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Abstract 
The simulation of salinity at different locations of a tidal river using physically-based 
hydrodynamic models is quite cumbersome because it requires many types of data, 
such as hydrological and hydraulic time series at boundaries, river geometry, and 
adjusted coefficients. Therefore, an artificial neural network (ANN) technique using 
a back-propagation neural network (BPNN) and a radial basis function neural net-
work (RBFNN) is adopted as an effective alternative in salinity simulation studies. 
The present study focuses on comparing the performance of BPNN, RBFNN, and 
three-dimensional hydrodynamic models as applied to a tidal estuarine system. The 
observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 
30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model 
training and for hydrodynamic model calibration. The data sets collected from 30 
May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted 
for BPNN and RBFNN model verification and for hydrodynamic model verification. 
The results revealed that the ANN (BPNN and RBFNN) models were capable of pre-
dicting the nonlinear time series behavior of salinity to the multiple forcing signals of 
water stages at different stations and freshwater input at upstream boundaries. The 
salinity predicted by the ANN models was better than that predicted by the physical-
ly based hydrodynamic model. This study suggests that BPNN and RBFNN models 
are easy-to-use modeling tools for simulating the salinity variation in a tidal estua-
rine system. 
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1. Introduction 

Estuaries act as a bridge between riverine and marine systems, transporting dissolved 
substances and suspended particles from rivers to coastal seas. In the past decades, 
coastal environments have become more stressed by pollutants introduced from the 
surrounding land. The fates of pollutants are strongly affected by physical processes, 
which interplay with biogeochemical processes in estuaries [1]. Salinity is an important 
indicator of the health of the aquatic ecosystem in tidal estuaries. The increase in salin-
ity intrusion in a tidal estuary river may have an adverse effect on the drinking-water 
supply and aquatic environment [2]. 

Numerical models have been successfully applied to the simulation of the hydrody-
namic characteristics of estuaries. Although full three-dimensional models are available 
to predict salt water intrusion in an estuary, a large amount of observational data and a 
considerable amount of effort are often needed to calibrate and validate these numerical 
models for further applications [3]-[14]. Because of the existing difficulties and chal-
lenges in the prediction of salinity variations using hydrodynamic model, a relatively 
novel computational approach, artificial neural networks (ANNs), which was widely 
accepted in many disciplines, provides an alternative method for one-step-ahead un-
derstanding and management of hydrodynamic processes. ANNs are well-suited for 
this application because of their informative processing characteristics, such as nonli-
nearity, parallelism, noise tolerance, and learning capability [15] [16]. 

ANNs are a branch of artificial intelligence developed in the 1950s that aims at im-
itating the biological brain architecture. They are parallel-distributed systems made of 
many interconnected nonlinear processing elements, called neurons [17]. Renewed in-
terest in ANNs has developed in the last decade, mainly because of the availability of 
suitable hardware (e.g., parallel computers, analogue/digital neural cards for personal 
computers) that has made them convenient for fast data analysis and information 
processing. 

ANNs are now drawing interest from researchers in various fields because they are 
capable of providing a neurocomputing approach for solving complex problems that 
might otherwise not have a tractable solution. ANNs have been applied to a broad 
range of fields including nonlinear system modeling, function approximation, pattern 
recognition and synthesis, and prediction. An ANN is a nonlinear mathematical struc-
ture that is able to represent arbitrarily complex nonlinear processes that relate the in-
puts and outputs of any system. One needs to train the network through representative 
examples of the desired mapping. The ANN can then adapt itself to reproduce the de-
sired output when presented with training input. This means that the network has the 
ability to learn (i.e., to extract import features) from the data and to generalize for fu-
ture classification or prediction. Recently, ANNs have provided a significant number of 
promising results in the field of hydrology and water resources, in areas such as rainfall 
estimation [18]-[30], groundwater modeling [31] [32] [33] [34] [35], estuary water- 
stage forecasting [36] [37] [38] [39], and reservoir operation [40] [41] [42]. Although 
the neural networks applied to different hydrological processes have yielded many ex-
citing results, this method is still rarely applied in modeling the salinity distributions of 
tidal estuaries [43] or compared with predictions of salinity obtained using a hydrody-
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namic model [44]. 
The main aim of this paper was to implement two ANN models which are a back- 

propagation neural network (BPNN) and a radial basis function neural network 
(RBFNN) and a physically based three-dimensional hydrodynamic model to predict the 
time-series salinity variation in response to the input forcing functions of the water 
stage and freshwater discharge in the Danshui River estuary of northern Taiwan. 

