Key Dimensions and Validity of the Chinese Version of the Individualism-Collectivism Scale

Huang Renzhi¹, Yao Shuqiao²*, John R. Z. Abela³, Fallyn Leibovich³, Liu Mingfan¹
¹Teaching Science Department, Hunan First Normal University, Changsha, China
²Medical Psychological Research Center, Central South University, Second Xiangya Hospital, Changsha, China
³Department of Psychology, McGill University, Montreal, Canada
Email: Shuqiaoao@163.com

Received November 12th, 2012; revised December 13th, 2012; accepted December 20th, 2012

A Chinese version of the Individualism-Collectivism Scale (ICS) to assess cultural dimensions was developed and its psychometric properties were evaluated. The English version of the ICS was translated and back translated prior to its administration to 1760 participants who were divided into 5 age groups. Results indicated that the ICS-C exhibited moderate to high internal consistency with Cronbach’s alpha coefficients ranging from 0.64 to 0.83. The ICS-C also exhibited strong test-retest reliability with ICCs from 0.45 to 0.80. Confirmatory factor Analyses found the four-factor model was the best fit of the data across gender and age, thus supporting the multi-dimensional perspective of horizontal and vertical individualism and collectivism. Furthermore, a multivariate analysis of variance (MANOVA) revealed a significant main effect of age and gender. A gradual increase is present in subjective perception of societal emphasis on the cultural dimensions across five age groups, except age groups of 14 - 15 and 16 - 17 in vertical individualism. With respect to gender effect, female students showed a higher perception of the vertical collectivism than male students (p < 0.05). Thus, the results revealed that sufficient support for the reliability and validity of the Chinese version of ICS.

Keywords: Individualism; Collectivism; Culture; Chinese Students

Introduction

Culture is a concept that is widely used but difficult to define. Researchers have accounted for behavioral disparities amongst cultures by conceptualizing such differences in terms of dimensions which act as parameters (Aaron & Anat, 2006; Voronov & Singer, 2002; Triandis, 1996). Individualism and collectivism are often considered two of the most prominent examples of such dimensions (Triandis, 2001). Whereas collectivism is characterized by communal goals, interdependence, social norms and relationships, individualism emphasizes personal goals, independence, and autonomy (Triandis, 1996, 2001). Individualists view the self as autonomous from one’s in-group, and personal attitudes and perceived benefits shape the motivation for individual action (Triandis, 2001). In contrast, collectivists view the self as a part of one’s in-group, and collective beliefs and obligations shape behavior (Triandis, 2001).

