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Abstract 
To overcome the shortcomings of the traditional methods of water quality 
evaluation, in this paper, a novel model combines particle swarm optimization 
(PSO), chaos theory, self-adaptive strategy and back propagation artificial 
neural network (BP ANN) that was proposed to evaluate the water quality of 
Weihe River in China. An improved PSO algorithm with a self-adaptive iner-
tia weight and a chaotic learning factor tuned by logistic function was devel-
oped and used to optimize the network parameters of BP ANN. The values of 
average absolute deviation (AAD), root mean square error of prediction 
(RMSEP) and squared correlation coefficient are 0.0061, 0.0163 and 0.9903, 
respectively. Compared with other methods, such as BP ANN, and PSO BP 
ANN, the proposed model displays optimal prediction performance with high 
precision and good correlation. The results show that the proposed method 
has the good prediction ability for evaluating water quality. It is convenient, 
reliable and high precision, which provides good analysis and evaluation me-
thod for water quality. 
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1. Introduction 

The water quality evaluation is an important link of its research system, and has 
almost become an indispensable important part of all the environmental quality 
evaluation, not only accurately orienting the pollution level of lakes/rivers and 
the trend of future development, but also more efficiently utilizing and protect-
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ing water, thereby, it provides a directional and principled scheme and basis for 
the conservation of water source [1] [2] [3] [4]. 

Currently, there are several main methods of water quality evaluation includ-
ing single factor evaluation, principal component analysis and comprehensive 
water quality identification index [5]-[12]. The mechanism of the single factor 
evaluation method is that using the classification of the worst single index of 
water quality to determine the classification of the comprehensive water quality; 
the method is simple and clear, and can directly attain the relationship between 
water quality and evaluation criteria, but fails to get a comprehensive evaluation, 
furthermore, the accuracy of the evaluation results is poor. The principal com-
ponent analysis (PCA) is an integrated model for water quality assessment and it 
can be used to establish comprehensive evaluation index and the effect is better, 
but it’s difficult to get a better evaluation result if the participating index is too 
more to reduce the contribution rate of the principal component [9] [13] [14] 
[15] [16] [17]. Because the water quality is affected by many factors, there is a 
complex non-linear relationship between the evaluation index and water quality 
standard. 

These traditional processing methods can’t be addressed complex nonlinear 
problems well and the traditional mathematical evaluation method gradually re-
placed by intelligent optimization algorithm. 

In recent years, the artificial neural network (ANN) technology has attracted 
much attention; it has fast training speed and can approach all linear and nonli-
near complex practical problems, furthermore, widely used in water quality 
evaluation [13] [18] [19] [20]. For example, the back propagation artificial neur-
al network (BP ANN) is used to the water environment quality evaluation model; 
the Radial Basis Function Artificial Neural Network (RBF ANN) is adopted to 
evaluate water quality. The traditional neural networks have some shortcomings, 
including slow convergence speed, easy to trap into local extremum, so that 
many improved neural network models have been successfully applied to water 
quality evaluation [9] [14] [21]. 

Particle swarm optimization algorithm (PSO) is one of the hot topics in the 
field of intelligent optimization; it has stronger global searching capability, but 
it’s easy to be premature convergence, in turn, the BP ANN has a strong local 
search capability. Therefore, in order to improve the BP ANN’s shortcomings of 
easy to fall into local optimum and depend on the choice of initial weight, this 
paper proposes an improved PSO algorithm based on chaos theory and adaptive 
strategy, and it’s used to optimize the parameters of BP ANN, thus obtaining a 
hybrid artificial neural network prediction model, called CSAPSO BP ANN at 
the same time, to discuss the prediction effect of the model through making the 
CSAPSO BP ANN model apply to water quality evaluation. 

