Surgical strategy in case with co-existence of malignant oligodendroglioma and arteriovenous malformation: A case report

Hirohito Yano1*, Noriyuki Nakayama1, Naoyuki Ohe1, Toshinori Takagi1, Jun Shinoda2, Toru Iwama1

1Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan; *Corresponding Author: hirohito@gifu-u.ac.jp
2Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Kizawa Memorial Hospital, Minokamo, Japan

Received 26 September 2013; revised 20 October 2013; accepted 3 November 2013

ABSTRACT

A brain tumor associated with an arteriovenous malformation (AVM) is very rare. A 42-year-old female presented with two separate lesions in her right frontal lobe on MRI. An angiogram diagnosed one of the lesions as an AVM. The second lesion appeared to be a tumor. Tumor removal was difficult due to bleeding from the nearby AVM, necessitating removal of the AVM and allowing complete excision of the tumor. Histopathological analysis revealed the tumor was an anaplastic oligodendroglioma. There was no recurrence of the tumor 5 year after completion of therapy. We discuss the operative strategy in case of synchronous diseases and provide a review of the literature.

Keywords: Oligodendroglioma; Arteriovenous Malformation; Co-Existence

1. INTRODUCTION

The association of a brain tumor and an arteriovenous malformation (AVM) is rare. While there have been a number of reports, few of these have reported the details of the operative strategy, particularly the approaches used based on the preoperative information of both lesions. We describe our chosen surgical strategy in a case with two such synchronous lesions and provide a review of the literature.

2. CASE REPORT

A 42-year-old previously healthy female presented with complaints of headache and vomiting. Her level of consciousness was normal and she had no neurologic deficits. Magnetic resonance images (MRI) on admission revealed a 7 cm in diameter mass lesion that showed low signal intensity on the T1 weighted images (WI) and high signal intensity on the T2 WI in the right frontal lobe. The lesion demonstrated heterogeneous enhancement by gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) adjacent to the Rolandic vein (Figure 1(A)). The T2 WI also demonstrated a second 3 cm in diameter lesion with multiple flow void signs in the right inferior frontal gyrus (Figure 1(B)). An angiogram showed an arteriovenous malformation (AVM) that was predominantly fed by the middle cerebral arteries and drained through the superficial frontal ascending vein and the Rolandic vein (Figures 1(C) and (D)). Spetzler-Martin Grade was 1 point. The angiogram also demonstrated an avascular region in the area of the former lesion. A plain computed tomography scan showed partial calcification, and a dynamic study of the methionine positron emission tomography (PET) scan presented a reduction of accumulation in the longitudinal course in the former lesion. The results of dynamic PET study indicated oligodendrogliial tumor according to our study previously reported [1]. Comprehensively, these radiological findings led to a diagnosis of malignant oligodendroglioma associated with AVM. The patient’s headache was likely caused by the large tumor, and so we planned to resect the oligodendroglioma first, followed by the AVM. For the operation, we performed a large osteoplastic frontotemporal craniotomy beyond the mid-line including both lesions, with the goal being to remove the oligodendroglioma and AVM consecutively. During this procedure, severe bleeding occurred from the
Figure 1. (A) MRI with gadolinium showing a heterogeneously enhancing mass lesion with partial cyst in the right frontal lobe. (B) The T2 weighted image showing crowded flow void signs that suggest an arterio-venous malformation in the right inferior frontal gyrus. (C), (D) The right common carotid angiogram (C: frontal view, D: lateral view) showing a nidus fed by middle cerebral artery and mainly draining to the Rolandic vein, and the anterior frontal ascending vein. The tumor area in front of Rolandic vein shows no tumor shadows.

