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Abstract 
Distributed Systems (DS) have a collection of heterogeneous computing resources to process user 
tasks. Task scheduling in DS has become prime research case, not only due of finding an optimal 
schedule, but also because of the time taken to find the optimal schedule. The users of Ds services 
are more attentive about time to complete their task. Several algorithms are implemented to find 
the optimal schedule. Evolutionary kind of algorithms is one of the best, but the time taken to find 
the optimal schedule is more. This paper presents a distance-based Pareto genetic algorithm (DPGA) 
with the Map Reduce model for scheduling independent tasks in a DS environment. In DS, most of 
the task scheduling problem is formulated as multi-objective optimization problem. This paper 
aims to develop the optimal schedules by minimizing makespan and flow time simultaneously. 
The algorithm is tested on a set of benchmark instances. MapReduce model is used to parallelize 
the execution of DPGA automatically. Experimental results show that DPGA with MapReduce mod-
el achieves a reduction in makespan, mean flow time and execution time by 12%, 14% and 13% 
than non-dominated sorting genetic algorithm (NSGA-II) with MapReduce model is also imple-
mented in this paper. 
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1. Introduction 
The Computational power of individual system is not sufficient for solving widely used complex computational 
tasks like high energy physics, earth science, etc. In order to solve complex jobs, high performance parallel and 
distributed systems are developed with a number of processors. As the computing nodes are heterogeneous in a 
multiprocessor environment, execution time of tasks varies on each processor. Scheduling of tasks is a key issue, 
to achieve the high usability of supercomputing capacity of distributed computing environment [1]. To ensure 
efficient utilization of resources, suitable scheduling algorithms are used to assign the tasks to the available pro-
cessors efficiently. 

For distributed computing environment, static scheduling can be used due to geographically distributed com-
puting resources with various ownerships, access policy and different constraints. Schedulers are developed us-
ing complex arithmetic techniques that use the available values of application and environment. So, heuristic 
methods are the best approach to find the optimal schedule in the DS environment [2]. The most important crite-
ria used to analyze the efficiency of scheduling techniques are makespan and flowtime. Time taken to complete 
the last task is Makespan [3] and the sum of completion time of all tasks in a schedule is flowtime. The sche-
dule, which optimizes the makespan and flowtime is called as optimum schedule [4]. To minimize makespan, 
the Longest Job to be scheduled to Fastest Resource (LJFR) and for minimizing flowtime, the Shortest Job to be 
scheduled to Fastest Resource (LJFR) [2]. Flowtime minimization makes the makespan maximization. This 
leads the problem as multiple objective. 

Genetic Algorithm (GA) is a search and population-based model [5]. This has been extensively used in vari-
ous problem domains. GA has the capability to search various regions of the solution space and note a diverse 
set of solutions for the distributed computing problem. GA uses genetic operators to improve the structure of 
good solutions in various objective spaces. These characteristics of GA used to find the best optimal schedule 
for multi-objective problem in distributed systems. The distance-based Pareto genetic algorithm (DPGA) of 
Osyczka [6] is used in this paper. DPGA uses a distance computation and dominance test procedure and elitist 
method of combining parent population with the offspring population for the next iteration. Set of most difficult 
static benchmark instances of Braun et al. [1] is used to analyze the performance of NSGA-II. The degree of 
task and resource heterogeneity can be captured by these instances. Hadoop MapReduce is a framework for dis-
tributed large scale data processing on computer clusters. MapReduce is used to automatically parallelize the 
data processing on clusters in a reliable and fault-tolerant manner [7].  

MapReduce programming model is used to implement the multi-objective DPGA to find the optimal schedule 
with minimum time in the distributed computing environment. The DPGA with MapReduce model suits for dis-
tributed computing environments with various computing resources and scheduling is done by considering ma-
kespan and flowtime minimization. The DPGA with MapReduce model generates better solutions in minimal 
time than NSGA-II with MapReduce model. 