2. Model Theory 
2.1. Improved Particle Swarm Optimization Algorithm CSAPSO 

PSO algorithm have many advantages, including its easy implementation, and 
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fewer parameters need to be adjusted, the convergence speed and efficiency are 
better, which make PSO become a typical swarm intelligence algorithms. When, 
in an n-dimensional search space, the total number of particles is m, each par-
ticle is assumed to be a potential solution. The particle is updated their speed 
and position by the formulas (1) and (2) in the solving iteration process [22] [23] 
[24] [25]. 

( ) ( ) ( ) ( )1
, , 1 , , 2 , ,
k k k k k k
i d i d i d i d g d i dv v c rand p x c rand p xω+ = + − + −        (1) 

1 1
, , ,
k k k
i d i d i dx x v+ += +                          (2) 

where 1, 2, ,i m=  , ω  denotes the inertia weight factor, ,
k
i dx  and ,

k
i dv  indi-

cate the position and velocity of ith particle at d-dimension and the k-th itera-
tion respectively. 1c  and 2c  are learning factors, ,

k
i dp  represents the best po-

sition of the i-th particle in d-dimensions, and ,
k
g dp  denotes the global best po-

sition. 
The improved algorithm proposed in this study is called CSAPSO algorithm. 

The self-adaptive adjustment strategy is adopted to adjust inertia weight factor 
(ω ), ω  was defined as follows [26] [27]: 

( ) ( )max max min maxgbest lbestaveP k P k kω ω ω ω= − − − ×           (3) 

where, maxw  and minw  denote the maximum and minimum weights, respec-
tively. ( )gbestP k  denotes the global best fitness at the k-th iteration, lbestaveP  
denotes the average local best fitness , maxK  is the maximum iteration. 

The learning factors 1c  and 2c  of the improved algorithm are obtained 
from the chaotic sequences generated by the classical Logistic map [28]. 

According to the formula (3), the position ( ,i dx ) of each dimension of the 
current particle ( ix ) is mapped to the [0,1] interval : 

,
,

i d d
i d

d d

x a
cx

b a
−

=
−

                          (4) 

where, the [ ],d da b  interval denotes the definition domain of the 
d-dimensional variable ( ,i dx ). 

After K iterations, the chaotic sequences 1 2
, , ,, , , K

i d i d i dcx cx cx  are generated by 
the formula. 

( )1 4 1 , 1, 2, ,k k k
i i icx cx cx k K+ = − =                   (5) 

where, icx  denotes the Chaotic variables, k
icx  is icx ’s value after the K-th ite-

ration, K is the iteration number of chaotic map. 

2.2. CSAPSO BP ANN Model 

In BP ANN, the model establishes the nonlinear relationship between input and 
output by determining the weights and deviation of each layer in the network, 
from structural analysis, the nonlinear relationship between the input and the 
output can be understood as: ( ), ,ih ho oy f w w b= , which, , ,ih ho ow w b  indicate 
the weight vector between input layer and hidden layer respectively, the weight 
vector between hidden layer and output layer and the deviation vector of hidden 
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layer. That is to say, the performance of the network depends on the three main 
parameters ( , ,ih ho ow w b ) of the network. 

The CSAPSO BP ANN model is obtained by using the CSAPSO algorithm to 
optimize the weight vector ihw , the weight vector how  and the deviation vector 

ob , the particle is designed as: 

( ) [ ], ,ih ho oparticle i w w b=                       (6) 

The procedure for CSAPSO BP ANN can be summarized as follows: 
Step 1. Model initialization. The connection weights, biases and population 

parameters of the model are initialized randomly. 
Step 2. Model training. Using the improved PSO algorithm to optimize the 

parameters of BP ANN, particles structure refer to that above design. 
Step 3. Adjustment of model parameters. Through the output error, all para-

meters of the model are adjusted until the number of execution times arrives at 
the set value or the error meet the set conditions. 

Step 4. Finish the output. After training, the model output each parameter, 
and then through the training model for testing. 

Table 1 shows each parameter of the model. 

