
Communications and Network, 2016, 8, 158-169
Published Online August 2016 in SciRes. http://www.scirp.org/journal/cn
http://dx.doi.org/10.4236/cn.2016.83016

How to cite this paper: Hudaib, A.A. and Fakhouri, H.N. (2016) An Automated Approach for Software Fault Detection and
Recovery. Communications and Network, 8, 158-169. http://dx.doi.org/10.4236/cn.2016.83016

An Automated Approach for Software
Fault Detection and Recovery
Amjad A. Hudaib1, Hussam N. Fakhouri2
1Department of Computer Information Systems, The University of Jordan, Amman, Jordan
2Department of Computer Science, The University of Jordan, Amman, Jordan

Received 27 February 2016; accepted 31 July 2016; published 3 August 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Autonomic software recovery enables software to automatically detect and recover software
faults. This feature makes the software to run more efficiently, actively, and reduces the mainten-
ance time and cost. This paper proposes an automated approach for Software Fault Detection and
Recovery (SFDR). The SFDR detects the cases if a fault occurs with software components such as
component deletion, replacement or modification, and recovers the component to enable the
software to continue its intended operation. The SFDR is analyzed and implemented in parallel as
a standalone software at the design phase of the target software. The practical applicability of the
proposed approach has been tested by implementing an application demonstrating the perfor-
mance and effectiveness of the SFDR. The experimental results and the comparisons with other
works show the effectiveness of the proposed approach.

Keywords
Software Engineering, Autonomic Software Systems, Automatic Recovery,
Automatic Diagnosis, Auto Restore

1. Introduction
The wide range and variety of software applications make it difficult for human to monitor, control and admini-
strate software applications and systems. Therefore, the research towards developing autonomic systems that has
self-management, self-control and self-healing has increased predominantly in recent years. The development of
software applications that can manage themselves, and can respond to the changes in the environment according
to goals set by the system administrator has been called the Autonomic Computing Systems (ACS). ACS is in-
spired by the human autonomic nervous system which regulates vital body functions without the need for con-

http://www.scirp.org/journal/cn
http://dx.doi.org/10.4236/cn.2016.83016
http://dx.doi.org/10.4236/cn.2016.83016
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

A. A. Hudaib, H. N. Fakhouri

159

scious human involvement [1].
Many researchers investigated software auto recovery with a goal to integrate the auto recovery mechanism

inside the software [2]-[4]. However, if software itself fails to run the auto recover process, then the recovery
process will not operate. This paper proposes an automated approach to solve this problem called Software Fault
Detection and Recovery (SFDR). The SFDR is analyzed and implemented in parallel as a standalone software at
the design phase of the target software. The SFDR detects the cases if a fault occurs with software components
such as component deletion, replacement or modification, and recovers the component to enable the software to
continue its intended operation. The main functions of SFDR are to automatically diagnose, monitor and recover
the component faults in the target software. These autonomic functions reduce the maintenance cost and time,
which plays major concerns for the software developer and for software customers.

The applicability of the SFDR has been tested by implementing an application demonstrating the performance
and effectiveness of the SFDR. The experimental results and the comparisons with other works show the effec-
tiveness of the proposed approach.

The rest of this paper is organized as follows. In Section 2, we present related work about self-healing
achievements in software systems. Section 3 describes the proposed SFDR and its auto detection and recovery
mechanism. Section 4 provides experimental results and comparing SFDR with other approaches. Finally, the
conclusions and future work are presented in Section 5.

2. Related Work
Many researchers dedicated their efforts to the field of automated software recovery. Dashofy, Philip Koopman
proposed a taxonomy for the problem space for self-healing systems including system completeness, design
context, fault models, and system responses [2] [3]. Jiang, et al. presented a generic modeling framework to fa-
cilitate self-healing development system software and introduced a model-based approach which is used to ca-
tegorize software failures and specify their dispositions at the model level [5]. George et al. was inspired by bi-
ological strategies to develop cell-based programming model that has robust and scalable features for software
systems self-healing [6]. Fuad et al. presented a new method that use matching a fault scenario for finding
self-healing actions by established fault models [7].

