
Circuits and Systems, 2013, 4, 342-349
http://dx.doi.org/10.4236/cs.2013.44046 Published Online August 2013 (http://www.scirp.org/journal/cs)

Study on Test Compaction in High-Level Automatic Test
Pattern Generation (ATPG) Platform

Ayub Chin Abdullah, Chia Yee Ooi
Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

Email: yob_kejor@yahoo.com, ooichiayee@ic.utm.my

Received January 14, 2013; revised February 4, 2013; accepted February 11, 2013

Copyright © 2013 Ayub Chin Abdullah, Chia Yee Ooi. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

ABSTRACT

Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a
large amount of detailed structural information must be processed in the search process of automatic test pattern genera-
tion (ATPG). In addition, ATPG needs to deal with new defects caused by process variation when IC is shrinking. To
reduce the computation effort of ATPG, test generation could be started earlier at higher abstraction level, which is in
line with top-down design methodology that has become more popular nowadays. In this research, we employ Chen’s
high-level fault model in the high-level ATPG. Besides shorter ATPG time as shown in many previous works, our study
showed that high-level ATPG also contributes to test compaction. This is because most of the high-level faults correlate
with the gate-level collapsed faults especially at input/output of the modules in a circuit. The high-level ATPG proto-
type used in our work is mainly composed by constraint-driven test generation engine and fault simulation engine. Ex-
perimental result showed that more reduced/compact test set can be generated from the high-level ATPG.

Keywords: Automatic Test Pattern Generation (ATPG); Constraint Logic Programming (CLP); Verilator;

Circuit-Under-Test (CUT); Test Compaction

1. Introduction

The role of testing in integrated circuit (IC) is to deter-
mine the correctness of manufactured circuits. Therefore,
testing is important since the fraction of good chips sold
in the market yields the quality of the product. In very
large scale integration (VLSI) realization process, test
development is done after the IC design and verification
process, as can be seen in Figure 1(a). According to
Moore’s Law, the number of transistors in IC doubles
every 18 months [1]. Nowadays, an IC easily can have
millions of gates [2]. In order to cope with this situation,
the top-down design methodology starting with high-
level description had been introduced.

The test generation algorithms designed for the high-
level models are usually direct extensions of those for the
gate-level models, in which the functional modules are
treated as primitive components so fewer components are
evaluated during test generation. Since digital design is
first described at high-level, the test generation could be
done earlier even before the design is synthesized into
gate-level circuit. The resulting reduced structural com-
plexity makes high-level test generation attractive. Thus,

functional test generation and functional fault simulation
of a digital system described in high-level models offers
an attractive alternative in test development.

2. Previous Works

It has been known that real-world problems could be
defined mathematically and logically. Since Constraint
Logic Programming (CLP) is based on logical reasoning,
it has been used to solve real-world problem. It started
with solving the puzzle problem. After that, it moves
through main business, management and industrial com-
binatorial applications such as resource allocation, time-
tabling, crew rostering, scheduling, planning, vehicle
routing and others. CLP application could be used in
ATPG since ATPG is a search problem for the test pat-
terns of digital circuit. This is being done by defining the
ATPG problem mathematically, and the solution of the
defined ATPG problem is the test patterns. The work in
[3] uses CLP to find test patterns for the faults unde-
tected by random engine and transition-oriented engine.
It could be seen clearly in Figure 1(b).

The random engine together with the simulation-based

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI 343

(a) (b)

Figure 1. Testing flow (a) in VLSI realization process (b)
ATPG in [3].

ATPG was used to find the test sequence. The transi-
tion-oriented engine [4] finds input stimuli that can cause
the transition of fault-free circuit differ from the faulty
circuit even though its effect towards PO is not proved
yet. Transition refers to the movement of the state Regis-
ter from current state to the next state. A high-level fault
model was described in signals and condition statement.

An explanation of this kind of fault model was not in-
cluded but it looked like the input stuck-at-fault and if
stuck-at-fault in work [2]. The ATPG in [4] has been
tested on the ITC‘99 benchmark where the high-level
fault coverage and test length were presented. However,
the test patterns generated from the ATPG has not been
tested on gate-level circuits for the gate-level fault cov-
erage. So, the effectiveness of the test pattern cannot be
analyzed.