Past research examining the operationalization of individualism and collectivism has evolved in three distinct phases. First, Hofstede, in 1984, proposed a uni-dimensional approach whereby individualism and collectivism fell at opposite ends of the same continuum (Charles, 2010; Gouveia, Clemente, & Espinosa, 2003). Individualism and collectivism were characterized as a single, bipolar construct and thus, endorsing individualistic tendencies necessarily required rejecting collectivistic ideals (Duan, Wei, & Wang, 2008; Freeman & Bordia, 2001). However, as many researchers believed this perspective to be an oversimplification of a more complex phenomenon, Kagitçibasi, in 1987, proposed a bi-dimensional approach. In doing so, individualism and collectivism were operationialized dichotomously and were considered separate unipolar constructs (Freeman & Bordia, 2001). More specifically, collectivism emphasized interpreting the self as an extension of one’s in-group, and choosing in-group goals over personal goals. In contrast, individualism interpreted the self as distinct from one’s in-group, and focused on personally satisfying goals over in-group goals. The fundamental difference between the two perspectives is that while uni-dimensionality inherently requires a given culture to be classified as either individualistic or collectivistic, bi-dimensionality accepts the possibility of the simultaneous existence of individualistic and collectivistic tendencies in a single context (Fauziah & Kamarnzaman, 2010; Freeman & Bordia, 2001). Last, researchers proposed a multi-dimensional approach in which horizontal and vertical dimensions were added as subdivisions of individualism and collectivism (Singelis, Triandis, & Gelfand, 1995; Triandis, 1996; Triandis & Gelfand, 1998). While horizontality refers to an inherent focus on egalitarianism, verticality stresses the principles of authority, power distance and hierarchy (Chiou, 2001; Triandis, 1996, 2001). The inclusion of horizontality and verticality accounts for the potential overlap between individualistic and collectivistic tendencies within a single culture expands the classifications to include: 1) horizontal individualism; 2) verti-
ical individualism; 3) horizontal collectivism; and 4) vertical
collectivism (Gouveia, Clemente, & Espinosa, 2003; Triandis,
1996, 2001; Triandis & Gelfand, 1998). Whereas horizontal
individualism refers to the addition of universalistic values to
individualism (Triandis, 1996) and denotes independence in
terms of the freedom to be unique, vertical individualism,
which is the addition of achievement orientations to individual-
ism (Triandis, 1996), emphasizes such independence and in
addition, places a premium on status and superiority relating to
the in-group as well as surrounding out-groups. In contrast,
Triandis (1996) defines horizontal collectivism as the inclusion
of benevolent ideologies to collectivistic tendencies and vertical
collectivism represents the addition of power to collectivism
(Triandis, 1996). More specifically, Oppenheimer (2004) sug-
gests that horizontal collectivists identify the self as a function
of their in-groups and stress equality amongst members. In
contrast, vertical collectivists emphasize the authoritarian
structure of their in-group, often to the point of self-sacrifice
and competition with out-groups (Oppenheimer, 2004; Triandis,
2001). Therefore, the multidimensional model is considered
superior to the uni-dimensional and bi-dimensional models, as
it is able to completely encompass constructs as complex as
culture, individualism and collectivism.

The Individualism & Collectivism Scale (ICS) is one of the
primary instruments used to assess the multi-dimensional
components of individualism and collectivism. Previous re-
search examining the reliability and validity of the ICS supports
the use of this scale cross-culturally and across ages (e.g. Op-
penheimer, 2004; Gouveia, Clemente, & Espinosa, 2003; Choiu,
2001). Across studies, the ICS has been found to possess mod-
erate to strong internal consistency (Cronbach’s alpha ranging
from 0.63 to 0.89) (Anthony, Rosselli, & Caparyan, 2003;
Choiu, 2001; Gouveia, Clemente, & Espinosa, 2003; Oppen-
heimer, 2004; Singelis et al., 1995; Triandis & Gelfand, 1998).
Moreover, the ICS has demonstrated strong construct validity,
whereby distinct patterns of associations were found between
each of the four dimensions of individualism and collectivism,
and sociopolitical attitudes related to equality and inequality
(Strunk & Chang, 1999). The ICS has also demonstrated gener-
ally strong convergent and divergent validity (Triandis & Gel-
fand, 1998). More specifically, horizontal and vertical indi-
vidualism as well as horizontal and vertical collectivism were
negatively correlated. In addition, individuals who exhibited
vertical individualistic tendencies endorsed constructs including
competition and hedonism; however, individuals who empha-
sized horizontal individualism exhibited higher levels of
self-reliance without competition (Triandis & Gelfand, 1998).
Furthermore, whereas vertical collectivists scored highly on
measures of sociability and family integrity and low on emo-
tional distance from one’s in-group, horizontal collectivists
stressed interdependence and sociability but did not endorse
family integrity (Triandis & Gelfand, 1998).

From a developmental point of view, the subjective percep-
tions of culture dimensions were influenced and formed by the
individual’s early living environments and parenting received
from it (Oppenheimer, 2004). More specifically, When children
enter a competitive environment (i.e. an individual environ-
ment), for example, secondary schools or university, from the
protective environment of a family (i.e. a collective environ-
ment), it is expected that they would perceive the shift of em-
phasis from collectivism to individualism and make the corre-
sponding adaptation. Therefore, the initial influence of the col-
lectivism at the age of 14 would gradually decrease and be
replaced by the later perceived strong emphasis on individual-
ism. Similarly a shift from horizontality (i.e., equality) to verti-
cality (i.e., power distance based on competition) would have
taken place. Some researchers (Oppenheimer & Hitteling, 2004)
had observed that the parenting way of a family moved from
authoritarian with young children to authoritative, and finally to
permissive with older children across ages.