Michael described an approach for distributed software architecture to design a concurrent and robust self-
healing component [4]. Montani et al. described a Case based reasoning (CBR) approach that gave capabilities
of self-healing to distributed software systems, by means of real world application experimental results [8]. Park
et al. proposed a self-healing mechanism that diagnose, heal and monitor its internal error by contextual infor-
mation and self-awareness [9]. Naftaly M. worked in complex systems and mainly for heterogeneous distributed
software. And he put the conditions of self-repair and self-healing for those systems [10].

Diaconescu A. worked on a system for component-based software systems to have self-optimization, and
self-healing and to enable dynamic adaptation in those systems [11]. Brumley et al. introduced software systems
self-healing architecture where programmers detect exploits, self-diagnose and self-monitor and the main cause
of the vulnerability, self-recover from attacks and self-harden against future attacks [12]. Dinkel et al. 2008 pre-
sented a novel approach for distributed embedded systems self-healing that contain black-box application soft-
ware [13]. Katti et al. used Gossip protocols that are inherently fault-tolerant and scalable to compare two novel
failure detections and consensus algorithms [14].

Hervé Chang proposed to use Exception Handlers for Healing Component-Based Systems that heal failures
activated by exceptions raised in the OTS components actually deployed in the system [15].

Angelos D. Keromytis focused on systems that effect structural changes to the software under protection, as
opposed to block-level system reconfiguration provided as a first attempt to characterize self-healing software
systems by surveying some of the existing work in the field [16]. Goutam S. illustrated critical points of the
emergent research topic of Self-Healing Software System, described various issues on designing a self-healing
software application system that relies on-the-fly error detection to repair web applications or service agent code
data [17]. Edward presented a computational geometry technique and a supporting tool to tackle the problem of
timely fault detection during the execution of a software application [18]. Harald and Schahram focused on the
self-healing branch of the research and gave an overview of the current existing approaches and their characte-
ristics [19]. Dabrowski et al. during communication failure he used architectural models to characterize how ar-
chitecture, consistency-maintenance mechanism, topology, and failure-recovery strategy each contribute to self-

A. A. Hudaib, H. N. Fakhouri

160

healing and they proposed the contribution of individual self-healing and strategies to quantify [20].
The comparisons between the different auto recovery researches according to the method used and the re-

sulted tool or system are presented in Table 1.

3. Software Fault Detection and Recovery (SFDR) Approach
To explain the proposed approach we will start by explaining SFDR development life cycle, then present the
SFDR main components, and show the of the recovery mechanism of SFDR.

3.1. SFDR Development and Life Cycle
SFDR is developed during the software life cycle, its model suggest the integration and developing during the
software life cycle by building companion software to it (SFDR) for the targeted software that is being built.
SFDR use the components of the implementation process as an input for the requirement analysis and for the
SFDR development. Analyzing these components provide a wide strong knowledge base for the auto recovery
of the system that leads it through the diagnosis and contain all the required information about the components
of the software.

Developing SFDR aims to perform a healing process for the targeted software. Building SFDR mainly relay
on the nature and structure of the released components of the targeted software. The SFDR life cycle is shown in
Figure 1 which illustrates that the SFDR knowledge will be based on the design and implementation processes.
While SFDR life cycle is shown in Figure 1.
• Requirement Specification: Define the requirement specification of the target software.
• Analysis: Analyze the flow charts, diagrams, and components of the target software to get information about

the components such as (installation folder, size of files, types, name, has, date created, manufacturer).
• Design: Design the target software and draw its diagrams such as class diagram and use case diagrams.

These diagrams are used in building the SFDR.

Table 1. Classify different auto recovery researches according to the method used and the resulted tool or system.

Author/s Methodology Tools

Tom et al.
2009 [21]

Based on statistical information retrieved from
an instrumented version of the program under analysis.

Zoltar tool that adopts a technique
to localize software faults.