The work in [5] proposed an ATPG approach at be-
havioral model using CLP. The VHDL circuit is first
converted to decision diagram (DD) model. DD model is
another way to represent a digital circuit. A high-level
fault model was defined for the faults at branch and op-
erator of the CUT. The faults were injected to the DD by
creating several faulty DDs. The fault model is equiva-
lent to “if stuck-at-fault” and “micro-operation fault” in
[2]. The method was tested on GCD, FFT, SQRT and
DIFFEQ circuits. Although the high-level fault coverage
achieved was greater than 90% for all circuits but the
number of injected faults was low which is mostly below
30 except the faults injected to DIFFEQ circuit which is
66 faults. The test length was also not presented. Besides,
comparison of this ATPG with the gate-level ATPG and
other methods of high-level ATPG were not presented.

The work in [6] proposed a CLP-based ATPG using
3-valued logic, 9-valued logic and 11-valued logic. The

3-valued logic refers to the traditional line assignment
which is (0, 1, x) where “x” is the “don’t care” value. “x”
could be 0 or 1. 9-valued logic refers to MUTH algebra
logic assignment which includes 0, 1, D, D, x, 0/x, 1/x,
x/0 and x/1. 11-valued logic is the extension of MUTH
algebra where two additional logic assignments are
added, namely “e” and “e”. “e” and “e” refers to “D” and
“D” that occurs at re-convergent fan-out. These lines
usually have many possibilities of value during fault
propagation. The method was tested on ISCAS‘85
benchmark where 3-valued logic, 9-valued logic and
11-valued logic were used as the propagation rule. The
gate-level fault coverage was 100% for circuits which
consist of about 10 gates and only 28% for circuit with
400 gates. The test length for circuits below 10 gates
only was presented. Besides, no comparison with other
methods was presented.

Test compaction refers to the process of reducing the
number of test patterns in a test set without reducing its
fault coverage [7]. Several approaches have been done in
compacting test patterns. The approaches include the
static test compaction, dynamic test compaction, and
fault collapsing. In static test compaction, the test pat-
terns are compacted after the gate-level test pattern gen-
eration process and it is also called post-generation com-
paction technique. In dynamic test compaction, the com-
paction technique is done along with the gate-level test
generation process. Fault collapsing which is the process
of reducing the size of fault list with two concepts which
are fault equivalence and fault dominance, is also one of
the techniques in compacting test patterns [8]. Two faults
are called equivalent if every pattern that detects one of
the faults also detects the other. A fault, f1 dominates
another fault, f2 if the test set for f2, T2 is a subset of the
test set for f1, T1. Equivalence fault collapsing and
dominance fault collapsing can be used to aid test com-
paction [1].

The work in [9] proposed a mixed-mode static com-
paction technique. It includes the restoration-based and
omission-based compaction technique. In restoration-
based technique, a subset of the previous saved test pat-
terns used or restored on the next undetected fault so the
number of test patterns could be decreased during ATPG.
In the omission-based compaction technique, certain test
vectors are removed from test sequences in order to
achieve smaller test length. The test vectors are omitted
one at a time from the beginning of the test sequence and
fault simulation is performed. If the same faults continue
to be detected after omitting a vector, the vector is re-
moved from the sequence. Otherwise, the vector is re-
tained. The method has been tested on ISCAS‘89 and
ADDENDUM‘93 benchmarks. The test patterns are from
the STRATEGATE test generator [10]. Although, a good
compaction ratio is achieved in term of test length, no

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI 344

fault coverage has been presented.

3. Functional Fault Model

Functional faults are defined at functional level. A func-
tional fault changes the function of a component or func-
tional block. In this research, Chen’s functional fault
model [2] which consists of 10 types of faults has been
used. The definition for each fault is as follow.

1) Input stuck-at fault: The input signal is stuck-at-0
or 1. The input stuck-at fault represents the failure of the
primary input signal. The input signal can be stuck-at-0
or 1. This fault is mapped by replacing every occurrence
of the input signal in the Verilog file with a correspond-
ing stuck-at-fault.