As far as gender effect is concerned, Oppenheimer (2004)
demonstrated that males show a significantly stronger and
rather stable perception of societal emphasis on individualism
than females ($p < 0.05$). In his study examining vertical and
horizontal individualism and collectivism in Netherlands, for
vertical individualism females indicated a significant increase
in their subjective perceptions while this was not the same case
for males. Only after the age of 22, males scored lower than
females on the subscale of vertical individualism. For subjec-
tive perceptions of horizontal individualism again a significant
increase is present for females across age, while all ages males
perceive a significant higher societal emphasis on horizontal
individualism than females. On that subscales of vertical and
horizontal collectivism scores did not reveal any significant
differences between male and female participants.

The objectives of the study were four-fold. First, we aimed to
develop a Chinese version of the ICS (ICS-C). Second, we
examined the reliability of the ICS-C, specifically internal con-
sistency and test-retest reliability. Third, we conducted confir-
matory factor analyses in order to determine whether the four-
factor model was the best fit of the data. Last, we examined age
and gender-related differences in individualism and collectiv-
ism as assessed by the ICS-C.

Methods

Participants

Participants were recruited from one university (Hunan
Normal University) and two high schools in Hunan Province,
China. The final sample consisted of 1760 students (51.4% female
and 48.6% male) ranging in age from 14 to 23 years ($\overline{x}_{\text{males}} = 17.69, SD_{\text{males}} = 2.10; \overline{x}_{\text{females}} = 17.42, SD_{\text{females}} = 1.08$;
$\overline{x}_{\text{males}} = 17.83, SD_{\text{females}} = 1.04$). The sample was 91% Han
and 9% ethnic minority. With regard to family composition,
71% of children lived with their nuclear families, 22.3% with
their extended families, and 6.7% in single parent homes.

Procedure

Prior to the initial assessment, letters of informed consent
were sent home with students detailing the aim of the present
study. More specifically, the informed consent detailed the
project aims which included developing a Chinese translation
of the ICS and examining the psychometric properties of the
questionnaire in a sample of Chinese students. It is important
to note that students were only permitted to participate if the
project coordinator received a signed informed consent form.
Moreover, if the participant was under the age of 18, a parent
was also required to sign the informed consent form. During the
initial assessment, students completed the Chinese version of
the ICS (ICS-C) with a demographics form. One month later,
the ICS-C was re-administered to a subset of the original sam-
ple \((n = 227)\) in order to examine test-retest reliability.

Measures

The ICS-C was developed using the back-translation method. First, the original version was translated into Chinese by one bilingual translator from the psychology department at Central South University (Changsha, Hunan). Next, the Chinese version was back-translated into English by another bilingual translator from the psychology department at McGill University. Finally, the original version of the ICS was compared with the back-translation. If discrepancies arose in the back-translation, translators worked cooperatively to make corrections to the Chinese version.

The Individualism and Collectivism Scale (ICS; Singelis et al., 1995)

The ICS is a 32-item self-report measure designed to assess the following dimensions of culture: horizontal individualism, vertical individualism, horizontal collectivism, and vertical collectivism. The scale can be divided in order to separately assess a participant’s endorsement of individualism and collectivism, as well as further sub-divided in order to include the sub-dimensions of horizontality and verticality. The first set of sixteen questions represent individualism, whereby the first eight items relate to horizontality and the next eight items relate to verticality. The second set of sixteen questions represents collectivism, whereby the first eight items relate to horizontality and the next eight items relate to verticality. Examples of questions include, “I often do my own thing (horizontal individualism)”, “It annoys me when other people perform better than I do (vertical individualism)”, “The well-being of my co-workers is important to me (horizontal collectivism)”, and “I would sacrifice an activity that I enjoy very much if my family did not approve of it (vertical collectivism)”. Participants were provided with a 7-point Likert scale ranging from totally agree (1) to totally disagree (7), whereby lower scores on a given subscale reflect the participant’s endorsement of that subscale. In the current study, Cronbach’s alpha coefficients of the subscale of the horizontal individualism, vertical individualism, horizontal collectivism and vertical collectivism were 0.69, 0.64, 0.83 and 0.88 \((p < 0.01)\), respectively, indicating strong internal consistency. The ICS-C also exhibited strong test-retest reliability with mean ICCs from 0.45 to 0.80 for the sample \((n = 227)\) at one month’s interval, \(p < 0.01\).