3. Model Building 
3.1. Experimental Data 

Based on the national surface water environmental quality standard (GB3838- 
2002), according to the six types of standards corresponding to the limits of the 
concentration of pollution factors (as shown in Table 2) to generate water qual-
ity assessment of the 718 groups of data, and using it to regard as modeling da-
tabase, the 70% of the database data (503 groups) is used for network training, 
and the 30% (215 groups) is applied to network verification. In the test sample, 
10 sets of test data were used to test the reliability of the model. The test sample 
was shown in Table 3. 

The average absolute deviation (AAD), the root mean square error of predic-
tion (RMSEP) and the squared correlation coefficient (R2) are adopted to eva-
luate the accuracy and reliability of model, and defined as follows: 

1

1 N
i i

i i

y y
AAD

N y=

−
= ∑                         (7) 

 
Table 1. CSAPSO BP ANN model parameter setting. 

Parameter Description Value 

m Number of particles 50 

itmax The iteration times 1000 

minerror Minimum error 1.00E−07 

w Inertia weight Self-adaptive 

c1 Cognitive component Logistic 

c2 Social component Logistic 
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Table 2. The water quality standard (GB3838-2002) and expected output. 

Pollution index (mg/L) 
Water quality classification 

I II III IV V 

DOa ≥7.5 ≥6 ≥5 ≥3 ≥2 

VPb ≤0.002 ≤0.002 ≤0.005 ≤0.01 ≤0.1 

COD mnc ≤2 ≤4 ≤6 ≤10 ≤15 

NH3-Nd ≤0.15 ≤0.5 ≤1.0 ≤1.5 ≤2.0 

Expected output 0.1 0.3 0.5 0.7 0.9 

aDissolved oxygen. bVolatile phenol. cPermanganate index. dAmmonia nitrogen. 

 
Table 3. Measured data for water quality evaluation. 

Sample DO VP CODmn NH3-N Expected output 

1 7.9 0.001 1.7 0.21 0.3 

2 8.0 0.003 3.4 0.15 0.7 

3 7.2 0.002 3.0 0.17 0.3 

4 7.6 0.001 2.4 0.38 0.3 

5 3.6 0.034 19.5 11.2 0.7 

6 5.1 0.006 64.4 4.78 0.9 

7 3.1 0.019 16.4 2.91 0.7 

8 4.1 0.004 6.6 3.10 0.9 

9 5.4 0.001 2.9 0.30 0.3 

10 6.2 0.001 3.2 0.49 0.3 
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1
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i i
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                 (9) 

where, N denote the number of the data sample, iy  and avey  respectively 
represent the predicted and predicted average values, iy  and avey  are the ex-
periment and experiment mean values. 

3.2. Model Structure 

The CSAPSO BP ANN model applied a three-layer network architecture. In the 
input layer node, it adopted 4 water quality evaluation indicators, namely DO, 
VP, CODmn and NH3-N. The number of input nodes is 4. The number of 
nodes in the output layer is 1, which represents the prediction of water quality. 
In the hidden layer, the number of neurons of different problems is generally not 
the same, heuristic method is used to optimize the number of hidden layer, ac-
cording to the number of neurons increased from 5 to 15, a total of 11 CSAPSO 
BP ANN models were obtained. By calculating the AAD, RMSEP, R2 and the 
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best fitness value of each model, the optimal number of hidden layer nodes is 
determined, as shown in Table 4. 

Generally, the network with the least error and higher correlation coefficient 
is regarded as the optimal network structure. In this study, the smallest AAD 
with RMSEP and the maximum R2 structure is chosen as the optimal, according 
to Table 4. The hidden layer, which contains 9 neurons, is the best optimal PSO- 
BP hybrid neural model. 

4. Results and Discussion 

The structure of the CSAPSO BP ANN model was 4-9-1. According to the data 
examples of water quality evaluation standard, CSAPSO BP ANN was trained 
and verified, and the training curve is shown in Figure 1. 
 
Table 4. Optimize CSAPSO BP ANN topological structure. 