2) Output stuck-at fault: The output stuck-at-fault
represents the failure of the primary output signal. The
output signal can be stuck-at-0 or 1. This fault is mapped
by replacing the right hand side of all occurrences of the
output signal assignment in the Verilog file with the cor-
responding stuck-at-fault.

3) If stuck then fault: The if stuck then fault repre-
sents the failure to execute the “else” and “else if” por-
tion of statements for the “if” construct. This fault is
mapped by replacing the condition in “if” with the value
“1”.

4) If stuck else fault: The if stuck else fault represents
the failure to execute the “if” portion of statements for
the “if” construct. This fault is mapped by replacing the
condition in “if” with value 0.

5) Else if stuck then fault: The else if stuck then fault
represents the failure to execute the following “else” and
“else if”, if it exist portion of statements for the “if” con-
struct. This fault is mapped by replacing the condition in
“else if” with value “1”.

6) Else if stuck else fault: The else if stuck else fault
represents the failure to execute the “else if” portion of
statements for the “if” construct. This fault is mapped by
replacing the condition between “else if” with value “0”.

7) Assignment statement fault: The assignment
statement fault represents the failure to assign a new
value to a signal. In the presence of an assignment state-
ment fault, the signal to the left side of the assignment
operator (<=) will be assigned to one of the logic values
the signal can have. The fault is mapped by replacing the
expression to the right of the assignment operator with a
corresponding logic value, for example “0” and “1” for
the 1 bit type.

8) Dead clause fault: The dead clause fault represents
a failure of a value in a switch-case statement to execute
when selected. The mapping of the fault is done by re-
placing the expression to the right of the assignment op-
erator with the signal name to the left of the operator in
the corresponding clause. However, if the signal to the

left of the operator is an output, then the fault is mapped
by commenting the assignment statement in that clause.

9) Micro-operation fault: The micro-operation fault
represents a failure of a micro-operation to perform its
intended function. The operator can be classified into
four categories: logical operators, relational operators,
unary operators, and arithmetic operators. An operator
may fail to any other operator in its category. This fault
is mapped by replacing the operator considered with its
counter operator that must be defined.

10) Local stuck data fault: The local stuck data fault
represents a failure for a signal object to have a proper
value within a local expression. More than one expres-
sion within a device model may use the signal. The fault
is mapped such that the signal in only one expression
will be replaced with one of the logic values that the sig-
nal can have. The signal in other expressions will retain
the proper logic value.

4. Test Compaction Using Functional Fault
Model

This section explains how test compaction occurs in a
high-level ATPG using Chen’s functional fault model.
Chen’s fault model defines several types of faults as
elaborated in Section 3, most of which are injected at the
input/output of the modules in a circuit described at
functional level. These functional faults are mapped to
the gate-level stuck-at faults at inputs of a module. Be-
sides that, we also analyze that micro-operation faults
correlate with some stuck-at faults. The correlation con-
tributes to gate-level test compaction, which can be
proved by checkpoint theorem theoretically. Checkpoints
are defined as primary inputs and fan-out branches of a
circuit which have been proposed as starting set of faults
for both equivalence and dominance fault collapsing [1].

Checkpoint Theorem: A test set which detects all sin-
gle stuck-at faults of the checkpoints of a combinational
circuit detects all single stuck-at faults in that circuit.

The following text relates functional faults to the gate-
level collapsed faults at checkpoints. Primary inputs are
checkpoints in a circuit-under-test at gate-level, whose
faults are dominated by some faults inside the circuit. In
other words, test patterns of faults at primary inputs can
detect other faults inside the circuits. When we view the
CUT at high-level, composed by several modules, test
patterns of input stuck-at-fault in a functional fault model
are compacted test patterns. On elementary gates such as
AND gate, the fault on its output is equivalent on to the
faults on its inputs. Those inputs could be fan-out
branches inside a circuit viewed on gate-level if the AND
gate’s output is also the primary output. Therefore, the
fault collapsing could be done by injecting fault at the
primary outputs using Chen’s output stuck-at fault.