The remainder of the paper is structured as follows. Section 2 discusses the literature review. Multi-objective 
optimization introduction is presented in Section 3. Section 4 determines for identifying the variety of distri-
buted computing environment in the simulation process. A Scheduling method using NSGA-II with MapReduce 
and DPGA with MapReduce is available in Section 5. Simulation results are shown in Section 6. Finally, Sec-
tion 7 concludes and discusses the future work. 

2. Related Work  
Optimal scheduling of independent tasks to available resources in DS is an NP-complete problem and it depends 
on various heuristics and meta-heuristic algorithms. A few well known heuristic methods are min-max [8], suf-
frage [9], min-min, max-min [10] and LJFR-SJFR [11]. These above heuristic methods are more time consum-
ing process. In recent, several meta-heuristic methods are developed to solve complex computational problems. 
The most popular methods are GA [6], particle swarm optimization (PSO) [12], ant colony optimization (ACO) 
[13] and simulated annealing (SA) [14]. The description of eleven heuristics and comparison on the various dis-
tributed environment was done by Braun et al. [1] and illustrates the effectiveness of GA with others. All the 
above meta-heuristic methods considered single objective and aimed to minimize the makespan. 

There are some methods considered multiple objectives, while scheduling tasks in distributed environments. 
Izakian et al. [15] compares five heuristics depends on the machine, and task characteristics for minimizing both 
makespan and flowtime, but calculated separately. Several nature inspired meta-heuristic methods like GA, 
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ACO and SA for scheduling tasks in a grid computing environment by using single and multi-objective optimi-
zation was done by Abraham et al. [16]. Xhafa et al. [17] implemented GA based scheduler. All the above me-
thods convert the multi-objective optimization problem into a scalar cost function, which makes single objective 
before optimization. 

To minimize the amount of time to find the best optimal schedule Lim et al. [18] implemented PGA, Durillo 
et al. [19] implemented parallel execution of NSGA-II and these methods have the difficulties to make commu-
nication and synchronization between the resources in a distributed environment. This paper implements 
NSGA-II with MapReduce programming model and DPGA with MapReduce programming model to find the 
best optimal schedule. It makes the task scheduling as an efficient real time multi-objective optimization prob-
lem. 

3. Multi-Objective Optimization 
The Scheduling problem in a distributed environment needs to optimize the several objectives at the same time. 
In general, these objectives are contradictory with each other. These contradictory objective functions generates 
a set of optimal solutions. In the optimal solution set, not one solution is greater than each another solution with 
regarding all the objective functions. These optimal solution set is called as Pareto optimal solution. The multi- 
objective minimization problem is formulated as, 

( ) ( ) ( )( )1 2Minimize , , ,       subject to mz g a g a g a a s= ∈                   (1) 

where [ ]1 2, , , na a a a=   is the vector of decision variables, : n
kg ℜ →ℜ , 1, 2, ,k m=   is the objective 

functions and nS ⊂ ℜ  is the suitable region in the decision space. A result a S∈  is said to dominate another 
result b S∈ , if the subsequent things are satisfied,   

{ } ( ) ( )
{ } ( ) ( )

1, 2, , ,       

1, 2, , ,       
k k

k k

k m g a g b

k m g a g b

∀ ∈ ≤

∃ ∈ <





                           (2) 

a is said to be a Pareto optimal solution, where no solution dominates a S∈ . The best solution of the Pareto op-
timal set is called as a Pareto optimal front in multi objective problem space. Once the entire Pareto optimal so-
lution is found, that is the indication of completing multi-objective problem [20]. 

Multi objective optimization is also known as vector optimization, as a vector of objectives is optimized in-
stead of a single objective. When using multiple objectives, the search space is divided into two non overlapping 
regions known as optimal and non-optimal. The difference between single objective and multiple objective op-
timization are handling two search spaces and having two goals instead of single. 