2. Description of Study Site 

The Danshui River estuarine system (Figure 1) is the largest estuary in Taiwan. There 
are three main tributaries including the Dahan River, the Xindian River, and the Kee-
lung River. Its drainage basin covers the capital city of Taipei. The watershed of the 
Danshui River encompasses 2726 km2 and has a combined length of 158.7 km. Annual 
precipitation in the region ranges between 1500 mm and 2500 mm, with the majority 
coming in late spring (May) to early fall (October). Long-term average annual river 
flow rate is 6.6 × 109 m3/y. Except during a flood event, the astronomical tide may reach 
as far upriver as the Chenglin Bridge on the Dahan River, the Xiulang Bridge on the 
Xindian River, and the Jiangbei Bridge on the Keelung River. Tidal propagation is the 
dominant mechanism controlling the water surface elevation and the ebb and flood 
flows. The M2 tide is the primary tide constituent at the river mouth, with a tidal range 
of 2.17 m at mean tide and up to 3 m at spring tide [45]. Seawater intrudes upriver as a 
result of tidal advection and two-layer estuarine circulation. Salinity varies on an intra-
tidal time scale in response to the ebb and flood of the flows and in various longer time 
scales in response to freshwater inflow. The limit of salt intrusion may reach beyond 25 
km in the Dahan River from the river mouth during the period of low flow. 

The average river discharges at the upstream limits of the tide are 63.1 m3/s, 72.7  
 

 
Figure 1. A map of the Danshui River estuarine system. 
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m3/s, and 26.1 m3/s, respectively, in the Dahan River, the Xindian River, and the Kee-
lung River. Due to the shallowness of the estuary, it is well mixed in most areas with the 
exception for a short section near Guandu Bridge (Figure 1), where the channel depth 
reaches 13 m and two-layer circulation occurs [46]. 

3. Materials and Methods 
3.1. Artificial Neural Networks 

A neural network consists of a large number of simple processing elements that are 
called neurons and nodes. Each neuron is connected to other neurons by means of di-
rect communication links, each with an associated weight. The weights represent in-
formation being used by the net to solve a problem. An input layer, a hidden layer 
where the elaborations are performed, and an output layer constitute the most com-
monly used perceptron, called a single-hidden-layer perceptron. The single unit of the 
network, i.e., the model neuron, is shown in Figure 2. Neural networks can be classified 
into many types based on their structures. In the current study, a back-propagation 
neural network (BPNN) and a radial basis function neural network (RBFNN) were 
chosen to establish the present model. 

3.2. Back-Propagation Neural Networks (BPNNs) 

The BPNN proposed by Rumelhart et al. [47] is widely used among all of the ANNs. It 
is a multiple-layer network with nonlinear differentiable transfer functions. It can be 
used to solve many nonlinear problems. The input vectors and its corresponding target 
vectors are used to train a BPNN until it can approximate a specified minimum error or 
maximum epochs. A BPNN with weightings, biases, a sigmoid layer, and a linear out-
put layer has the capacity to approximate any function with a finite number of discon-
tinuities [48]. 

Figure 2 presents the architecture of a BPNN. It shows that Pi is the input vector; IW 
and b1 are the weights and biases, respectively, between the input layer and the hidden 
layer; Trans. is the transfer function, and LW and b2 are the weights and biases, respec-
tively, between the hidden layer and the output layer. We use sigmoid transfer func-
tions in the hidden layer and linear transfer functions in the output layer to extrapolate 
beyond the range of the training data. Detailed equations to describe the connections 
between input and hidden-layer neurons and those between hidden and output-layer 
neurons can be found in Chen et al. [37] and will not be further described here. 

Kisi [49] reported that the Levenberg-Marquardt technique [50] is more powerful 
than the conventional gradient descent techniques [51] [52] to find the weight and the  
 

 
Figure 2. The architecture of the back-propagation neural network. 
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bias matrices in each iteration. Therefore the Levenberg-Marquardt algorithm was 
adopted in BPNNs. The toolbox of neural network includes the Levenberg-Marquardt 
technique which is incorporated into the ANN model to be executed in the Matlab en-
vironment. 