Alessandra
Gorla, 2009 [22]

Automatically locates the faults underlying
the failures, derive assertions to effectively detect

functional failures, and identify sequences of
actions alternative to the failing sequence to

bring the system back to an acceptable behavior.

Techniques to build software systems
that can automatically heal such failures.

Ammo Krueger,
2010 [23]

Intercepts requests and decides on a per-token
basis whether a token requires automatic “healing”.

Protocol-aware reverse HTTP proxy TokDoc
(the token doctor) an intelligent mangling technique,
which, based on the decision of previously trained

anomaly detectors, replaces suspicious parts in
requests by benign data the system has seen in the past.

Jens Ehlers, 2011
[24]

Incorporating architectural information about the
diagnosed software system, Time series analysis

of operation response times is employed for anomaly
localization. Comprising quality of service data,

such as response times, resource utilization,
and anomaly scores, OCL-based monitoring

rules specify the adaptive monitoring coverage.

An approach for localizing performance
anomalies in software systems employing

self-adaptive monitoring, implemented as part of
the Kieker monitoring and analysis framework.

Boris Koldehofe,
2013 [25]

Eliminates the need for persistent checkpoints
rollback-recovery by allowing for recovery

from multiple simultaneous operator failures.

Event processing model to determine save
oints and algorithms for their coordination

in a distributed operator network.

Thorat et al.
2015 [26]

Rapid recovery (RR) mechanism to perform
an immediate link recovery at the switch

level without overburdening the controller.

Self-healing SDN framework which can optimize
the recovery by applying autonomic principles and
analytical model for calculating the failure recovery

time and the backup flow rules required for recovery.

Katti et al.
2015 [14]

Algorithms are based on Gossip protocols
and are inherently fault-tolerant and scalable.

Compares two novel failure detection
and consensus algorithms.

A. A. Hudaib, H. N. Fakhouri

161

Figure 1. SFDR development.

• Implementation: Implement the target software. The code of the target software is used by SFDR to define

the implemented components of the software and to build how to diagnose, monitor, and to recover these com-
ponents.
• Testing: Test the target software.
• SFDR Development: The development process of SFDR includes the following:
-Building database: This step is done by storing all of the information about the software component (i.e. size

of files, types, name, has, date created, manufacturer) in the database records that will be used in the diagnosis
of the software.

-Testing the SFDR: This step aims to test SFDR before release to avoid any mistakes in the functionality or
performance.

-Distributing SFDR: SFDR will be distributed as a separate package from the software and its function is to
detect faults and to recover them.

3.2. SFDR Components
SFDR is developed at the time of developing the targeted software. The SFDR database and SFDR software, the
way these are developed will have the functionality and capability to guide SFDR in the diagnosis and healing
steps. SFDR healing mechanism starts when the user install it in the client computer that has the missing func-
tionality i.e. software fails to run, a suspected behavior, change in the performance or the excepted results of the
software. It will have the capability to diagnose, and heal the software. SFDR main components are shown in
Figure 2.

When the user detects a change in the software he request SFDR, SFDR starts the auto detection and recovery
functionality as soon as the user run it; SFDR has a build in database that has information about the software,
structure and components. SFDR starts by Analyzing then comparing the components next to diagnosis then
Healing and finally Reporting and providing notification.
•Analyzing: as soon as SFDR run, it will start the analyzing process; it gathers information about the installed

software and prepares it for the next step. The analysis of the software components includes gathering informa-
tion about the files such as name, date of creation, date of last modified, hash of the file, and size.
•Comparing: the comparison step aims to compare the information that we have got from the analysis to the

data stored in the database.
•Diagnosis: here it decides whether the system needs to be healed or it is in good health. In this step a solution

to the system will be required and suggested if the system is infected or in defect state. SFDR provides Diagno-
sis for the software in an automated manner and for many cases such as software failure to run. SFDR corrects
the fault by reversing the software component to its original state and this heals the software. According to pre-
vious information defined by the preprocess phase in the system, SFDR can diagnose the following cases: Dele-
tion of component that cause the system to fail to run, change of component by external factor either human or
non-human factor, original component replace, or addition of external component to the software folder.
•Connect to server: after determining the component that is needed to be compensated or replaced. SFDR es-

tablishes a connection to the server to get original component.
•Download and install components: SFDR will download and install it to make sure that the software original