4. Problem Statement 
Distributed environment has geographically distributed computing systems with complex combinations of 
hardware, software and network components. R is the set of m processing elements in distributed environment 
and T is the set of n tasks assigned to the processing elements. As scheduling is performed for independent tasks, 
there is no communication among the tasks and a task can be assigned to a processing element exclusively. The 
pre-emption of task is not allowed. As scheduling is performed statically, computing capacity and prior load of 
processing element and computational load of the task is estimated and the tasks are scheduled in batches, once 
allocated the tasks it cannot be migrated to another resource. Expected time to compute matrix (ETC) can be 
built by using these details. An ETC matrix is a p × q matrix, in which each position of the matrix, ETC [p] [q] 
illustrates the expected time to complete job p in resource q. The row of ETC matrix has the completion time of 
a job of each resource and each column specifies the estimated execution time of a resource for all the jobs. 
Hence, the proposed method is static, non-preemptive scheduling. 

In this paper, the objective considered is minimization of makespan and flow time. Makespan is the comple-
tion time and waiting time of a task in a processing element. Flow time is defined as the sum of completion time 
of all the tasks described as follows, 

{ }min max
js Sch t tasks tmakespan F∈ ∈=                            (3) 
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{ }min
js Sch t tasks tflowtime F∈ ∈= ∑                             (4) 

where tF  the completion time of task t, tasks stands for a set of all tasks, Sch is set of all possible schedules. 
Longest job has to be scheduled on fastest resource to minimize the makespan and for minimizing flow time, 
shortest job to be scheduled on fastest resources. This contradiction makes the problem as multi-objective.  

5. Multi-Objective GA with MapReduce for Scheduling Tasks to the  
Distributed Environment 

5.1. Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 
Initial populations of size N are generated randomly. Non-dominated sorting is performed on the population to 
classify it into a number of fronts. Crowded tournament selection is performed by assigning crowding distance. 
This is used to select a better ranked solution if they belong to different front or select the higher crowding distance 
solution if they belong to same front. Crossover and mutation are performed on the generated parent solution and 
produce the offspring with size N. Single point crossover and swap mutation is used. The parent and offspring 
population of size N are combined and produce 2N population. Update the population by the individuals from low-
er front to size n. The individual has small crowding distance will be dropped in the tie. Precede again, except the 
first step till meets the stopping criteria [21]. Figure 1 shows the workflow of NSGA-II with MapReduce model. 

Non-dominated sorting: It is used to find the individuals to the next iteration by classifying the population. 
The procedure is given below [22]. 

Step 1: For individual solution p in population N. 
Step 2: For individual solution q in population N. 
Step 3: If p and q are not equal, 
Compare p and q for all the objectives. 
Step 4: For any p, q is dominated by p, mark solution q as dominated. 
First non-dominated set is formed from unmarked solutions. 
Step 5: Repeat the procedure till the entire population is divided into fronts. 
Selection: The Crowded tournament selection operator is used. An individual i win the tournament with 

another individual j, if one of the following is true [22]. 
1. An individual i have better rank, i.e., ranki < rankj. 
2. The individual i and j have the same rank (ranki = rankj), then the individual i has better crowding distance 

(in less crowded areas, i.e., di = dj) than individual j. 
Crowding distance calculation: To break the tie between the individuals are having the same rank crowding 

distance is used [22]. The procedure is as follows,  
Step 1: Initialize the number of individuals (x) in the front (Fa). 
Step 2: Set the crowding distance di = 0, 1, 2, ,i x=  . 
Step 3: Sort the individuals (x) in front (Fa) based on the objective function (obj). obj = 1, 2, , m . m is the 

number of objectives and S = sort (Fa, obj). 
Step 4: Set the distance of boundary individuals as S(d1) = ∞ and S(dx) = ∞. 
Step 5: Set k = 2 to (x-1) and calculate S(d2) = S(dx-1) as follows 

( ) ( ) ( ) ( )
max min

1 1m mm
k k

m m

S k f S k f
S d S d

f f
+ − −

= +
−

                          (5) 

( ) mS k f  is the kth individual value in S for mth objective function.  

