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Abstract 
Embedded systems used in real-time applications require low power, less area and high computa-
tion speed. For digital signal processing, image processing and communication applications, data 
are often received at a continuously high rate. The type of necessary arithmetic functions and ma-
trix operations may vary greatly among different applications. The RTL-based design and verifica-
tion of one or more of these functions could be time-consuming. Some High Level Synthesis tools 
reduce this design and verification time but may not be optimal or suitable for low power applica-
tions. The design tool proposed in this paper can improve the design time and reduce the verifica-
tion process. The design tool offers a fast design and verification platform for important matrix 
operations. These operations range from simple addition to more complex matrix operations such 
as LU and QR factorizations. The proposed platform can improve design time by reducing verifica-
tion cycle. This tool generates Verilog code and its testbench that can be realized in FPGA and VLSI 
systems. The designed system uses MATLAB-based verification and reporting. 
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1. Introduction 
Today, a significant number of embedded systems are focused on multimedia applications, and the demand for 
low cost, high performance and low power hardware is almost insatiable. The design of complex systems such 
as image and video processing, compression, face recognition, object tracking, 4G modems, multi-standard 
CODECs, and HD decoding schemes requires integration of many complex blocks and a long verification 
process [1]. These complex designs are based on I/O peripherals, one or more processors, bus interfaces, A/D, 
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D/A, embedded software, memories and sensors. 
Image and video processing applications require a large amount of data transfers between the input and output 

of a system. Data are constantly transferred, altered and stored during processing. To ensure correct operation 
and data transfer, a control block needs to be designed carefully. Designing an image and video processing unit 
can be complex and time consuming, and the verification process can take months depending on the system’s 
complexity.  

System-on-chip (SoC) designs are mainly accomplished by using Register Transfer Languages (RTL) such as 
Verilog and VHDL. An algorithm can be converted to RTL level using the behavioral model description method 
or by using pre-defined IP core blocks. After completing this RTL code, formal verification must be done before 
implementation. After implementation of the RTL code, timing verification needs to be done for proper opera-
tion. RTL design abstracts logic structures, timing and registers [2]. Because of this, every clock change causes a 
state change in the design. This timing dependency causes every event to be simulated. This results in a slower 
simulation time and longer verification period of the design. 

RTL description of a system can be implemented from a behavioral description of the system in Perl or C. 
This will result in a faster verification process and shorter Time-to-Market (TTM). It is also possible to have a 
hybrid design where RTL blocks can be integrated with High Level Synthesis (HLS). 

The HLS design flow can be used to represent the whole system or parts of a system using one of the high 
level languages such as Perl, C, C++, Java, MATLAB [3]. Each part in the system can be tested independently 
before the whole system is tested. After the verification process, the design can be implemented using FPGA 
synthesis tools. 

The proposed matrix operations design (MOD) tool focuses on basic and advanced matrix operations for im-
proved design and verification times. Required background information is described in Section 2 and the design 
and examples error analysis are discussed in Section 3.  

2. Background 
Basic and advanced matrix operations are required in many complex algorithms in digital, image and video 
processing applications. Most of the time these matrix operations are performed using a conventional (also 
known as traditional) method used in basic algebra classes. The conventional methods to perform addition and 
multiplication operations are used to implement matrix multiplications for small matrices. If a large matrix mul-
tiplication is needed, many systems use software. Due to the development of VLSI and FPGA technologies, 
however, the computational power of the systems has increased and massive amount of data need to be pro- 
cessed at a very high speed. With that in mind, the realization of a high speed, low power and low area real time 
matrix multiplication system for large matrices is desirable. The idea behind the MOD tool is to give designers 
options based on area and speed optimization and faster TTM. The components of the MOD tool are shown in 
Figure 1. 

The proposed MOD tool has four important principles: 
 Compute required matrix operation(s); 
 Customized range and accuracy; 
 Generate an area-efficient, fast system for low power applications; 

 

 
Figure 1. Matrix Operations Design (MOD) block.                          
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 Perform verification on the fly. Create testbenches for pre- and post-verification.  
The MOD tool accepts inputs from the user via a console and includes the following sections: 

 FPGA or ASIC support; 
 Vendor based IP Core support; 
 Project Name (default is c:\MOD\MOD); 
 Top Module Name (default is MOD); 
 Language—Verilog HDL (up to 64-bit fixed point);  
 Signed or unsigned number systems; 
 Target—Frequency, area, and throughput optimization; 
 Testbench generation.  
o Automated testbench with MATLAB;  
o Modelsim: do file for fast automation; 
o Automated testbench file for Modelsim; 
o Error comparison with MATLAB; 
o User defined test data option. 