venous sac protruding beside the superior sagittal sinus. After hemostasis was achieved and a dural incision was made, both lesions were exposed on the surface of the right frontal lobe (Figure 2(A)). We administered fluorescein sodium to discriminate the tumor from the normal brain tissue by the previously reported method [2]. The tumor stained deep yellow and was sharply circumscribed. We first separated the tumor from the Rolandic vein and precentral gyrus. As we proceeded into the deep white matter, however, the tumor’s borders became more ill-defined. We encountered active bleeding as we removed the rear half of the tumor, the source of which proved to be a dilated vein penetrating the tumor from the AVM (Figure 2(B)). As we found it difficult to control the bleeding, we focused on removing the AVM. The nidus was sharply dissected from the cortex, and the feeders were coagulated and cut (Figures 2(C) and (D)). At the final stage, the draining veins including Rolandic vein, frontal ascending vein and deep veins were treated. The vein within the tumor then altered in diameter to a much more normal size (Figure 2(E)). The AVM was completely and safely resected. The resection of the AVM provided palliation of bleeding from the tumor.

Figure 2. (A)-(E) Intraoperative photographs. (A) The exposed tumor in the right frontal lobe (asterisks) and the AVM (arrow). B: The dilated red vein penetrating the tumor from the AVM. C: The cortical red vein of the AVM. (D) The nidus (arrow) was sharply dissected and the final draining vein was cut. (E) Intratumoral vein alerted the diameter to the usual (arrow). Intratumoral bleeding became controllable. (F) Photomicrograph of hematoxylin & eosin stained slide showing honeycomb appearance with mild nuclear atypia and a few mitoses (arrow), which suggests anaplastic oligodendroglioma (×400).

The above-mentioned venous sac shrunken. We completed removal of the anterior half of the tumor. The tumor was completely removed using fluorescent navigation. The intra-operative motor evoked potential examination also presented a good response of her forelimb after removal of the tumor. Postoperatively, the patient’s level of consciousness was clear and she had no neurological deficits.

3. PATHOLOGICAL EXAMINATION

Formalin-fixed, paraffin-embedded tissue sections were used for hematoxylin-eosin (H & E) staining and immunohistochemistry. H & E staining revealed a sheet-like honeycomb appearance with high cellularity, necrotic foci and nuclear atypia. Mitoses were frequently observed (Figure 2(F)). MIB-1 labeling index was 25%. These findings led to a diagnosis as anaplastic oligodendroglioma. The vascular lesion was diagnosed as an AVM, and demonstrated numerous dilated vessels of various sizes.

Following surgery, the patient received external beam radiation therapy with concomitant Temozolomide (TMZ: 75 mg/kg/day). TMZ, however, had to be discontinued...
due to pancytopenia a few weeks later. Sixty gray of ra-
diation therapy produced a satisfactory result. Both le-
sions completely disappeared and there was no recur-
rence of the tumor 5 year after completion of therapy.

4. DISCUSSION

There have been 74 reported cases of brain tumors as-
associated with AVM to the best of our knowledge (Table
1) [3-40]. The rate of this rare association was reported
to be 0.1% [19]. There is a male predominance (male: 47
cases, female: 27 cases). The ages ranged from 0 to 70
years of age; the median age was 28.5. The age of onset
was unlikely to be related to the association of brain tu-
mor and AVM, and seemed more likely to depend on
the kind of brain tumor involved. There are several hypothe-
ses about the etiology and timing of the development of
the two lesions in terms of which occurs first and
whether one lesion causes the other [26]. Environmental
factors and viruses have also been speculated as triggers
[26].

Concerning the histology of the brain tumors involved
in these cases, there were 12 cases of pilocytic astrocy-
toma [27,40], 10 of astrocytoma [3,6,8,15,29,30,33,35,
36], 6 of malignant astrocytoma [13,18,25,34,36], 20 of
oligodendroglioma [4,9,10,20,24,27,38], 3 of glioblas-
toma [7,19,36], 8 of meningioma [10,11,16,17,21,22,26,
32], 5 of acoustic tumors [12], and 3 of pleomorphic xan-
thoastrocytoma [28,31,39]. Other tumors found in asso-
ciation with AVM include hemangioblastoma [5], he-
mangiopericytoma [22], gangliocytoma, [23] subepen-
dymal giant astrocytomas [29], and craniopharyngioma
[14]. In the remaining 2 cases, histology was simply de-
scribed as glioma [27,37]. In the present case, the histol-
ogy was that of an anaplastic oligodendroglioma, which
is the type of tumor most frequently associated with
AVM.