Psychometric Evaluation

Analyses were conducted using SPSS 12.0 and AMOS 5.0 software. In order to evaluate the internal consistency of the ICS-C, we calculated the Cronbach’s alpha coefficients. Pearson’s correlations were used to analyze the inter-correlations across subscales and the intra-class correlation coefficients were utilized as test-retest reliability. When examining the four-factor model of the Chinese culture, we utilized maximum-likelihood confirmatory factor analyses. One- and two-way analyses of variance (MANOVA) were conducted to evaluate the gender-, age-related effects and interaction of the two independent variables. Given the large numbers of participants, an alpha of 0.01 was used. The related data on descriptive statistics, means and deviations across gender and reliability of the ICS-C are displayed in Tables 1-3.

Results

Confirmatory Factor Analysis

As the ICS-C was translated from the English version, we expected to have 1) four first-order factors and 2) one second-order factor. Maximum likelihood confirmatory analysis (CFA) was performed to determine how well the original four-factor model fit the Chinese data. One and two factor models were also examined. To evaluate model fit, four indices were analyzed (values in parentheses denote goodness-of-fit standards): 1) the comparative fit index (CFI > 0.90); 2) the Tucker-Lewis non-normed fit index (NNFI > 0.90); 3) the root means square error of approximation (RMSEA ≤ 0.08); and 4) the goodness-of-fit index (GFI > 0.90) (Bollen, 1989; Browne & Cudeck, 1993). These fit indices are presented in Table 4. The chi-square statistic was significant for all three models \((p < 0.001)\), indicating the sensitivity of this statistic to sample size. Degrees of freedom of the three models were 20 (one-factor model), 19 (two-factor model), and 14 (four-factor model). The chi-square of freedom ratios were 36.86 (one-factor model), 29.96 (two-factor model) and 12.54 (four-factor model). While none of the ratios were satisfactory, the four-factor model yielded the best ratio, compared to the one and two-factor models. With respect to GFI, the indices of the three models all exceeded 0.90, and were thus considered satisfactory. Moreover, the GFI of the four-factor model (0.98) was especially higher than those of the other two models. When NNFI and CFI were included in the analysis, the four-factor model (NNFI = 0.92, CFI = 0.93) was superior to the other two models, followed by the two-factor model (NNFI = 0.75, CFI = 0.75), and then the one-factor (NNFI = 0.67, CFI = 0.67). RMSEA values were 0.14 (one-factor model), 0.13 (two-factor model), and 0.08 (four-factor model). As an acceptable RMSEA value must be less than or equal to 0.08, the one and two-factor models did not fit, thus...
Table 2.
Means and standard deviations of five age groups in the ICS-C (N = 1760).

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Horizontal individualism</th>
<th>Vertical individualism</th>
<th>Horizontal collectivism</th>
<th>Vertical collectivism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
</tr>
<tr>
<td>14 - 15</td>
<td>4.94 0.75</td>
<td>4.32 0.84</td>
<td>5.33 0.81</td>
<td>4.82 0.72</td>
</tr>
<tr>
<td>16 - 17</td>
<td>5.07 0.77</td>
<td>4.43 0.82</td>
<td>5.37 0.84</td>
<td>4.82 0.77</td>
</tr>
<tr>
<td>18 - 19</td>
<td>5.12 0.64</td>
<td>4.42 0.71</td>
<td>5.40 0.66</td>
<td>4.92 0.67</td>
</tr>
<tr>
<td>20 - 21</td>
<td>5.15 0.74</td>
<td>4.48 0.75</td>
<td>5.44 0.69</td>
<td>4.98 0.65</td>
</tr>
<tr>
<td>22 - 23</td>
<td>5.30 0.78</td>
<td>4.49 0.89</td>
<td>5.68 0.71</td>
<td>5.07 0.65</td>
</tr>
</tbody>
</table>

Note: ICS-C = Individualism and Collectivism Scale: Chinese Version.