A. A. Hudaib, H. N. Fakhouri

162

Figure 2. SFDR components.

components with no modification or defect, using different procedures for different cases that the software may
face i.e. replacing infected component, compensating a deleted component.
•Reporting and notification: The unexpected activities and the healing activities will be reported to the central

database of the software and a notification will be sent to the user and the manufacturer. Analyzing the reports
sent by SFDR will help to determine the solution and distributing it through SFDR makes it to exhibit the Pre-
vention feature of software reengineering process. For example, if the reason that caused the software fault is il-
legal access and deleting of a component. Then analyzing the reasons and discovering the cause will make the
software owner take several procedures to prevent further cause. This feature makes the software more easily
corrected, adapted, and enhanced and because of this the report is sent to the software manufacturer then they
will take the analysis results into consideration in designing better software that avoids any leak that the report
have shown. Then the software engineers will consider the results in their future software design.

3.3. The SFDR Auto Detection and Recovery Mechanism
When the user detects a defect or any type of error in the application software installed on his computer, he
download the SFDR that is specified for the software that he wants to fix. As soon as he run SFDR it starts to
work by first Counting the number of components of the software after that SFDR analyze the software compo-
nent to get component information: type, size of component, name, date created , hash of component , last mod-
ified date.

Figure 3 shows the flow chart of SFDR auto detection and recovery Mechanism. SFDR automatically mod-
ifies the application to detect and recover the fault. The changes that have happen will be reported to the soft-
ware developer. If the error happened often then the recorded information will guide the software developer for
the reason by analyzing the stored information or the affected component. If the reason is from the software it-
self then it will be recorded as new detected defect in the software then the developer will contact all other in-
stalled software to run SFDR so that it correct similar defect and perform the suitable replacement to enhance
the software.

A. A. Hudaib, H. N. Fakhouri

163

Figure 3. SFDR auto detection and recovery mechanism.

4. Evaluation of the Proposed Approach
To evaluate SFDR effectiveness the following cases are used:

I. The normal case; the normal case is defined by the case that no change has been made to the software
component after installation.

II. The deletion case. Where one component/s has/have been deleted from the software installed folder.
III. The replacement case; where a component has been replaced by another one with the same name and ex-

tension.
IV. The modified case; in this case a file has been modified manually.

4.1. Evaluation Based the Ability of SFDR to Heal Different Cases
4.1.1. Case I: Normal: No Change Has Been Done to the Software
SFDR compares the software component with the information that it has on the database. In case of no changes
has been found, no action will be taken, the set of procedures performed by the SFDR are shown in Figure 4.

A. A. Hudaib, H. N. Fakhouri

164

Figure 4. High level SFDR response algorithm for normal case scenario.

4.1.2. Case II: Deletion of Component
SFDR detected the deleted component and compensate it. A set of procedures performed by the SFDR are
shown in Figure 5.

4.1.3. Case III: Replacement with Similar Component
For testing this case we have replaced a component that has similar file name and similar extension found in one
of the software installed folder. SFDR responded to this case by deleting the affected component and restoring
the original component. The set of procedures performed by the SFDR are shown in Figure 6.

4.1.4. Case IV: Modifying a Component
SFDR responds to this case by deleting the modified component and restoring the original component. The set
of steps performed by the SFDR are shown in Figure 7.

4.2. Average Recovery Time Measurement
To measure the performance of the SFDR; we will calculate the Average Recovery Time (ART) for SDFR when
a component fault occurs, taking into account the software size and the defect component size. Equation 1 is
used to calculate the ART.

()ART SFDR SFDR _ DIT DET RT= + + (1)

where SFDR_DIT is SFDR download and installation time; DET is SFDR Detection Time; RT is Recovery
Time which include (component replacement time).