5.2. Distance-Based Pareto Genetic Algorithm (DPGA) 
At first distance-based fitness assignment was proposed by Osyczka and Kundu [6], the idea giving importance 
to both Pareto optimal front and the diversity of that front in one fitness measure. DPGA uses a distance compu-
tation and dominance test procedure with complexity O (kη2) [4]. DPGA maintains a standard GA population 
and Elite population. The genetic operations like selection, crossover and mutation are performed on GA popu-
lation. All the non-dominated solutions are maintained in elite population. The steps are as follows [23]: 

Step 1: Initialize the random population of size N (P0) 
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Figure 1. Flowchart for NSGA-II with MapReduce.                                                               

 
Step 2: Calculate the fitness for the first solution (F1) and set generation counter c = 0. 
Step 3: If c = 0, insert the first element of P0 in the elite set E0 and perform the distance calculation, mini-

mum distance, index of elite member, elite population updating for each member of the population (k≥2) and 
k≥1 for c > 0. 

3a. Distance Calculation 
Distance calculation is to find the distance between population member and elite member in the objective 

space [23]. The formula for calculating distance is given below: 
( ) ( )

( )1

 i k
Mi m m

k im
m

e fd
e=

−
= ∑                                   (6) 

em is the fitness of elite member, fm is the fitness of population member for particular objectives. 
3b. Minimum Distance Calculation 
Find the minimum distance of a population member compared to all the member of an elite set [23]. It is cal-

culated as follows, 
min

1min cE i
k i kd d==                                      (7) 

E is an elite set, dk is the calculated distance. 
3c. Elite member index 
The Elite member index is used to find which member of elite set has near to the member of the population 

[23].  

{ }* min: i
k k ki i d d= =                                     (8) 

i
kd  is the calculated distance and min

kd  is the minimum distance. 
3d. Fitness Calculation and Elite set update 
The elite set is updated depends on the domination of population member [23]. Population member (k) is 
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dominated by elite solution, the fitness of k is 

( )* minmax 0, ki
kF F e d = −  

                              (9) 

Otherwise 

( )* minki
kF F e d = +  

                                 (10) 

and the population member is included by eliminating all dominated elite members in elite set. 
Step 4: Find the minimum fitness value among all the members of elite population and all elite solutions are 

assigned fitness Fmin. 
4a. Minimum fitness 
Minimum fitness is used to find minimum fitness value among all the members of elite population and all 

elite solutions are assigned a fitness Fmin [23] is, 

min 1min cE
i jF F==                                     (11) 

E is elite set; F is the fitness of elite solution.  
Step 5: Stop c + 1 = cmax or termination criterion is satisfied. Otherwise, go to step 6. 
Step 6: Generate new population (Pc+1) by using selection, crossover and mutation on Pc. Set c = c + 1 and 

go to step 3. 
There is no genetic operations like reproduction, crossover and mutation is performed on elite population Ec 

explicitly. To generate the new population selection, crossover and mutation operators are used. In this paper, 
tournament selection, single point crossover and swap mutation are used. Figure 2 shows the workflow of 
DPGA with MapReduce model. 

5.3. MapReduce Model 
Hadoop: Hadoop is an open source framework that provides reliable, scalable, distributed processing and 

storage on large clusters of inexpensive servers [24]. Hadoop is written in Java and users can customize the code 
to parallelize the data process in clusters which contains thousands of commodity servers. The response time  

 

 
Figure 2. Flowchart for DPGA with MapReduce.                                                               
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depends on the complexity of process and volumes of data. The advantage of Hadoop is its massive scalability. 
The Apache Hadoop framework consists of Hadoop kernel, MapReduce, Hadoop Distributed File System 
(HDFS) and some related projects like HBase, Hive and Zookeeper. At present, Hadoop plays a major role in 
Email spam detection, search engines, genome manipulation in life sciences, advertising, prediction in financial 
service and analysis of log files. Linux and Windows are a preferred operating system for Hadoop. 