Table 3.
Reliability of the ICS-C (N = 1760).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subscale</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean squares</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td>Horizontal individualism</td>
<td>9.04</td>
<td>4</td>
<td>2.26</td>
<td>4.158***</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Vertical individualism</td>
<td>3.839</td>
<td>4</td>
<td>0.960</td>
<td>1.534</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>Horizontal collectivism</td>
<td>7.481</td>
<td>4</td>
<td>1.870</td>
<td>3.101*</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Vertical collectivism</td>
<td>11.646</td>
<td>4</td>
<td>2.911</td>
<td>5.702***</td>
<td>0.000</td>
</tr>
<tr>
<td>Gender</td>
<td>Horizontal individualism</td>
<td>3.479</td>
<td>1</td>
<td>3.479</td>
<td>6.401*</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>Vertical individualism</td>
<td>5.684E-02</td>
<td>1</td>
<td>5.684E-02</td>
<td>0.091</td>
<td>0.763</td>
</tr>
<tr>
<td></td>
<td>Horizontal collectivism</td>
<td>0.116</td>
<td>1</td>
<td>0.116</td>
<td>0.192</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td>Vertical collectivism</td>
<td>12.145</td>
<td>1</td>
<td>12.145</td>
<td>23.786***</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note. ICS-C = Individualism and Collectivism Scale: Chinese Version. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 4.
Model fit statistics for the ICS-C.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>df</th>
<th>GFI</th>
<th>NNFI</th>
<th>CFI</th>
<th>RMSEA (CI for 90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-factor model</td>
<td>737.28</td>
<td>20</td>
<td>0.90</td>
<td>0.67</td>
<td>0.67</td>
<td>0.14 (0.13 - 0.15)</td>
</tr>
<tr>
<td>Male</td>
<td>287.85</td>
<td>20</td>
<td>0.92</td>
<td>0.74</td>
<td>0.75</td>
<td>0.13 (0.11 - 0.14)</td>
</tr>
<tr>
<td>Female</td>
<td>471.88</td>
<td>20</td>
<td>0.88</td>
<td>0.60</td>
<td>0.61</td>
<td>0.16 (0.15 - 0.17)</td>
</tr>
<tr>
<td>Two-factor model</td>
<td>569.15</td>
<td>19</td>
<td>0.92</td>
<td>0.75</td>
<td>0.75</td>
<td>0.13 (0.12 - 0.14)</td>
</tr>
<tr>
<td>Male</td>
<td>230.16</td>
<td>19</td>
<td>0.93</td>
<td>0.79</td>
<td>0.80</td>
<td>0.11 (0.10 - 0.13)</td>
</tr>
<tr>
<td>Female</td>
<td>359.82</td>
<td>19</td>
<td>0.90</td>
<td>0.69</td>
<td>0.70</td>
<td>0.14 (0.13 - 0.15)</td>
</tr>
<tr>
<td>Four-factor model</td>
<td>175.60</td>
<td>14</td>
<td>0.98</td>
<td>0.92</td>
<td>0.93</td>
<td>0.08 (0.07 - 0.09)</td>
</tr>
<tr>
<td>Male</td>
<td>94.54</td>
<td>14</td>
<td>0.97</td>
<td>0.91</td>
<td>0.92</td>
<td>0.08 (0.07 - 0.10)</td>
</tr>
<tr>
<td>Female</td>
<td>83.98</td>
<td>14</td>
<td>0.98</td>
<td>0.93</td>
<td>0.94</td>
<td>0.08 (0.06 - 0.09)</td>
</tr>
<tr>
<td>Age group 1 (14 - 15)</td>
<td>41.12</td>
<td>14</td>
<td>0.97</td>
<td>0.90</td>
<td>0.92</td>
<td>0.08 (0.06 - 0.10)</td>
</tr>
<tr>
<td>Age group 2 (16 - 17)</td>
<td>43.59</td>
<td>14</td>
<td>0.96</td>
<td>0.92</td>
<td>0.93</td>
<td>0.08 (0.06 - 0.09)</td>
</tr>
<tr>
<td>Age group 3 (18 - 19)</td>
<td>48.57</td>
<td>14</td>
<td>0.98</td>
<td>0.91</td>
<td>0.92</td>
<td>0.08 (0.07 - 0.10)</td>
</tr>
<tr>
<td>Age group 4 (20 - 21)</td>
<td>44.50</td>
<td>14</td>
<td>0.96</td>
<td>0.92</td>
<td>0.91</td>
<td>0.08 (0.07 - 0.09)</td>
</tr>
<tr>
<td>Age group 5 (22 - 23)</td>
<td>46.95</td>
<td>14</td>
<td>0.95</td>
<td>0.92</td>
<td>0.91</td>
<td>0.08 (0.07 - 0.09)</td>
</tr>
</tbody>
</table>
indicating that the four-factor model was again superior. Furthermore, the analysis yielded a reasonable fit ($\chi^2(14) = 175.60$, $p \leq 0.00$, $GFI = 0.98$, $CFI = 0.93$) between the four-factor model and the data. The four-factor model was also applicable to both gender groups, as well as the five age groups, with fairly desirable fit indices, as seen in Table 4.