To compare this performance, we calculate the average recovery time for software re-installation ART(SW
Re_inst) when a component fault occurs, taking into account the software size and the defect component size.
Equation 2 is used to calculate the ART.

()ART SW Re _ inst UT SDT SW _ inst= + + (2)

where UT is the software Un-installation time; SDT is software download time; SW_inst software install time.
To compare the SFDR performance with software reinstallation, the experiments has been performed in the

following technical environment. The internet download speed of 2.2 MB and upload speed of 1.46 using ping
of 50 ms measured using [27], Windows 7 operating system, RAM of 4 G, Processor Intel core™ i3 -311M , 2.4
GHz.

A. A. Hudaib, H. N. Fakhouri

165

Figure 5. High level SFDR response algorithm for deletion case scenario.

Figure 6. High level SFDR response algorithm for replacement with similar component case scenario.

We tested several cases to make defect in different component size in the system to measure the average re-

covery time for SFDR,
Table 2 shows the experimental results of the SFDR and the software re-installation time. The experimental

results show that the average recovery time for SFDR is lower than the average recovery time for the re-install
times because the recovery process involve replacing the defect component which size is always lower than the
whole software. The comparison results are represented in Figure 8.

4.3. Comparison of SFDR with Other Approaches
Table 3 shows the comparison between SFDR and other approaches (Microsoft Windows System Restore,

A. A. Hudaib, H. N. Fakhouri

166

Figure 7. High level SFDR response algorithm for modifying a component case scenario.

Figure 8. Comparing average recovery time for SFDR VS software reinstalling method using different software and differ-
ent defect component size.

A. A. Hudaib, H. N. Fakhouri

167

Table 2. Comparing average recovery time for SDRF VS average recovery time for reinstalling the software according to
software size and the defect component size.

Total Software
Size (MB)

Size Of Defect
Component (KB)

Average Recovery Time
for Re-install the software (MS)

Average Recovery
Time in SFDR (MS)

10 412 162.5 213.6

15 91 243.75 117.3

20 225 325 157.5

25 291 406 177

30 617 487 275

35 188 568.75 146.4

40 566 633 259.8

45 171 698.75 141.3

50 588 820.6 266.4

100 463 1722.5 133.8

300 478 4875 233.4

500 756 8125 316.8

Table 3. Comparison between MS windows system restore, ASSURE, exception handlers and SFDR.

Approach/methodology/system
Feature

MS Windows
(System Restore.
(Ed Bott, 2009)

ASURE
(Stelios

Sidiroglou, 2009)

Exception Handlers
for Healing

(Herve Chang, 2013)

The SFDR
Approach

Recover error
resulting from deleting

software component
Yes No No Yes

Recover and Replaced
component that

has same functionality
No No Yes Yes

Fault recovery No Yes No Yes

Generate reports of
the default diagnosis and

the recovery process
Yes No No Yes

Store the affected
component for
future analysis

No No No Yes

Approach of repairing System Restore

Dynamically patches
the running production

application to
self-checkpoint

at the rescue point

Heal fault s activated by
exceptions raised in the

OTS components actually
deployed in the system

Automatically including
Comparing, analyzing,

diagnosing and recovery
to return the software to
its original status of the

manufacturer

State of the recovery To a specified
restore point

To a specified
rescue point.

Original state of
the manufacturer

To the
manufacturer
state either
the original

or with updates

Knowing the structure of the
software and its component Yes Yes Ye s Yes

Recovery time After release After release After release After release

Building time
During the

development
of the software

During the
development

of the software

During the
development

of the software

During the
development

of the software

A. A. Hudaib, H. N. Fakhouri

168

ASURE, and Exception Handlers) based on set of features such as Recover error resulting from deleting soft-
ware component, Recover and Replaced component that has same functionality, Fault recovery, Generate re-
ports of the diagnosis of the problem and the healing process, Store the affected component for future analysis,
Approach of repairing, State of the recovery, Knowing the structure of the software and its component, Recov-
ery time, and the building time.