The “Matrix Operations” GUI shown in Figure 2 has the following sections: 
 Any size square matrix operations (verification is limited to computer memory size); 
 Basic matrix operations. 
o Addition/Subtraction (Area or speed optimized based on RCA or CLA); 
o Multiplication (Traditional or Strassen, Hybrid is future addition). 
 Advanced matrix operations. 
o Matrix inverse-LU factorization, QR factorization, Cholesky factorization or Strassen based design; 
o Symmetric matrices;  
o Hessenberg matrices-Householder based design;  

 

 
Figure 2. Matrix operations console GUI for MOD.                                                    
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o LU factorization-Reduced LU factorization; 
o Cholesky factorization-Positive definite matrices;  
o QR factorization-Householder (Givens rotation or Gram-Schmidt based design are future addition); 
o Solution to linear equation-LU, Cholesky, or QR factorization based design; 
o Eigenvalue calculations-QR method design; 
o Curve fitting-QR factorization based design (future addition). 

The MOD tool uses a bottom-up design process that starts with the advance matrix operations and then moves 
to the simplest arithmetic operations. This is shown in Figure 3.  

This design flow contains the following procedure: First, selection of a QR factorization algorithm, advanced 
matrix operations, matrix operations [4] [5] and basic arithmetic operations, and generation of area efficient 
hardware for FPGA and VLSI. There are two 64-bit selections that are suitable for a vast array of applications 
with the requested precision. The section’s addition and multiplication are used based on the previous designs. 
Selection of the matrix operations is done using a traditional method, Strassen algorithm [4] or hybrid method. 
The selection is based on matrix size. This area-efficient design is optimized for speed by implementing a smart 
control system. For performance evaluation and synthesis, the QR algorithm is implemented with Xilinx FPGAs 
[6] and VLSI using Microwind Design Tools [7].  

3. Matrix Operations 
Some of the important matrix operations and algorithms used by the MOD tool are explained below. 

3.1. Matrix Addition/Subtraction 
The MOD tool uses conventional matrix addition/subtraction for this operation. Designers can select CLA or 
RCA-based addition based on optimization selection that is done in Figure 2. 

 

 
Figure 3. The MOD tool design flow.                                  
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3.2. Matrix Multiplication  
Matrix multiplications [4] [8] [9] are heavily used in many communication, signal and image processing appli-
cations. Matrix multiplication requires operation elements (OE) such as addition and multiplication. In matrix 
multiplication, the number of OEs depends on the matrix size. This made it difficult to implement real time ma-
trix multiplication. The traditional method is one of the main methods used due to its simplicity to implement. It 
has operation complexity (multiplication operation) O(n)3 where n is the size of the matrix. This complexity 
measure is acceptable for designs with smaller N. The method introduced by Strassen [10] reduced the operation 
complexity to O(n)2.807 [9] [10]. Even though this difference is minimal, it makes a big difference in matrices for 
larger n. The MOD tool uses the traditional method or Strassen method. 
 Traditional Method: Matrix multiplication of an m × r matrix A and r × n matrix B produces a m×n matrix C 

[4]. 
 Strassen Method: The Strassen algorithm was introduced by Volker Strassen in 1969. Currently, this is not 

the fastest known algorithm but it is the one of the fastest algorithms that can be implemented in hardware 
for large matrices.  

3.3. LU Factorization 
One of the most important matrix factorizations for preconditioning is the A = LU factorization where a matrix 
A is factored into the product of two matrices, L is a lower triangle matrix and U is an upper triangle matrix. The 
LU factorization is an important factorization for solving linear equations, calculation of inverse matrices and 
many more important matrix-related operations that can be used in DSP and image processing. In a given matrix 
A, LU transformation can be written as A = LU where L and U are lower and upper right triangle matrices, re-
spectively. Some of the LU transformations are the Gaussian elimination method, direct decomposition and the 
Cholesky factorization. The MOD tool uses LU factorization over Gaussian elimination. LU factorization can 
solve linear equations simultaneously and this will be suitable for high data I/O DSP systems.  