3.3. Radial Basis Function Neural Network (RBFNN) 

RBFNN, which is multilayer and feedforward, is often used for strict interpolation in 
multidimensional space. The term “feedforward” means that the neurons are organized 
in the form of layers in a layered neural network [53]. In the present study, the archi-
tecture of RBFNN consists of three layers: an input layer, a single hidden layer, and an 
output layer. Figure 3 shows the architecture of the RBFNN. The input layer is com-
posed of input nodes. The only hidden layer consists of locally tuned units, and each 
unit has a radial basis function acting as a hidden node. The output of the RBFNN can 
be calculated according to Equation (1). 

( ) ( )
1

n

k k k
k

y f x w x cφ
=

= = −∑                        (1) 

where x is the input vector, kc  is the center of the radial basis function for hidden 
layer n, ikw  are the weights in the output layer, and kx c−  denotes the Euclidean 
distance between the center of the radial basis function and the input. Two functions, 
multiquadratic function and Gaussian activation function, are the most commonly used 
for radial basis function. A range of studies have indicated that the results are insensi-
tive to different basis functions [54] [55]. In this study, the radial basis function kφ  is 
chosen as the multiquadratic function and defined in Equation (2). 

( ) 2 2x c x cφ σ− = − +                         (2) 

where σ is the standard deviation and c is the center of the multiquadratic function. 
A main challenge in the design of RBFNN is the selection of centers. The simplest 

way to select the centers of RBFNN is random method [56]. However, the orthogonal 
least squares (OLS) algorithm can provide an optimum number of centers in RBFNN 
from the training patterns [57]. The classical Gram-Schmidt and modified Gram- 
Schmidt methods [58] can be used to deal with orthogonalization procedure [59]. The 
OLS method based on classical Gram-Schmidt offers a systematic way for center selection  
 

 
Figure 3. The architecture of the radial basis function neural network. 
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and significantly reduces the size of the RBFNN. 
The OLS learning algorithm is a procedure that iteratively selects the best regressors 

(radial basis unit) from a set of available regressors. This set is composed of a number 
of regressors equal to the number of available data, and each regressor is a radial unit 
centered on a data point. The OLS algorithm proceeds iteratively by selecting the next 
best regressor from a set by applying a Gram-Schmidt orthogonalization until reaching 
the tolerance, so the contribution of each vector of this new orthogonal base can be de-
termined individually among the available regressors. A detailed description of the al-
gorithm can be found in Ham & Kostanic [60]. 

3.4. Three-Dimensional Hydrodynamic Model 

The ELCRIC (Eulerian-Lagrangian CIRCulation) model is used for simulating salinity 
in a tidal estuary, because this model is cost efficiency to prevent the time step con-
straints and the unstructured grid can be used to fit the complex coastline and channel. 
The model solves the shallow water equations using a semi-implicit Eulerian-Lagran- 
gian finite volume/finite difference method that relies on horizontally unstructured gr-
ids and unstretched z-coordinates. ELCIRC allows for the use of state-of-the-art turbu-
lence closure schemes, includes terms for the tidal potential and atmospheric pressure 
gradients, and provides a detailed description of air-water exchanges. 

The model solves for the free surface elevation, three-dimensional water velocity, and 
salinity using hydrostatic equations based on the Boussinesq approximation, which 
represents mass conservation, momentum conservation, and conservation of salt: 
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where ( ),x y  are the horizontal Cartesian coordinates; ( ),φ λ  are the latitude and 
longitude; z is the vertical coordinate, positive upward; t is time; RH  is the z-coordinate 
at the reference level (mean sea level); ( ), ,x y tη  is the free-surface elevation; ( ),h x y  
is the bathymetric depth; ,u v , and w are the velocities in the , ,x y  and z directions, 
respectively; f is the Coriolis force; g is the acceleration of gravity; p is pressure; 
( ),ϕ φ λ  is the tidal potential; α is the effective Earth elasticity factor (≈0.69); ( ),x tρ 

 
is the water density; ( ), ,aP x y t  is atmospheric pressure at the free surface; S is salinity; 

mvK  is the vertical eddy viscosity; svK  is the vertical eddy diffusivity for salinity; mxF  
and myF  are the horizontal diffusion for the momentum equation in the x and y direc-
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tions, respectively; and sF  is the horizontal diffusion for the transport equation. By 
default, the reference value oρ  is set to 1025 kg/m3. 