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI 345

The following explains test compaction via if stuck
then fault. Figure 2(a) shows statements of “if”, “else if”
and “else” written in Verilog language for fault-free cir-
cuit while Figure 2(b) shows the statements for faulty
circuit. The schematic diagram of the Verilog statements
of Figure 2(a) could be seen in Figures 3(a) and 4(a).
While the schematic diagram of the Verilog statements
of Figure 2(b) could be seen Figures 3(b) and 4(b).
Figure 3 show the schematic diagrams at high-level
while Figure 4 show the schematic diagrams at gate-
level. When If stuck then fault is injected to the Verilog
statement in Figure 2(a) is represented in Figure 2(b).
This fault is illustrated at high-level in Figure 3(b),
which is also equivalent to the gate-level s-a-0 fault in
Figure 4(b). This example deduced that the if stuck-then-
fault is mapped to the gate-level fault at checkpoint Se[0],
which allow test compaction.

(a) (b)

Figure 2. An example of if-else statements in Verilog (a)
Fault-free circuit (b) Faulty circuit.

(a)

(b)

Figure 3. High-level schematic diagram (a) Fault-free cir-
cuit; (b) Faulty circuit.

(a)

(b)

Figure 4. Gate-level schematic diagram (a) Fault-free cir-
cuit (b) Faulty circuit.

Similar analysis and discussion can be used for if stuck
else fault, else if stuck then fault, and else if stuck else
fault from Chen’ fault model. For if stuck else fault, the
Verilog statements inside the bracket of the first line
from Figure 2(a) is replaced with 0 for fault injection, so
the primary input of Se is stuck-at-1. In else if stuck then
fault, the bracket inside the third line of Figure 2(a) is
replaced with 1, so Se stuck-at-1 while the else if stuck
else fault replaces the third line of Figure 2(a) with 0.
Hence, Se stuck-at-2 or Se[1] stuck-at-1 and Se[0] stuck-
at-0.

The test compaction for the assignment statement fault
of E = 0 + B at line 2 in Figure 2(a) is done by injecting
a stuck-at-0 at the output module of Mux1 called SL in
both Figures 3(a) and 4(a). By using the fault equiva-
lence rule for the gate-level circuit in Figure 3(a), the
injected line of the assignment statement fault which is
an output of a gate carries a stuck-at fault that could be
equivalent to input of gates inside the Mux module.
Those gate input lines could be the fan-out branches in
the whole circuit where according to checkpoint theorem,
it could be collapsed.

The following explains the test compaction for the
dead clause fault. Figure 5(a) shows portions of “switch-
case” statements written in Verilog while Figure 5(b)
shows the faulty Verilog statements with dead clause
fault which is stuck-at state A. The statement in line 2 is
commented and the statement in line 3 is overwritten
such that signal Y holds the same value.

The schematic diagram of both Figures 5(a) and (b)

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI 346

can be seen in Figure 6. The dead clause fault can be
equivalent to gate-level s-a-0 at line LD which is the en-
able signal to load the D flip-flop. The test compaction
for the local stuck data fault is done by injecting a
stuck-at-0 or stuck-at-1 at the input module of Adder
called SL in both Figures 3(a) and 4(a). The location of
this injected line is at the checkpoint of the whole Adder
module which could aid in test compaction.

5. High-Level ATPG Platform

In this research, Constraint Logic Programming (CLP)-
based high-level ATPG platform is used to demonstrate
test compaction using functional fault model. Verilator is
an open source which is used in our CLP-based ATPG as
it Verilator-based fault simulator [11]. Figure 7 shows
the platform of the proposed high-level ATPG in this
research while Figure 8 shows how this ATPG operates.
This ATPG could be divided into three main blocks that
represent fault injection, ECLiPSe-based ATPG and Ver-
ilator-based fault simulation respectively as in Figure 7.
The fault injection process is to create fault list and the
faulty circuits in Verilog from the circuit-under-test
(CUT). These faulty circuits and CUT, will be passed to

(a) (b)

Figure 5. An example of switch-case statements written in
Verilog (a) Fault-free circuit (b) Faulty circuit

Figure 6. Schematic diagrams of “switch-case” statements.