3.4. QR Factorization 
The QR matrix transformation is commonly used in DSP and wireless communication designs [11] [12]. Using 
this transformation, a matrix A can be factored into A = QR where Q is an orthogonal matrix (square matrix that 
has orthonormal columns), and where R is an upper right triangular matrix. There are a few different techniques 
used to transform matrix A. The ones most commonly used are the Householder transformation [13], Givens 
Rotations and Gram-Schmidt QR-Decomposition.  

The main idea behind QR transformation is to translate matrix A into orthogonal matrix Q and right triangle 
matrix R. An orthogonal matrix has a property of QTQ = I. where 

Q: Orthogonal matrix; 
QT: Transpose of Q; 
I: Identity matrix.  
A set of vectors { }1 2 3,? tm m m m  is orthogonal if and only if 0i jm m⋅ =  when i ≠ j. If an orthogonal set 

has a norm of 1 it is said to be orthonormal. This is an important definition of a clear QR transformation. The 
MOD tool uses the Householder-based QR factorization. The Householder algorithm that is implemented as 
hardware is shown in Figure 4. 

3.5. Matrix Inversion  
The other important matrix operation that is used in many important DSP and image processing applications is 
the inverse of a matrix. A square matrix A and its inverse A-1 can be written as AA−1 = I iff det(A) ≠ 0 where I is 
the identity matrix. The inverse of a matrix is an important part of the calculation of many matrix transforma-
tions and the solution of linear equations. Unfortunately, calculation of a matrix inverse similar to matrix mul-
tiplication requires many addition and multiplication operations and may be costly to implement hardware level 
for large matrices. Hardware implementation of matrix inverse is an important part of the MOD. The MOD can 
design area efficient matrix inverse hardware using a few different techniques. These techniques are improved 
here for area efficiency or speed based on the required design parameters. The matrix inverse algorithms used in 
the MOD are an LU factorization-based inverse system. A block diagram of Matrix inversion using LU trans-
formation is given in Figure 5. 
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Figure 4. The householder QR factorization algorithm.                                      

 

 
Figure 5. Matrix inversion using LU transformation.                                       

 
The MOD tool can design and validate a system of linear equations using a couple different methods similar 

to ones that are explained above in the matrix inversion section. Due to similarities between solutions to linear 
equations and matrix inversion, further hardware reduction can be done by reusing similar sections of the hard-
ware to design a system that can solve a linear equation and can also be used for matrix inversion. A system of 
linear equations shown in Equation (1) can be solved using LU factorization. 

Ax b=                                             (1) 

A LU= .                                           (2) 

Using Equations (1) in (2), a system of linear equation can be described as in Equation (3) and using forward 
substitution in Equation (4), and back substitution in Equation (5) variables x can be calculated by. 

LUx b=                                            (3) 

whereLt b t Ux= =                                      (4) 

Ux t= .                                            (5) 

A similar solution system can be used if QR factorization is available. 

4. Design Results 
The MOD design system allows for fast TTM and higher accuracy. The system uses the same verification me-
thod for FPGA and VLSI that is shown in Figure 6. 

The MOD design system can design Verilog HDL code and a testbench file of any size matrix operations, 
subject to limitation of the MATLAB version, computer memory and hard drive size. The design creates a 
MATLAB file for verification and error analysis.  

One of the great advantages of the MOD design and verification system is the ability to change size and  



S. Aslan, J. Saniie 
 

 
49 

 
Figure 6. The MOD verification flow.                                                               

 
optimization of the design in a minimal amount of time. Designers can compare many designs and make deci-
sions without spending valuable verification time.  

5. Conclusion 
A design tool for matrix operations is designed for low power and high-speed applications. The MOD decreases 
design system time and verification by up to 64% without compromising speed and efficiency. The MOD uses a 
smart control system that is optimized based on the desired operations, and is a bridge between RTL and HLS. It 
uses RTL-based basic blocks to design most complicated arithmetic operations using structural model design 
and HLS-style fast and optimized verification. Any designed system can be reconfigured at any time in any way 
in MOD without going through the same design and verification hassle. The key objective of the proposed tool 
is to reduce TTM and increase productivity by verifying the hardware during the design process. Future work 
will include support for all basic arithmetic operations, VHDL, some additional matrix factorizations, curve fit-
ting and floating point support.  
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