In ELCRIC, the barotropic pressure gradient in the momentum equation and the flux 
term in the continuity equation are treated semi-implicitly, with the implicitness factor 
0.5 1θ≤ ≤ . The vertical viscosity term and bottom boundary condition for the mo-
mentum equations are treated fully implicitly; all other terms are treated explicitly. This 
ensures both stability [61] and computational efficiency. The normal component of the 
horizontal momentum equations is solved simultaneously with the depth-integrated 
continuity equation, i.e., there is no mode splitting between these equations. The total 
derivatives of the normal velocity can be discretized using either Eulerian or Lagrangian 
backtracking method [62]. However the latter has the advantage of preventing advec-
tion by imposing stability constraints on the time step [61]. There are three conven-
tional numerical approaches, including finite difference, finite volume, and finite ele-
ment methods used to solve the continuity and momentum equations. To efficiently 
solve the governing equations, the vertical velocity is solved from the three-dimensional 
continuity equation using a finite-volume approach. The tangential component of the 
horizontal momentum equation is formally solved with finite differences. The transport 
equation for salinity is solved at both polygonal vertices (nodes) and the centers of ele-
ment sides using finite differences. The solution requires backtracking along characte-
ristic lines to account for the most recent flow field. After the salinity is found, the den-
sity is calculated from the equation of state and is fed back into the momentum equa-
tions at the next time step (i.e., the baroclinic term is treated fully explicitly). To solve 
the turbulent closure model, the eddy viscosity and diffusivity are computed at each 
time step prior to the solution of the momentum equation, using information from the 
previous time step. Details of the numerical discretization can be found in Zhang et al. 
[63]. 

4. Results and Discussion 

There are many indices to assess the model performance between model prediction and 
observational data. In this study, we used the commonly acceptable indices to evaluate 
the performances of the BPNN, RBFNN, and three-dimensional hydrodynamic models, 
including the root mean square error (RMSE), mean absolute error (MAE), and corre-
lation coefficient (CC) to calculate the accuracy of the model prediction. 
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. N is the total number of data; Sp is the  

simulated salinity; and So is the measured salinity. 

4.1. BPNN Model Training and Verification 

The measured data of hourly salinity at 0.5 m depth below the water surface at the 
Guandu Bridge were collected and adopted for training and verification phases with the 
ANN models (BPNN and RBFNN) and for model calibration and verification with the 
three-dimensional hydrodynamic model. The data sets collected from 18 to 22 May, 16 
to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for 
BPNN and RBFNN model training and for hydrodynamic model calibration. The data 
sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data 
points) were applied for BPNN and RBFNN model verification and for hydrodynamic 
model verification. Those historical data of 2002 were continuously measured data at 
the Guandu Bridge station to be taken in this study. Some measured data in the Dan-
shui River estuarine system can not be adopted for model calibration and verification 
because the data sets are not continuous. 

For a given input set, the BPNN produces an output, and this response is compared 
with the known desired response of each neuron. The weights of the neural network are 
then changed to correct or reduce the error between the output of the neuron and the 
desired response, and this process continues. The weights are continually changed until 
the total error of all training sets is reduced below the accepted error. 

This study builds a BPNN model to simulate estuary salinity at the Guandu Bridge 
station. The BPNN used in this study is composed of three layers with nodes in adja-
cent layers fully connected. This is, only one hidden layer is employed. Because the fo-
cus is on single variable predicting, one output node is exclusively used in the output 
layer. The number of input nodes and the number of hidden nodes are the two major 
experimental factors. 

Figure 4 illustrates the structure of the BPNN model for salinity prediction. The in-
put units include time-series water stages and freshwater discharges at different sta-
tions. The hourly water stages at the observed stations include the Danshui River 
mouth, Taipei Bridge, and Dazhi Bridge, while the upstream reaches of the Dahan Riv-
er, Xindian River, and Keelung River are specified with hourly freshwater discharges. 
Figure 5 and Figure 6 present the time-series freshwater discharges in the Dahan Riv-
er, Xindian River, and Keelung River and the time-series hourly water stages at the 
Danshui River mouth, respectively. 