5. Conclusions and Future Work
This paper presented Automated Approach for Software Fault Detection and Recovery (SFDR). SFDR has the
required information about the software that is needed to diagnose and recover the software from fault. A set of
cases have been developed to test SFDR. The results of the experiments with different cases illustrated the abil-
ity and efficiency of SFDR to diagnose and recover software even with cases of software fails to run.

For the future work, the proposed approach can be enhanced by applying data mining techniques to make
SFDR more efficient in fault recovery.

References
[1] Huebscher, C. and McCann, A. (2008) A Survey of Autonomic Computing Degrees, Models, and Applications. ACM

Computer Survey, 40, Article No. 7. http://dx.doi.org/10.1145/1380584.1380585
[2] Dashofy, M., André, H. and Richard, T. (2002) Towards Architecture-Based Self-Healing Systems. WOSS’02, Char-

leston. http://dx.doi.org/10.1145/582128.582133
[3] Hudaib, A., Al-Zaghoul, F., Saadeh, M. and Saadeh, H. (2015) ADTEM-Architecture Design Testability Evaluation

Model to Assess Software Architecture Based on Testability Metrics. Journal of Software Engineering and Applica-
tions, 8, 201.

[4] Michael, S. (2005) Self-Healing Component in Robust Software Architecture for Concurrent and Distributed Systems.
Science of Computer Programming, 57, 27-44. http://dx.doi.org/10.1016/j.scico.2004.10.003

[5] Jiang, M., Zhang, J., Raymer, D. and Strassner, J. (2007) A Modeling Framework for Self-Healing Software Systems.
Lecture Notes in Computer Science, 7003, 61-68.

[6] Selvin, G., David, E. and Lance, D. (2002) A Biologically Inspired Programming Model for Self-Healing Systems.
WOSS’02 Proceedings of the First Workshop on Self-Healing Systems, Charleston, November 2002, 102-104.
http://dx.doi.org/10.1145/582128.582149

[7] Fuad, M., Deb, D. and Baek, J. (2011) Self-Healing by Means of Runtime Execution Profiling. Proceedings of 14th
International Conference on Computer and Information Technology (ICCIT 2011), Dhaka, 22-24 December 2011,
202-207. http://dx.doi.org/10.1109/iccitechn.2011.6164784

[8] Montani, S. and Cosimo, A. (2008) Achieving Self-Healing in Service Delivery Software Systems by Means of Case-
Based Reasoning. Applied Intelligence, 28, 139-152. http://dx.doi.org/10.1007/s10489-007-0047-1

[9] Park, J., Youn, H., Lee, J. and Lee, E. (2009) Automatic Generation Techniques of a Resource Monitor Based on Dep-
loyment Diagram. ICHIT’09 Proceedings of the 2009 International Conference on Hybrid Information Technology,
New York, 2009, 189-192.

[10] Naftaly, M. (2003) On Conditions for Self-Healing in Distributed Software Systems. Proceedings of the Autonomic
Computing Workshop, 25 June 2003, 86-92. http://dx.doi.org/10.1109/ACW.2003.1210208

[11] Diaconescu, A. (2003) A Framework for Using Component Redundancy for Self-Adapting and Self-Optimizing Com-
ponent-Based Enterprise Systems. Proceeding OOPSLA’03 Companion of the 18th annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’03), New York, 2003, 390-391.

[12] Brumley, D., Newsome, J. and Song, D. (2007) Sting: An End-to-End Self-Healing System for Defending against In-
ternet Worms Book. In: Christodorescu, M., Jha, S., Maughn, D., Song, D. and Wang, C., Eds., Malware Detection
and Defense, Advances in Information Security, Vol. 27, Springer, United States, 147-170.

[13] Dinkel, M. (2008) A Novel IT-Architecture for Self-Management in Distributed Embedded Systems. PhD Thesis, TU
Munich.