ICS-C Subscale Correlations by Gender

The two and four-factor model correlation coefficients by gender are displayed in Table 5. The correlation matrices for girls and boys were generally comparable. In the two-factor model, the correlations between individualism and collectivism were 0.31 (male) and 0.25 (female), respectively ($p < 0.05$). In the four-factor model, the correlation coefficients ranged from 0.07 to 0.45 (male) and 0.01 to 0.31 (female). All of the correlation coefficients were statistically significant ($p < 0.01$), with the exception of the correlation between vertical individualism and horizontal collectivism ($p > 0.05$).

Age Differences

A multivariate analysis of variance (MANOVA) was performed on the subscale score of ICS-C as dependent variables and age groups as the independent variable to examine the extent to which the scale captured the age difference among the participants. The results indicated that there was an overall significant effect of age (Wilks’lambda = 0.978, $df = 16$, $F = 2.471$, $p < 0.01$) for the four subscales. Univariate tests further indicated that there were significant age differences in participants’ ratings on all four subscales: Horizontal Individualism ($F(4, 1753) = 2.615$, $p < 0.05$), Vertical Individualism ($F(4, 1753) = 2.716$, $p < 0.05$), Horizontal Collectivism ($F(4, 1753) = 4.681$, $p < 0.001$) and Vertical Collectivism ($F(4, 1753) = 3.058$, $p < 0.05$). Post hoc tests using Scheffe’s criteria revealed that for the Horizontal Collectivism subscales, the mean scores of the five age groups were higher than the mean scores of the other three subscales. For the main effect of age, age group 1 was found to rate the horizontal individualism lower significantly than both age group 4 (mean difference = 0.2093, $p < 0.05$) and age group 5 (mean difference = 0.3633, $p < 0.05$), while age group 2 - 5 did not differ from each other. With regard to vertical individualism, results demonstrated that the five age groups also did not differ from each other. In the subscale of horizontal collectivism, only age group 5 scored higher than age group 1 (mean difference = 0.3561, $p < 0.05$). Moreover, the participants of age group 4 tended to rate the scores higher on the vertical collectivism subscale compared with the participants of age group 1 (mean difference = 0.1519, $p < 0.05$). These results indicated that he scale was capturing age effects among the participants.