HDFS: A file system component of Hadoop is called as HDFS. Distributed low-cost hardware is used to store 
data in HDFS.HDFS contains name node and data node. A name node has Meta data information. If there is a 
request to read a data from HDFS, the name node provides the location of data blocks. The name node also has 
overall system information. So the name node is called as master of HDFS. The secondary name node has the 
replication of Meta data. At first, data node has to be registered in name node and gets namespace ID. For every 
particular period of time, the data node updates its status to name node. HDFS splits the large file into blocks 
and stored it in the different data nodes. Each block is replicated at the nodes of Hadoop cluster. At the time of 
failure data is re-replicated by the active Hadoop monitoring system [25].  

MapReduce programming: It is a distributed parallel processing of large volume of data in a cluster with 
fault tolerant and reliable manner. MapReduce has job tracker and task tracker. Job tracker splits the job into 
tasks and schedules it to task tracker. The job tracker monitors the progress of task tracker. It is also responsible 
for re-executing the failed tasks. The map phase splits a user program into sub tasks and generates a set of 
key-value pairs. It will be submitted to reduce after a shuffle. The reduce phase performs user supplied reduce 
function on same key values to generate single entity. The reduce phase is also called as merge phase. The 
workflow of MapReduce is presented in Figure 3. The MapReduce function is represented as, 

map:: (input _ record) => list (key, values). 
reduce:: (key, list (values) => key, aggregate (values). 

5.3.1. NSGA-II with MapReduce 
The fitness evaluation of offspring alone has done parallel in the workers available in the map phase. 
Non-dominated sorting, crowded tournament selection is performed on an entire population. So it cannot be fit 
into concurrent process. 1) Initial population is loaded into coordinator. 2) Coordinator evaluates the fitness 
value; perform non-dominated sorting, crowded tournament selection, crossover and mutation. The offspring 
generated by coordinator sends to job tracker. 3) The job tracker splits the offspring population and send to 
workers of map phase to evaluate fitness value in parallel manner and send it to reduce phase. 4) Shuffle opera-
tion is performed between map and reduce phase. 5) The workers of reduce phase aggregate the fitness value 
and send it to the coordinator. 

 

 
Figure 3. Workflow on MapReduce and HDFS.                                                               
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5.3.2. DPGA with MapReduce 
This approach can parallelize the distance calculation, minimum distance calculation, elite member index and 
fitness calculation. The evaluation of individuals is executed parallel, because the fitness calculation is indepen-
dent from others in a population. 1) The initial population is seeded into the coordinator 2) The coordinator 
produces the offspring population 3) The job tracker divides the offspring population into sub populations and 
assigns to workers in the map phase 4) The workers perform the distance calculation, minimum distance calcu-
lation, elite member index and fitness evaluation for assigned individuals concurrently 5) The workers of reduce 
phase collect the fitness values and perform merge operation then send it back to coordinator for the next gener-
ation. 

6. Simulation Results and Discussion 
The proposed DPGA with MapReduce model is carried out. To estimate the efficiency, NSGA-II with MapRe-
duce model is also implemented. The metrics considered for performance evaluation are execution time, ma-
kespan and flowtime. 

6.1. Simulation Environment 
The simulation is designed by writing programs in Hadoop MapReduce using Java. Hadoop1.2.1 stable version 
is used to set up 4 node cluster, which is backed up by HDFS. Hadoop cluster is running on Ubuntu Linux plat-
form and Java 1.6 is used for writing the code. All the 4 systems have i5 processors, 4GB RAM and 500GB hard 
disk. The proposed method is evaluated based on factors available in Table 1. Random generation with uniform 
distribution is used for simulation. Resources can execute a task at a time. ETC matrix is generated depends on 
three metrics: task and resource heterogeneity and consistency. The various instances are labeled as x-yy-zz that 
represented as follows, 

x-consistency type (co—consistent, ic—inconsistent, sc—semi consistent).  
yy-task heterogeneity (hi—high, lo—low). 
zz-processor heterogeneity (hi—high, lo—low). 