Figure 7. ATPG platform.

Figure 8. ATPG operation.

the ECLiPSe-based ATPG and Verilator-based fault
simulation blocks. The ECLiPSe-based ATPG is to
search the test patterns for the corresponding faulty cir-
cuit and compute its test application time or test length.
The generated test patterns from the ECLiPSe-based
ATPG will then be passed to the Verilator-based fault
simulator. The Verilator-based fault simulator will com-
pute the fault coverage based on the given test patterns.
Besides that, the fault list will be updated by dropping
the detected faults and the test patterns will be saved
correspondingly. If the fault list is empty, the ATPG will
be terminated and if it is not, the process from the
ECLiPSe-based ATPG will be repeated.

6. Experiment Result and Result Discussion

The experiment began by converting the VHSIC Hard-
ware Description Language (VHDL) file of the Interna-
tional Test Conference (ITC)‘99 benchmark circuits [9]
to Verilog files. ITC‘99 benchmark circuits are de-
scribed at functional level. Vhd2vl [12] was used to con-
vert VHDL file to Verilog file because Verilator is a tool
that can converts only Verilog to C++ file. Eight circuits
have been tested, which are b01, b02, b03, b04, b06, b09,
b10 and b11.

Five experiments have been conducted in this research.
The first experiment is invoking the functional Auto-
matic Test Pattern Generation (ATPG) to generate the
functional test patterns for the circuit-under-tests (CUTs).
The test patterns were saved in Verilog testbench format
while fault coverage and test application time were saved
in text file format. The effectiveness of functional test
patterns as compacted test patterns will be shown in Ex-
periments 3-5.

After that, the gate-level netlists of the benchmark cir-
cuits were obtained using synthesis tool called Synopsys
Design Vision. The second experiment began with Syn-
opsys ATPG called TetraMax. The test patterns, fault
coverage and test application time for the gate-level net-
lists were then saved. The purpose of this experiment is
to obtain the fault coverage of the benchmark circuits.

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI

Copyright © 2013 SciRes. CS

347

The fault coverage in this experiment is maximal since it
is conducted using the powerful commercial gate-level
ATPG and it should be achievable even in the case where
test compaction is applied. Another purpose of this ex-
periment is to obtain test length to be compared with the
first experiment.

benchmarks circuits. The difference between these two
experiments is that Experiment 2 used merely gate-level
test patterns while Experiment 4 used the mixture of
gate-level test patterns and functional test patterns. In
other words, this experiment needs combination of gate-
level ATPG and functional ATPG. The gate-level fault
coverage obtained for Experiment 3 is high except for
b01 and b03. b01 and b03 have low fault coverage owing
to the numbers of injected functional faults that is much
lower than the number of their gate-level faults. This
could cause many gate-level faults evaded in Synopsys
ATPG because the correlation between the functional
faults and the gate-level faults is very weak.

For the third experiment, fault simulation was invoked
in TetraMax to simulate the netlists using functional
ATPG test patterns to evaluate the quality of the test pat-
terns on detection of gate-level faults. The detected fault
list was saved. In the fourth experiment, TetraMax was
invoked again to generate test patterns for the faults re-
main undetected after fault simulation that used func-
tional test patterns. Subsequently, total fault coverage
and test application time or test length were known. 6.2. Test Application Time

For the last experiment, Synopsys ATPG was invoked
for the saved detected fault list of Experiment 3. This
experiment is to show that the reduced test set (functional
ATPG test patterns) can detect as many faults as the
gate-level test set that are bigger. The graphical view of
the experiment could be seen in Figure 9.

Test application time is the number of clock cycles
needed for the stored test patterns to test a CUT. Table
2(a) shows the test application time obtained in Experi-
ments 1, 2 and 4 respectively. Test compaction is con-
ducted in order to reduce the data need to be sent to and
stored in the automatic test equipment (ATE). This can
 6.1. Fault Coverage

Fault coverage is the percentage of detected faults among
the total faults. The formula is shown in Equation (1).
Table 1 shows the fault coverage obtained in this re-
search. The third column shows the number of injected
functional faults while the fourth column shows the ob-
tained high-level fault coverage.