With different combinations of the number of hidden layers and the number of hid-
den neurons, the BPNN model was trained until the best architecture was obtained. 
The Mean Square Error (MSE) criterion was used to evaluate the performance of the 
model during the training phase. Satisfactory results were obtained using only one hid-
den layer with seven neurons. To prevent overtraining the model, this study chose a 
learning rate of 0.01 and a momentum of 0.3. Therefore, the architecture of 6-7-1 (i.e., 
input neurons, hidden neurons, and output neurons) was chosen as the best BPNN  
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Figure 4. The structure of the BPNN model used for salinity prediction. 

 

 

 
Figure 5. Upstream freshwater discharges in the Dahan River (solid line), Xindian 
River (dashed line), and Keelung River (dotted-dashed line) used for the (a) training 
(calibration) and (b) verification phases. 
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Figure 6. Time-series water stages at the Danshui River mouth used for the (a) train- 
ing (calibration) and (b) verification phases. 

 
architecture, which was then tested using the data sets from the year 2002. The com-
parison between observed salinities and BPNN predicted salinities at the Guandu 
Bridge during the training and verification phases is presented in Figure 7. It should be 
noted that the errors between the predicted and observed salinities are also shown in 
the figure. The BPNN model during the training and verification phases was found to 
underestimate the peak during flood tide and to over predict minimal salinities during 
ebb tide. The RMSE, MAE, and CC during the training phase were found to be 3.88 
ppt, 2.79 ppt, and 0.76, respectively, while during the verification phase they are 3.81 
ppt, 2.96 ppt, and 0.71, as shown in Table 1. 

4.2. RBFNN Model Training and Verification 

The RBFNN methodology has the advantage that hidden weights or center vectors are 
optimized first before they are forwarded to the output layer. Hidden-output layer 
weights are further optimized using the Orthogonal Least Squares (OLS) method. 
Therefore, there was no backflow at the input-hidden layer, which reduces the simulat-
ing time. The best RBFNN architecture (i.e., number of center vectors in the hidden 
layers) was obtained by trial and error based on the mean square error in the training 
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Figure 7. Comparison of the temporal variation of the observed and predicted sa-
linities at the Guandu Bridge during the (a) training and (b) verification phases for 
the BPNN model. Note that circles are observations and the solid line represents the 
BPNN modeling results. 

 
Table 1. The performances of BPNN, RBFNN and three-dimensional models in salinity simulation. 

Model/phase RMSE (ppt) MAE (ppt) CC 

BPNN/training 3.88 2.79 0.76 

RBFNN/training 3.76 2.72 0.77 

Three-dimensional model/calibration 4.49 3.80 0.79 

BPNN/verification 3.81 2.96 0.71 

RBFNN/verification 3.63 2.90 0.75 

Three-dimensional model/verification 5.09 4.25 0.75 

Note: RMSE represents root mean square error; MAE represents mean absolute error; CC represents correlation 
coefficient. 
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and output neurons) was chosen as the best RBFNN architecture. In this study, we set 
0.9 as the tolerance of the OLS algorithm, and 16 center vectors were selected after the 
OLS algorithm was completed. 

Figure 8 presents a comparison of the salinity predicted by the RBFNN model dur-
ing the training and verification phases and that observed at the Guandu Bridge. Dur-
ing the training and verification phases, the RBFNN model underestimated the peak 
during flood tides and over predicted the minimal salinities during ebb tides. The 
RMSE, MAE, and CC during the training phase were found to be 3.76 ppt, 2.72 ppt, 
and 0.77, respectively, while during the verification phase, they were 3.63 ppt, 2.90 ppt, 
and 0.75, as shown in Table 1. 
 