6.2. Result Discussions 
The algorithm DPGA with MapReduce and NSGA-II with MapReduce model apply to all 12 problem instances. 
To compare the performance of multi-objective scheduling algorithm in a distributed computing environment, 
the Pareto optimal solutions produced by the two methods are plotted in Figures 4-7 for all the instances. For a 
better comparison of both the algorithm, each was run 10 times repeatedly with various random seeds and the 
best solutions are considered for both DPGA with MapReduce and NSGA-II with MapReduce. 

The makespan and mean flowtime are deliberate in same time units and obtained Pareto optimal solutions are 
plotted on a scale of ten thousands of time unit. The plotted graphs indicate that DPGA with MapReduce pro-
duces best schedule in terms of the minimization of makespan and flowtime for all cases compared to NSGA-II 
MapReduce method. The algorithms are run for 1000 iterations and 100 initial populations were taken. It is also 
noted that the number of solutions obtained in DPGA with MapReduce increases by increasing number of 

 
Table 1. Specification setting.                                                                             

Specifications NSGA-II  DPGA 

Population size 200 200 

Number of iteration 1000 1000 

Crossover probability (pc) 0.8 0.8 

Mutation probability (pm) 0.01 0.01 

Crossover type Single point Single point 

Mutation type Swap Swap 

Selection type Crowded tournament Large tournament 
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(a) 

    
(a)                                                        (b) 

Figure 4. NSGA-II with MapReduce and DPGA with MapReduce comparison for low task, low processor heterogeneity. (a) 
Consistent; (b) Semi consistent; (c) Inconsistent.                                                                

 

 
(a) 

  
(b)                                                        (c) 

Figure 5. NSGA-II with MapReduce and DPGA with MapReduce comparison for low task, high processor heterogeneity. (a) 
Consistent; (b) Semi consistent; (c) Inconsistent.                                                                 
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(a) 

   
(b)                                                        (c) 

Figure 6. NSGA-II with MapReduce and DPGA with MapReduce comparison for high task, low processor heterogeneity. (a) 
Consistent; (b) Semi consistent; (c) Inconsistent.                                                                   

 

 
(a) 

   
(b)                                                        (c) 

Figure 7. NSGA-II with MapReduce and DPGA with MapReduce comparison for high task, high processor heterogeneity. 
(a) Consistent; (b) Semi consistent; (c) Inconsistent.                                                              
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population and number of iterations. Figures 4-7 show that DPGA with MapReduce model generates better 
makespan and mean flowtime for all consistency type, task and processor heterogeneity.  

6.3. Performance Comparison of NSGA-II and DPGA 
The Pareto optimal solution set obtained by NSGA-II, DPGA satisfy different objectives to some extend [26]. A 
fuzzy based technique is used to select best compromise solution from the attained non-dominated set of solu-
tions [27]. The fuzzy sets are defined using triangular membership function. Consider fmax and fmin are maximum 
and minimum values of each objective function, solution in the kth objective function of  a Pareto set fk is de-
scribed by a membership function µk illustrated as, 

min
max

min max
max min

max

1,

 ,
 

0,

k

k k
k k k k

k k

k

f f
f f f f f

f f
f f

µ

≤


−= < <
−

 ≥

                            (12) 

The value of membership function indicates how far a non-dominated solution has satisfied the objective. In 
order to measure the performance of each solution to satisfy the objective, the sum of membership function val-
ues µk is computed, where 1, 2, ,k m=   objectives. The performance of each non-dominated solution can be 
rated with respect to the entire N non-dominated solutions by normalizing its performance over the sum of the 
ability of N non-dominated solutions as follows, 
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where n is the amount of solution and m is the amount of objective functions. The solution has the best value of 
µi is the solution. The makespan and mean flow time value for the finet adjustment solution attained is listed in 
Table 2. The percentage of reduction in makespan and mean flow time of DPGA with MapReduce over 
NSGA-II with MapReduce is calculated as, 