Concerning the positional relation between the tumor
and the AVM, the two lesions were considered “separate”
in 18 cases, “intermixed” in 39 cases and “adjacent” in
17 cases (Table 1). In our case, it appeared that the tumor
had occurred in contiguity with a congenital AVM in the
nearby region of the same lobe. Accordingly, the rela-
tionship was judged as “separate”. There have been only
a handful of cases in which both the AVM and the brain
tumor were preoperatively diagnosed using angiography
and MRI [29,31-34]. In some reported cases with inter-
mixed AVM in the brain tumor, vascular components
were pathologically diagnosed after the surgery. Those
were diagnosed as “angioglioma”. In such a case, ex-
tensive bleeding during surgery would be assumed; however,
the reports make little mention of the operative approach.
In the present case, we preoperatively diagnosed both
lesions, and decided to remove the tumor first, consider-
ing it to be the etiology of the patient’s headaches be-
cause we thought the AVM was asymptomatic. As both
lesions were located in the right frontal lobe, we could

<table>
<thead>
<tr>
<th>Tumor histology</th>
<th>Intermixed</th>
<th>Adjacent</th>
<th>Separate</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilocytic astrocytoma</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>[27,40]</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>[3,6,8,15,29,30,33,35,36]</td>
</tr>
<tr>
<td>Malignant astrocytoma</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>[13,18,25,34,36]</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>[7,19,36]</td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>[4,9,10,20,24,27,38]</td>
</tr>
<tr>
<td>Meningioma</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>[10,11,16,17,21,22,26,32]</td>
</tr>
<tr>
<td>Acoustic tumor</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>[12]</td>
</tr>
<tr>
<td>Hemangioblastoma</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>[5]</td>
</tr>
<tr>
<td>Hemangiopericytoma</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[22]</td>
</tr>
<tr>
<td>Craniopharyngioma</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>[14]</td>
</tr>
<tr>
<td>Gangliocytoma</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[23]</td>
</tr>
<tr>
<td>PXA</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>[28,31,39]</td>
</tr>
<tr>
<td>SEGA*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>[29]</td>
</tr>
<tr>
<td>Glioma</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[27,37]</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

*SEGA: subependymal giant astrocytoma.
Fortunately observe them in the same bone window at the operation. The tumor was sharply dissected from the Rolandic vein at the beginning of the operation; however, the tumor’s boundaries were less clear in the deep white matter. We had difficulty controlling bleeding from a dilated vein passing through the tumor from the AVM to the superior sagittal sinus. The vein was one of the draining veins of the AVM. Although the preoperative angiogram had not revealed them, we should have taken them into consideration from the T2 WI that showed some flow void signs passing through the tumor. We proceeded to remove the AVM with a general procedure. Fortunately, we could safely remove the nidus from the superficial frontal cortex. An intraoperative angiogram showed no residual nidus. It followed that we could dramatically diminish the bleeding and completely remove the tumor.

There have been 5 case reports with the separate type [11,20,21,24,28], in which both of the lesions were removed. Two cases had a good clinical course as the present case [24,28]. As a whole, in 51 cases described the clinical results, 23 cases were good recovery, 18 were moderate disability and 10 cases were dead. Accordingly, the entity does not necessary, which have a good prognosis.

In conclusion, in a case of brain tumor nearby associated with AVM, a large craniotomy including both lesions was recommended with AVM, a large craniotomy including both lesions was recommended for removal of the tumor. Evaluation of brain tumors using dynamic 11C-methionine-PET. Journal of Neuro-Oncology, 109, 15-122.

REFERENCES


LIST OF ABBREVIATIONS

AVM: arteriovenous malformation
MRI: magnetic resonance image
WI: weighted images
Gd-DTPA: gadolinium-diethylenetriamine penta-acetic acid
PET: positron emission tomography
H&E: hematoxylin-eosin;
TMZ: temozolomide