The second column shows the number of injected
gate-level faults using the Synopsys TetraMax. The
fourth, fifth and sixth columns show the gate-level fault
coverage obtained from Experiments 2-4 respectively.
The gate-level fault coverage obtained from both Ex-
periments 2 and 4 are the same for all circuits which

Faults detected
Fault coverage 100%

Number of faults
  (1)

are the maximum fault coverage for the respective Figure 9. Experimental setup.

Table 1. Fault coverage (%).

Circuit # gates faults # func. faults HL FC in Ex. 1 (%) GL FC in Ex. 2 (%) GL FC in Ex. 3 (%) GL FC in Ex. 4 (%)

b01 274 68 100.00 99.27 37.96 99.27

b02 196 24 79.17 89.80 68.88 89.80

b03 1042 46 64.00 69.00 25.38 69.00

b04 3586 70 57.14 89.27 60.10 89.27

b06 338 37 85.71 96.75 90.10 96.75

b09 960 24 58.33 88.18 64.20 88.18

b10 1110 90 60.10 94.32 70.10 94.32

b11 2842 111 56.90 81.76 60.20 81.76

A. C. ABDULLAH, C. Y. OOI 348

Table 2. Test application time (clock cycles) (a) Gate-level test patterns (b) High-level test patterns.

(a)

Circuit TAT Ex. 1 TAT Ex. 2 TAT Ex. 4 Compaction ratio (%)

b01 7 68 66 2.94

b02 15 34 33 2.94

b03 6 80 79 1.25

b04 15 118 114 3.39

b06 26 38 33 13.16

b09 35 827 813 1.69

b10 105 251 232 7.57

b11 102 201 180 10.45

 Average 5.42

(b)

Circuit # Faults TAT Ex. 3 TAT Ex. 5 Compaction ratio (%)

b01 104 7 9 22.22

b02 135 15 16 6.25

b03 264 6 7 14.29

b04 1791 15 18 16.67

b06 305 26 31 16.13

b09 405 35 39 10.26

b10 778 105 124 15.32

b11 1711 102 123 17.07

 Average 14.78

be seen by calculating the compaction ratio of it as in
Equation (2) [8]. Column 5 shows the compaction ratio
obtained.

Compaction ratio

(Original test length current test length)
100%

Original test length


 

 (2)

The greater the compaction ratio of it makes the data
sent to the ATE reduced. ATE is the IC tester used dur-
ing the test manufacturing. The original test length in
Equation (2) refers to the test application time (column 3)
from the gate-level ATPG (Experiment 2). The current
test length refers to the test application time (column 4)
from the combination of gate-level ATPG and functional
ATPG using fault model in [2] (Experiment 4). Test
length is another terms used for test application time.
Compaction ratio greater than 10% has been achieved for
circuit b06 and b11. This is because the correlation be-
tween functional fault and gate-level fault is high.

Experiment 5 is to show that the test compaction was

resulted from the functional ATPG. In other words, func-
tional ATPG in our work can generate compact test pat-
terns that cover subset of the faults in the benchmarks
circuits. The second column of Table 2(b) shows the
number of gate-level faults in those CUT that detected in
Experiment 3 by the functional test patterns. Its test ap-
plication time is shown in the third column. Test applica-
tion time of gate-level test patterns that can detect the
same set of faults is shown in the fourth column. The
compaction ratio is displayed in the fifth column. The
faults involved are subset of the faults detectable by the
functional test patterns generated in Experiment 1. From
Table 2(b), the average compaction ratio achieved is
16.13%. Only for circuits b01 and b02 that achieved
22.22% and 6.25%.

7. Conclusions

The study has shown that ATPG using functional fault
model allows test compaction during test generation
process whereby the test patterns can cover subset of the

Copyright © 2013 SciRes. CS

A. C. ABDULLAH, C. Y. OOI 349

gate-level faults. The remaining undetectable faults can
be covered by gate-level ATPG. All in all, the complete
test patterns using both functional ATPG and gate-level
ATPG are more compacted. Experiments on eight
benchmark circuits of ITC‘99 circuits have been con-
ducted. The experiments involved the ECLiPSe-based
ATPG system, Synopsys TetraMax gate-level ATPG
system, and the combination of both ATPG systems. Test
length reduction from the original gate-level ATPG sys-
tem has been achieved up to 16.13%.

