|)>§}e )
Since f is a modulus function, we have
f (‘(axij + Y, )—(ozL1 + AL, )‘)
< (Jedx; = L))+ £ (18l]ys — L))
< 1= ) (1 Lo
Now, by (1) and (2),
{i,j N £ ([(axy + Ayy)(aL, +ﬂL2)‘)>e}
cAUA,.

Copyright © 2013 SciRes.

Therefore (axij +BY; ) e,c'(f)

Hence ,c'(f) isa linear space.

Theorem 3.2. A sequence x=(x;)e,m'(f) is
I-convergent if and only if for every >0 there exists
I.,J, € IN such that

{0 e INXIN 1 (%, =x,, [J<efe.m' () ()

Proof: Suppose that L=1-1limx. Then

sz{(i,j)elelN :|Xij—L|<§}ezm'(f)
For all € > 0.

Fixan |_,J_ e B_. Then we have
€ ¢
|x,J —xij|£|xIJ —L|+|L—xij|<—+—:e
eve €eve 2 2

which holds for all i, jeB,.
Hence {(i,j)eINxIN:f(|Xij—x,éJt|)<e}ezm'(f).

Conversely, suppose that
{(i, j)eINxIN: f (‘Xij —Xlle‘)<e} e,m' (f).

That is {(i, )€ INxIN:(jx, =x,,, [} <c} .m' (1)
forall > 0. Then the set
Co={(i,J) e INXIN:x €[ x5 —ex, +e])
e ,m' (f)foralle>0.

Let Nf:[XIEJf_e’XUf'FE]' If we fix an €>0 then

we have ,C e,m'(f) as well as ,C, e,m'(f).
2

Hence ,C.(,C, €,m'(f).This implies that
2

NrmN( #¢
2
that is

{(i.i)e INXIN:x; eN}e,m' ()
that is
diam N <diam N_

where the diam of N denotes the length of interval N.
In this way, by induction we get the sequence of
closed intervals

N.=l, 2,221

]

with the property that diaml;; < %diam | (i-1)( for

i-1)
(i,j=2,3,4,---)and

{(i.i)e INXIN:x; ely}e,m' () for

(i9 j :]‘9293949”')‘
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Then there exists a feﬂlij where i, jeIN such
that &=1-limx. So that f(&)=1-limf(x), that is
L=1-limf(x).

Theorem 3.3. Let f and g be modulus functions
that satisfy the A, -condition.lf X is any of the spaces

,c', e, ,m' and ,m, etc, then the following asser-

tions hold.
(i) X(g9)cX(f-9),
iy X(f)NX(g)c=X(f+g).
Proof: (i) Let ()< ,¢,(g). Then

| —115ng(|xij|):0 @

Let ¢e>0 and choose 6 with 0<d <1 such that
f(t)<e for 0<t<s.

Write y; =9 (|xij|) and consider
lim f (vi)= lim f (v )w +lim f (v4)
We have

Yij>o
lim f (vi)<f (2)li£n(yij) )

For y; >0, we have Y <); <l+y Since f is

non-decreasing,it follows that

()< (102 <2 ey d o[22

Since f satisfies the A, -condition, we have

() <3 K21 (25 K21 (2) = K21 (2)

Hence

lim f (v;)<max (LK) f (2)115n(yij). (6)

2C(;(f'g)‘

From (4), (5) and (6), we have (Xij ) c
C,(f-g). The other cases can be

Thus ,¢,(9)<,
proved similarly.

(ii) Let (x;)e ,¢, ()N, (g). Then
| ~tim f (|x,[) =0 and 1 -limg(Jx;[)=0

lign(f +g)(|xij|):li£nf(| 'J|) (| |)
= 1i£n f (|xu|)+hmg(| |)
Therefore
lim(f +9)(|x)=0

which implies (Xij ) e X ( f+ g), that is

X(F)NX(g)c X(f+9).
Corollary 3.4. X < X(f)
and ,m;.

forX_c c m

0°2
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Proof: The result can be easily proved using
f(x)=x for x=(xij)e X.

Theorem 3.5. The spaces ,c,(f) and ,m;(f) are
solid and monotone.

Proof: We shall prove the result for ,c,(f). Let
X; € 1o (). Then

| ~lim f (|x..|):o )

Let ( ,J) be a sequence of scalars with |a |<1 for

all i, j e IN . Then we have
| —11_r_n f (|ai4xi-|) <l —li_r_n f (|aij||xij|)

|a |I—11mf(|x |) 0
| ~lim f (o ;]) = 0 for all i, j IN.

which implies that a;X; € Co(f).
Therefore the space 2Co(f) is solid. The space

26 () is monotone follows from Lemma (1). For

,my(f) the result can be proved similarly.

Theorem 3.6. The spaces ,c'(f) and ,m'(f) are
neither solid nor monotone in general.

Proof: Here we give a counter example.

Let 1=1; and f(x)=x> for all xe[0,0). Con-
sider the K-step space X, (f) of X defined as follows,
Let (Xij ) e X and let ( )e X be such that
(

-

Consider the sequence (Xij) defined by (Xij):l for
all i,jeN.