Hidden neuron AAD Best fitness R2 RMSEP 

5 0.0204 2.35E−03 0.9652 0.0563 

6 0.0136 1.45E−03 0.9725 0.0405 

7 0.0112 6.74E−04 0.9756 0.0357 

8 0.0089 5.53E−05 0.9811 0.0288 

9 0.0061 1.03E−06 0.9903 0.0163 

10 0.0082 8.21E−05 0.9812 0.0213 

11 0.0099 8.41E−05 0.9789 0.0326 

12 0.0126 8.44E−05 0.9775 0.0382 

13 0.0168 1.29E−04 0.9757 0.0408 

14 0.0183 1.38E−05 0.9689 0.0479 

15 0.0252 1.47E−04 0.9670 0.0552 

 

 
Figure 1. CSAPSO BP ANN training curve. 
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As we can see from the figure, it’s fast that the convergence rate of model, in 
the first 100 iterations. The convergence error decreases rapidly, especially in the 
first 50 iterations. After 350 iterations, the convergence error is stable and close 
to 0. The convergence rate is faster, in terms of the accuracy, the convergence 
error is close to 0, so the precision is higher. Undergo 350 iterations, the model 
has been well trained. Figure 2 shows the interrelation between the predicted 
value and the expected value in the training set. In the graph, the line and dot 
indicate the expected value and the predictive value data points respectively.   

The vertical distance between the dot and the line show the absolute error 
between the predicted value and the expected value. For graph, the predicted 
data points are basically kept near the straight line, not only do show that the 
prediction performance of the CSAPSO BP ANN model is better in the training 
set, and the predicted value of the model is in good agreement with the expected 
values, but demonstrates the good prediction performance of the model. 

After the model passed training, in order to verify the reliability of the trained 
network model, the model can be used to verify the data in the validation set. 
There are two points for verification purposes: one is to verify the training effect 
of the model; the other is to mildly adjust the network parameters, so that the 
network performance is better. Figure 3 shows the interrelation between the 
predicted value and the expected value in the validation set. From the vertical 
distance between the dot and the line, in the validation set, the prediction per-
formance of CSAPSO BP ANN model is better, and the error and correlation are 
also good. 

The experiment of training set and validation set shows that the CSAPSO BP  
 

 
Figure 2. Prediction effect in training set. 
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Figure 3. Prediction effect in validation set. 
 
ANN model has a good effect in water quality evaluation and prediction, both in 
the training set and the validation set, the predicted value is close to the expected 
output value, and the coincidence degree is high. From the results of the training, 
the model has been fully trained; according to the results of the verification, the 
predicted performance of the trained model is reliable and accurate. 

After training and verification, the CSAPSO BP ANN model is applied to pre-
dict the samples in the test set. Figure 4 shows the correlation between the pre-
dicted value and the expected value of the model, and the curve denote the ac-
tual value of the test sample, the diamond represents the predicted data points of 
the model. 

In the graph, the vertical distance between diamond and straight line is small-
er, which shows that the CSAPSO BP ANN model has good prediction perfor-
mance in the test samples. Apart from the prediction error of individual samples 
is relatively large, the predicted values of other are very close to the actual test 
values. It can be concluded from the test set that the model CSAPSO BP ANN 
has a good application in water quality evaluation. 

Experiments show that whether the training set, the validation set, or the test 
set, the model CSAPSO BP ANN all show good prediction performance. And 
Table 5 displays the statistical data of the model predictions in each sample set. 
From AAD and RMSEP, the prediction error is small and the precision is high, 
as can be seen from the R2, the correlation between the predicted value and the 
real value of the test is better. Judging from the prediction performance of the 3 
sets, the performance of the test set is slightly worse. 

The above experimental results demonstrate that the model CSAPSO BP ANN  
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Figure 4. Prediction effect in testing set. 
 
Table 5. Related data of the model prediction. 