DPGA

NSGA-II

makespanpercentage of makespan reduction 1 100
makespan

= − ×                   (14) 

DPGA

NSGA-II

mean flowtimepercentage of mean flowtime reduction 1 100
mean flowtime

= − ×               (15) 

The makespan and mean flow time reduction percentage is present in the Table 2. DPGA with MapReduce 
achieves a reduction in makespan and flowtime by 12% and 14%, over the values of NSGA-II with MapReduce. 
Figures 4-7 also indicates DPGA with MapReduce outperforms over NSGA-II with MapReduce.  

6.4. Execution Time Comparison of NSGA-II and DPGA 
NSGA-II with MapReduce and DPGA with MapReduce is executed in single node and 4 node Hadoop cluster. 
The time taken by both the algorithms to find the optimal schedule is listed in Table 3. It is noted that DPGA 
with MapReduce has less execution time than NSGA-II with MapReduce. As the number of nodes in a Hadoop 
cluster is increased, the execution time of these algorithms will be reduced. 

7. Conclusion 
In distributed computing systems, allocation of tasks to the processing element with minimum amount of time is 
a key step for better utilization of resources. In this paper, NSGA-II with MapReduce and DPGA with MapRe-
duce is implemented in DS environment and their makespan, mean flow time and execution time are compared. 
From the obtained results, it is noted that DPGA with MapReduce model achieves a reduction in makespan, 
mean flow time and execution time by 12%, 14% and 13%. The simulation results also show that the execution  
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Table 2. Comparison of NSGA-II with MapReduce and DPGA with MapReduce.                                    

Instances 
NSGA_II with MapReduce and Fuzzy DPGA with MapReduce and Fuzzy Percentage of  

Reduction in  
makespan by DPGA 

Percentage of  
Reduction in mean 

flow time by DPGA Makespan Mean flowtime Makespan Mean flowtime 

co_lo_lo 6546.28 90838.43 5748.18 85539.56 12.19 5.83 

co_lo_hi 376851.95 5133760.26 313263.46 4354684.62 16.87 15.18 

co_hi_lo 216064.67 2846845.19 194562.67 2605329.13 9.95 8.48 

co_hi_hi 12548739.42 152960763.32 10965632.48 142659273.5 12.62 6.73 

sc_lo_lo 6145.27 80376.11 5259.03 70540.74 14.42 12.24 

sc_lo_hi 449285.18 5304352.69 388432.8 4146759.85 13.54 21.82 

sc_hi_lo 184273.52 2368543.50 170501.59 2175234.38 7.47 8.16 

sc_hi_hi 12864789.63 160436981.84 11259642.43 106847994.9 12.48 33.40 

ic_lo_lo 6389.37 76943.33 5346.35 68259.43 16.32 11.29 

ic_lo_hi 522843.21 5679384.21 467899.59 4938345.23 10.51 13.05 

ic_hi_lo 180437.35 2344622.15 171243.62 2132541.59 5.10 9.05 

ic_hi_hi 13901746.88 167435439.5 11913592.13 138565274.3 14.30 17.24 

 
Table 3. Comparison of execution time.                                                                      

Methods NSGA-II with MapReduce DPGA with MapReduce Percentage of reduction 

Sequential (Single node) 34.68 Sec 31.93 Sec 7.93 

Parallelism with MapReduce  
(4 node Cluster) 31.714 Sec 27.64 Sec 12.85 

 
time of these algorithms will be reduced, while increasing the number of nodes in a Hadoop cluster. Future work 
could be extended for implementing a scheduler by using all the evolutionary kind of algorithms with the Ma-
pReduce model to execute its parallel without coordination issue. 
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