Then (xij)e ,¢'(f) but its K-stepspace preimage
does not belong to ,¢'(f). Thus ,c¢'(f) is not mo-

I
IJ),if i, jiseven,

otherwise.

notone. Hence ,c¢'(f) is not solid.
Theorem 3.7. The spaces ,¢'(f) and
sequence algebras.
Proof: We prove that ,¢, (f) is a sequence algebra.
Let (xij),(yij)e 2C (). Then

I —tim f (|x,[) =0

2Co(f) are

and
| —tim f (|y, |)=

Then we have
| —lim f (‘(xij.yij )‘) =0

Thus (xij Yy ) €, (f) isasequence algebra.

For the space ,c'(f), the result can be proved simi-
larly.

Theorem 3.8. The spaces ,c¢'(f) and ,c,(f) are
not convergence free in general.

Proof: Here we give a counter example.
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Let 1=1, and f(x)=x’ for all xe[0,0). Con-
sider the sequence (Xij) and (yu) defined by
X; =——and y; =i+ jforalli, jeIN
i+ ]
Then (ij)ec'(f) and ¢, (f), but (yij)ec'(f)
and c;(f).

Hence the spaces c'(f) and c,(f) are not
convergence free.
Theorem 3.9. If I is not maximal and | # 1, then the
spaces ,c'(f) and ,c,(f) arenotsymmetric.
Proof: Let Ael be infinite and f(x)=x for all
xe[0,).
If
y Lfori, je A,
! {0, otherwise.

Then by Lemma (3) we have X; & ,¢,(f) < ,¢'(f).
Let KcIN besuchthat K¢l and IN-Kgl.
Let ¢:K—> A and yw:IN-K — IN—-A be bijections,

then the map 7:IN — IN defined by
ij), fori, je K
n(ij):{‘”( J)-forkJ €
w (ij),otherwise

is a permutation on IN , but
Xﬁ(ij)ezc(l)(fl)' .
Hence ,c,(f) and ,c'(f)are not symmetric.
Theorem 3.10. Let f be a modulus function. Then
G (f)e,e' (f)e,lL(f) and the inclusions are
proper.
Proof: The inclusion ,c;(f)c ,c¢'(f) isobvious.
Let x=Xx; €,c'(f). Then there exists LeC such
that

X i) & 2CI (f) and

| —tim f (|x; - L) =

1
(J%; -~ L))+ f (L)

Taking the supremum over iand j on both sides we
get x; €, (f).

Next we show that the inclusion is proper.

M 26 (f)=.e'(f)

Let X:(Xij)ezc'(f) then I—limf(|xij|):L for
some L(#0)eC, which implies x& ,c;(f). Hence
the inclusion is proper.

(ii) ,¢'(f)c, (). Let x=(x;)e,l (f) then

| —tim f ([x|) < o0
| —tim f (|x, — L+ L) <o
| =tim f (|, = L|)+ 1 ~tim f (|L[) <o

|
byt <
|

We have f (|xij|) <—f

I —tim f (|x;

X, L|)¢0

I —tim f (|x;

Copyright © 2013 SciRes.

Therefore X ¢ ,c'(f), and hence the inclusion is
proper.

Theorem 3.11. The function #:,m'(f)— IR is the
Lipschitz function, where
,m' (f)=,¢'(f)N,I,(f), and hence uniformly con-
tinuous.

Proof: Let x,ye,m'(f),x#y. Then the sets

A ={(i,J) e IN<IN 2|y =r(x)| 2 [x-y} e 1,
A ={(i, ) € INXIN:|y; —n(y)| = |x-y[} 1.
Thus the sets,
B, :{(i,j)e IN x IN :|xij —h(x)|<||x—y||}e ,m'(f),
B, ={(i,j) & INxIN:|y, = (y)|<[x—y[} e ,m' (f).
f)

Hencealso B,NB, e,m'(
Now taking i,j in B,

n(x)-n(y)|
S|h(X)—Xij|+|Xij _yij|+|yij _h(y)|
<3yl

,sothat B#¢.

Thus 7% is a Lipschitz function. For ,my(f) the re-

sult can be proved similarly.
Theorem 3.12. If x,ye,m'(f), then

(x-y)e,m'(f) and a(xy)=r(x)a(y).
Proof: For ¢>0
B, ={(i,) € INxIN :|x; ~1i(x)| <e} e ,m' (1),

(y)|<e}ez (f).

3

By:{(i,j)eINxIN:|yij—h
Now,
|Xijyij (x)h(y|
|xuyIJ x;h(y)+xa(y)- h(x)h(y)| (8)
<Pl =n (][ =7 (x)

As ,m'(f)c,l, (f), there exists an M e IR such
that [x;|<M and |n(y)|<M .

Using Equation (8) we get
%Yy —h(X)A(y) < Me+Me=2Me
Forall i,jeB NB, e,m'(f).Hence
(x-y)e,m'(f) and n(xy)=n(x)n(y).
For ,my(f) the result can be proved similarly.
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