Gender Differences

To examine age difference between those male and female participants with respect to their subjective perception on cultural dimensions, a one-way MANOVA was performed on the participants’ four subscales scores as dependent variables and their gender as the independent variable. The mean and standard deviations of the sample for each subscales are presented in Table 4. The results showed that there was an overall effect of gender (Wilks’lambda = 0.977, $df = 4$, $F = 10.149$, $p < 0.001$) for the ICS-C. Univariate tests indicated significant effects for one of the four subscales, the vertical collectivism subscale ($F(1, 1756) = 11.117$, $p < 0.05$), with those female students showing a higher perception of the vertical collectivism. Those male and female participants did not differ in their ratings on the other three subscales ($p > 0.05$).

Additional Tests for the Robustness of the ICS-C

To seek further evidence for the robustness of this scale in capturing age effects, additional MANOVAs were run across the demographic variable of gender, therefore, separate two-way MANOVAs were run for age group and gender. Wilk’s criteria was performed with age group and gender serving as the independent variables and the four subscales serving as the dependent variables. Except for the significant main effect that found for age group and gender, no interaction was found during this analysis.

In summary, the findings revealed that the 32-item ICS-C is a reliable measure that captures the anticipated age differences. Further analysis was conducted to examine the relationship between the demographic variables (gender and age) and participants’ subscale scores. Results indicated that main age and gender-related effects did exist while the interaction was not detected.

Discussion

The results of the current study indicate that the ICS-C is a reliable measure of individualism and collectivism. More specifically, the alpha coefficients for each of the four subscales were acceptable, indicating moderate to strong internal consistency. Moreover, the intraclass correlation coefficients for each of the four subscales ranged from satisfactory to excellent, indicating moderate to strong test-retest reliability. This suggests that individualism and collectivism, as measured by the ICS-C, are relatively stable constructs.

The results of this study also indicate that the ICS-C exhibits high levels of validity. All correlations of the total scales were statistically significant, and with the exception of vertical individualism to horizontal collectivism, all correlations among the four subscales were significant. The correlation between horizontal and vertical individualism were small, but significant,
and the correlation between vertical and horizontal collectivism was moderate. This indicates that individualism, collectivism and their horizontal and vertical sub-dimensions are independent yet related constructs. The case of low correlation of vertical collectivism can be identical to any objective characterization of society because individual, subjective variables modify such features.

The results of the current study also indicated noteworthy gender differences in the subscales of the ICS-C. Whereas females scored higher than males on the vertical collectivism subscale, males scored higher than females on the three remaining subscales. However, only the vertical collectivism gender difference was statistically significant. These findings are curious, as they are in contrast with those found in Oppenheimer’s (2004) American sample. A possible explanation is that this might reflect a difference found in Chinese culture, whereby Chinese girls might emphasize power distance, or endorse a more hierarchical perspective within their in-groups than Chinese boys. Perhaps Chinese girls are more socialized than Chinese boys during their growth. Some researchers (e.g., Chiu, 1999, Kasser & Ryan, 1993; Landis & Koch, 1977; Singelis, 1994; Shrout & Fleiss, 1979) have pointed out that China is not just an “other-directed” society whose members are sensitive to the expectations and preferences of others, but a target-specific society whereby there are different expectations of social behavior for different relationships. Thus, the Chinese girls might be ready to sacrifice their personal and individualistic goals and needs for the sake of the in-group. Further investigation should be conducted in order to extrapolate the root causes of this difference.

The use of self-report measures as the primary mode of data collection might be considered a limitation of the current study, which was criticized by psychologists for the shortcoming of not reflecting actual behavior. However, the aim of the current study was to accrue the participants’ subjective perceptions of these cultural dimensions, as opposed to measuring objective behaviors. Therefore, self-report measures were valuable tools in this study.

Overall, the results of the current study indicate that the ICS-C is a reliable and valid measure of the constructs of individualism and collectivism, as well as their sub-dimensions in the mainland of China. With regard to future research, the next logical step would be conducting studies using the ICS-C in a non-student population. Additionally, such studies should be conducted in a number of other regions of China, outside of the Hunan Province. These studies would enable researchers to better evaluate the ICS-C on a broader spectrum within the Chinese culture.

REFERENCES