Several potential extensions can be carried out to the
work in this research in the interest of achieving better
performance. These are suggested below.

1) Computation time—The computation is higher than
the gate-level ATPG where an improvement needed to
decrease it.

2) Graphical User interface (GUI)—In this proposed
hybrid ATPG system, a command-line just used as the
user interface. A friendly GUI is necessary, so that users
can monitor the test generation process, or generate test
vectors for a particular fault easily.

3) Test environment—A test environment that using
the CLP and Perl has been created, however the experi-
ments only conducted on the fault coverage and test
length. An experiment on test environment coverage
proposed for future research.

4) Design-for-testability (DFT)—In this research, a
method to generate test patterns proposed. DFT have the
capacity to improve the test generation. A future research
on this should be conducted.

8. Acknowledgements

The work was supported by Universiti Teknologi Malay-
sia under Research University Grant (No. Q.K130000.
2643.05J63).

REFERENCES
[1] B. L. Michael and A. D. Vishwani, “Electronic Testing

for Digital, Memory and Mixed-Signal VLSI Circuits,”

Kluwer Academic Publishers, New York, 2002.

[2] H. C. Chien-In, “Behavioral Test Generation/Fault Simu-
lation,” IEEE Potentials, Vol. 22, No. 1, 2003, pp. 27-32.
doi:10.1109/MP.2003.1180938

[3] G. D. Giuseppe, F. Franco, et al., “Test Generation Based
on CLP,” 8th International Workshop on Micro- proces-
sor Test and Verification, Common Challenges and Solu-
tions, Austin, 5-6 December 2009, pp. 98-105.

[4] D. G. Guglielmo, F. Fummi, C. Marconcini and G. Pra-
vadelli, “Improving High-Level and Gate-Level Testing
with FATE: A Functional Automatic Test Pattern Gen-
erator Traversing Unstabilised Extended FSM,” IET
Computers & Digital Techniques, Vol. 1, No. 3, 2007, pp.
187-196. doi:10.1049/iet-cdt:20060139

[5] Y. Sun, “Automatic Behavioral Test Generation by Using
a Constraint Solver,” Master’s Thesis, Linköping Univer-
sity, Linköping, 2001.

[6] S. Brand, “Sequential Automatic Test Pattern Generation
by Constraint Programming,” Proceedings of CP 2001
Workshop on Modelling and Problem Formulation, Cy-
prus, 1 December 2001, pp. 1-8.

[7] S. D. Hochbaum, “An Optimal Test Compression Proce-
dure for Combinational Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 15, No. 10, 1996, pp. 1294-1299.

[8] N. Zainalabedin, “Digital System Test and Testable De-
sign Using HDL Models and Architectures,” Springer,
New York, 2011.

[9] R. Guo, S. M. Reddy, et al., “Reverse-Order-Restora-
tion-Based Static Test Compaction for Synchronous Se-
quential Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 22,
No. 3, 2003, pp. 293-304.

[10] M. S. Hsiao, E. M. Rudnick and J. H. Patel, “Sequential
Circuit Test Generation Using Dynamic State Traversal,”
Proceedings of the 1997 European Design and Test Con-
ference, Paris, 17-20 March 1997, pp. 22-28.

[11] W. Snyder, “Verilator-3.810,” Veripool, 2010.

[12] F. Corno, S. M. Reorda and G., Squillero, “RT-Level
ITC‘99 Benchmarks and First ATPG Results,” IEEE De-
sign & Test of Computers, Vol. 17, No. 3, 2000, pp.
44-53. doi:10.1109/54.867894.

Copyright © 2013 SciRes. CS

http://dx.doi.org/10.1109/MP.2003.1180938
http://dx.doi.org/10.1049/iet-cdt:20060139
http://dx.doi.org/10.1109/54.867894