 

 

 

 
Figure 8. Comparison of the temporal variation of observed and predicted salinities at the 
Guandu Bridge during the (a) training and (b) verification phases for the RBFNN model. Note 
that circles are observation and the solid line represents the RBFNN modeling results. 
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4.3. Calibration and Verification of the Three-Dimensional  
Hydrodynamic Model 

Bottom topography is an important factor that affects the flow properties in environ-
mental modeling. The bottom topography data in the coastal sea and Danshui River 
estuarine system (Figure 9(a)) were obtained from the National Center for Ocean Re-
search and Water Resources Agency, Taiwan. The greatest depth in the study area is 
110 m (below mean sea level) near the northeast corner of the model in the coastal sea. 
The model mesh for the Danshui River estuarine system and its adjacent coastal sea  
 

 

 
Figure 9. (a) Bathymetry contour map of the Danshui River estuarine system and (b) an un-
structured grid representing the modeling domain. 
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consisted of 6969 polygons (Figure 9(b)). To save computational time, higher-resolu- 
tion grids were used in the Danshui River estuary, and coarser grids were used in the 
coastal sea. Because the model domain includes deep bathymetry in the coastal ocean 
and a shallow area in the channel, thirty-two levels varying in thickness from 1 to 10 m 
were used for vertical discretization in ELCIRC. The time step ( t∆ ) was chosen to be 
300 seconds for the consideration of model stability. 

The model calibration and verification of salinity was conducted using daily fresh-
water discharge values from upriver regions of the Dahan River, the Xindian River, and 
the Keelung River in 2002 (shown in Figure 5). A five-constituent tide (i.e., M2, S2, N2, 
K1, and O1) was adopted as the forcing function at the coastal sea boundaries. The sa-
linities at the open boundaries with the coastal sea were set to 35 ppt. Salinity values at 
the upstream boundaries of the three tributaries were set to zero due to freshwater dis-
charge from the boundaries. 

Before the model was calibrated and verified with measured salinity variations, the 
model was performed to compare with the measured tidal level and tidal current at the 
Guandu Bridge (shown in Figure 1). The results indicate that MAE and RMSE values 
between the measured hourly water surface elevations and the computed results are 
0.21 m and 0.30 m, respectively, for model calibration, while MAE and RMSE values 
are 0.28 m and 0.34 m, respectively, for model verification. An intensive survey of the 
tidal current was conducted at transect of the Guandu Bridge on April 26, 2002. The 
current was measured by trained technicians on boats every half hour for a period of 13 
daylight hours. The measured longitudinal velocities were used to validate the model. 
The MAE and RMSE values at the Guandu Bridge are 0.156 m/s and 0.188 m/s, respec-
tively. We found that the model was satisfactorily validated with water surface elevation 
and tidal current. Finally, the constant bottom roughness height (zo = 0.005 m) was 
adopted in the model simulation. 

The model was then performed to compare with the measured salinity variation at 
the Guandu Bridge. Figure 10 illustrates the model calibration and verification results 
for the salinity from the three-dimensional hydrodynamic model. The lower salinity 
conditions were over predicted, whereas the higher salinity values were underpredicted 
for the model calibration and verification. The RMSE, MAE, and CC for the model ca-
libration were found to be 4.49 ppt, 3.80 ppt, and 0.79, respectively, while for the model 
verification, they were 5.09 ppt, 4.25 ppt, and 0.75, as shown in Table 1. 

4.4. Comparison of Predicted Results Using ANN and  
Three-Dimensional Hydrodynamic Models 

During the comparison of the results, terminologies such as training and verification of 
the ANN (BPNN and RBFNN) approaches were considered analogous to calibration 
and verification of the three-dimensional hydrodynamic model, respectively. According 
to the performance different approaches, one month of simulation using a three-dimen- 
sional hydrodynamic model requires approximately 2.5 hours of Central Processing 
Unit (CPU) time on an Intel Core I5 Personal Computer (PC), while the ANN (BPNN 
and RBFNN) models require only 3 minutes. To assess the relative performance of the 
models in predicting the salinity, values of performance indices obtained from  
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Figure 10. Comparison of the temporal variation of the observed and predicted salinities at the 
Guandu Bridge for the three-dimensional hydrodynamic model (a) calibration and (b) verifica-
tion. Note that circles are observations and the solid line represents the modeling results. 
 
the BPNN, RBFNN, and three-dimensional hydrodynamic models were compared. The 
performance indices of the BPNN and RBFNN models yielded during the training 
phase were compared with the corresponding performance indices yielded during the 
three-dimensional hydrodynamic model calibration. The RMSE, MAE, and CC ob-
tained from the best BPNN and RBFNN architectures were compared with calibration 
results obtained using the three-dimensional hydrodynamic model. Similarly, the veri-
fication results of the BPNN and REFNN models were compared with the verification 
results of the three-dimensional hydrodynamic model. 