Set AAD R2 RMSEP 

Training set 0.0060 0.9904 0.0164 

validation set 0.0060 0.9913 0.0161 

Testing set 0.0064 0.9892 0.0163 

Average value 0.0061 0.9903 0.0163 

 
has good prediction performance in water quality evaluation, in order to eva-
luate the performance of the CSAPSO BP ANN model and other models, the 
CSAPSO BP ANN model and PSO BP ANN and BP ANN respectively conduct 
the water quality prediction experiment. When the parameters are the same, the 
convergence curve of each model is shown in Figure 5. 

From the convergence curve of each model, the order of convergence rate of 
the three models in turn is: CSAPSO BP ANN, PSO BP ANN and BP ANN, the 
convergence rate of the CSAPSO BP ANN model is fastest. From the time of 
reaching the equilibrium of convergence, the CSAPSO BP ANN model has stabi-
lized in the near 100 iterations. From the convergence accuracy, the CSAPSO BP 
ANN model is also obviously dominant, its final convergence accuracy is close 
to 0, significantly smaller than other models. Figure 6 shows the correlation be-
tween the predicted value and the expected value of the comparison model in the 
test set sample test, among the sub-graph (a) and (b) reflect the performance of 
each model from two angles of prediction data distribution and prediction error. 

As we can be seen from the graph, in the case of the same parameter settings, 
the test results of each model are quite different. From sub-graph (a), the CSAPSO  
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Figure 5. Convergence curve chart of each comparison model. 
 
BP ANN model’s predictive data points all exist in the position of near the line. 
For sub-graph (b), the vertical distance between the location of the CSAPSO BP 
ANN model’s predictive data points and the real data points is the shortest, 
which demonstrates the model’s predicted value is closest to the actual. Among 
the three models, the performance of CSAPSO BP ANN, PSO BP ANN and BP 
ANN decreased sequentially. Table 6 statistics the evaluation index data of each 
model in water quality evaluation. 

In conclusion, the CSAPSO BP ANN model has the best comprehensive per-
formance. The AAD and RMSEP’s data show that the prediction accuracy of the 
CSAPSO BP ANN model reach maximum, the R2 also reflects the best correla-
tion of the model. 

From efficiency and accuracy, the data from the table also reflects the domi-
nate of the model CSAPSO BP ANN4. For accuracy, the RMSEP of the CSAPSO 
BP ANN model reach minimum, but its predicted capability is the strongest. 
Based on the execution time, the CSAPSO BP ANN, PSO BP ANN and BP ANN 
decreased sequentially. Due to the involvement of intelligent algorithms, the ex-
ecution time will be bound to improve. Since the intelligent algorithm belongs to 
the iterative evolutionary algorithm, it can consume more time. The training of 
BP ANN is not the introduction of intelligent algorithm to make the execution 
time of the model smaller. And the CSAPSO BP ANN model introduced the 
adaptive strategy and chaotic mechanism into the improvement of the intelligent 
algorithm, which makes the model take a long time to execute. But on the whole, 
the execution time is not long and all are within acceptable limits. 

5. Conclusions 

1) In this paper, an improved PSO algorithm and BP ANN are combined to  
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Figure 6. Comparison chart of predicted values and expected values of each model. 
 
build a water quality prediction model. And the experimental results show that 
this model has the merits of strong classification ability, simple operation, low  
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Table 6. Values of ARD, R2, time and RMSEP for the comparison models. 

MODEL AAD R2 RMSEP Time (S) 

BP ANN 0.0371 0.9312 0.1416 36 

PSO BP ANN 0.0223 0.9538 0.0875 41 

CSAPSO BP ANN 0.0061 0.9903 0.0163 48 

 
prediction cost, thereby, using it to evaluate water quality is feasible and effec-
tive.  

2) The performance of the CSAPSO BP ANN water quality evaluation model 
is very excellent; owing to the smaller error between the predicted value and the 
experimental value and the higher correlation, the water quality can be predicted 
well. 

3) The proposed water quality evaluation model can provide a new idea for 
other prediction fields. 
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