Figure 11 presents the scatter plots of the comparisons between the measured and 
predicted salinity with BPNN, RBFNN, and three-dimensional hydrodynamic models. 
The BPNN and RBFNN predicted salinities were noted to be distributed uniformly  

0 288 576 864 1152 1440 1728 2016 2304 2592 2880 3168 3456 3744 4032 4320

Number of data

0

5

10

15

20

25

30

35

40

45

Sa
lin

ity
 (p

pt
)

5/18 ~ 5/22 10/16 ~ 10/20 10/26 ~ 10/30

(a)

-20

-10

0

10

20

Er
ro

rs
 (p

pt
)

0 288 576 864 1152 1440 1728 2016 2304 2592

Number of data

0

5

10

15

20

25

30

35

40

45

Sa
lin

ity
 (p

pt
)

(b)
5/30 ~ 6/2 11/11 ~ 11/15

-20

-10

0

10

20

Er
ro

rs
 (p

pt
)



W. B. Chen et al. 
 

122 

 

 

 
Figure 11. Scatter plots of observations versus predictions using the (a), (b) BPNN model, (c), (d) RBFNN model, and (e), (f) three-di- 
mensional hydrodynamic model. 
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about the best-fit line. The performance of the BPNN and RBFNN was better than that 
of the three-dimensional hydrodynamic model during the training and verification 
phases, as revealed by the values of the RMSE and MAE. There are small differences in 
the CC value with the three predicted models. However, all CC values are above 0.70, as 
shown in Table 1. According to the values of RMSE and MAE, the RBFNN was found 
to be better than the BPNN. However, the results show that the ANN (BPNN and 
RBFNN) approach is capable of reproducing the nonlinear relationship between the 
input and output. Although the ANN models may predict the salinity variations, the 
limitation of the ANN models is that they are black box models that fail to simulate the 
internal physical processes in a tidal estuary. The three-dimensional hydrodynamic 
model is a physically based model that can be adopted to simulate salinity variations at 
different layers (i.e. vertical profile) and locations. 

The simulation of physical processes is crucial importance to environmental man-
agement. Engineering alterations to the estuaries may change the salinity distribution, 
resulting in negative effects on the estuarine ecosystems [64] [65]. Three-dimensional 
hydrodynamic models have been widely implemented to provide detailed resolutions as 
a result of engineering alterations, however a large amount of observational data and a 
considerable amount of effort are necessary to calibrate and validate the models before 
these models are applied for prediction. Therefore, ANN models which are the da-
ta-driven approaches would be useful for engineers to make rapid evaluation of salinity 
changes due to the modifications in the tidal estuaries [43] [44]. 

5. Conclusions 

Salinity is an important indicator of the health of the aquatic ecosystem in tidal estu-
aries. In the present study, estuarine salinities were predicted using ANN (BPNN and 
RBFNN) and three-dimensional hydrodynamic models. The driven forcing functions of 
the ANN models include the time-series water stages and the freshwater discharges at 
different stations, which served as input. Although the BPNN and RBFNN approaches 
are black-box models, the results revealed that the salinity values predicted by the 
BPNN and RBFNN models are better than those predicted by the three-dimensional 
hydrodynamic model. Because the ANN approach is a data-driven technique, the pre-
dictability could be further improved by providing an appropriate and large number of 
input-output data sets during training. 

In the present study, we focus on the salinity prediction instead of forecasting. In fu-
ture study, different lead-time forecast in salinity variations can be developed for envi-
ronmental management. The soft computing techniques such as the combining fuzzy 
optimal model with a genetic programming [66], neural network and genetic pro-
gramming [67], support vector machine [68] [69], dendrochronlogy [70], hybrid neural 
network [71], and binary-coded particle swarm optimization and extreme learning 
machines [72] can also be developed to improve the prediction of salinity distributions 
along the tidal estuary. 
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