[14] Katti, A., Fatta, G. and Naughton, T. (2015) Scalable and Fault Tolerant Failure Detection and Consensus. EuroM-
PI’15 Proceedings of the 22nd European MPI Users’ Group Meeting, Bordeaux, 21-23 September 2015, Article No.
13. http://dx.doi.org/10.1145/2802658.2802660

[15] Hervé, C., Leonardo, M. and Mauro, P. (2013) Exception Handlers for Healing Component-Based Systems. ACM
Transactions on Software Engineering and Methodology (TOSEM), 22, 1-40.

[16] Angelos, K. (2007) Characterizing Self-Healing Software Systems, Computer Network Security of the Series Commu-

http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/582128.582133
http://dx.doi.org/10.1016/j.scico.2004.10.003
http://dx.doi.org/10.1145/582128.582149
http://dx.doi.org/10.1109/iccitechn.2011.6164784
http://dx.doi.org/10.1007/s10489-007-0047-1
http://dx.doi.org/10.1109/ACW.2003.1210208
http://dx.doi.org/10.1145/2802658.2802660

A. A. Hudaib, H. N. Fakhouri

169

nications. Computer and Information Science, 1, 22-33.
[17] Goutam, S. (2007) Software—Implemented Self-Healing System. CLEI Electronic Journal, 10, 5.
[18] Edward, S., Kevin, L., Maxim, S., Chris, R. and Spiros, M. (2010) On the Use of Computational Geometry to Detect

Software Faults at Runtime. Proceedings of the 7th International Conference on Autonomic Computing, Washington
DC, 7-11 June 2010, 109-118.

[19] Harald, P. and Schahram, D. (2011) A Survey on Self-Healing Systems: Approaches and Systems. Computing, 91, 43-
73.

[20] Dabrowski, C. and Mills, K. (2002) Understanding Self-Healing in Service-Discovery Systems. WOSS’02 Proceedings
of the First Workshop on Self-Healing Systems, Charleston, 18-19 November 2002, 15-20.

[21] Tom, J., Arjan, R.A. and van Gemund, J.C. (2009) Zoltar: A Spectrum-Based Fault Localization Tool. SINTER’09,
Amsterdam.

[22] Alessandra, G., Mauro, P. and Jochen, W. (2009) Achieving Cost-Effective SOFTWARE Reliability through Self-
Healing. Computing and Informatics, 29, 93-115.

[23] Ammo, K., Christian, G., Konrad, R. and Pavel, L. (2010) TokDoc: A Self-Healing Web Application Firewall.
SAC’10, Sierre. http://dx.doi.org/10.1145/1774088.1774480

[24] Ehlers, J., André, H., Jan, W. and Wilhelm, H. (2011) Self-Adaptive Software System Monitoring for Performance
Anomaly Localization. ICAC’11, Karlsruhe.

[25] Boris, K., Ruben, M., Umakishore, R. and Marco, R. (2013) Recovery without Checkpoints in Distributed Event
Processing Systems. DEBS’13, Arlington. http://dx.doi.org/10.1145/2488222.2488259

[26] Thorat, P., Raza, S.M., Nguyen, D.T., Hyunseung, G., Choo, I. and Kim, D.S. (2015) Optimized Self-Healing Frame-
work for Software Defined Networks. IMCOM’15 Proceedings of the 9th International Conference on Ubiquitous In-
formation Management and Communication, Article No. 7. http://dx.doi.org/10.1145/2701126.2701235

[27] http://www.speedtest.net/

Submit or recommend next manuscript to SCIRP and we will provide best service for you:
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

http://dx.doi.org/10.1145/1774088.1774480
http://dx.doi.org/10.1145/2488222.2488259
http://dx.doi.org/10.1145/2701126.2701235
http://www.speedtest.net/
http://papersubmission.scirp.org/

	An Automated Approach for Software Fault Detection and Recovery
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Software Fault Detection and Recovery (SFDR) Approach
	3.1. SFDR Development and Life Cycle
	3.2. SFDR Components
	3.3. The SFDR Auto Detection and Recovery Mechanism

	4. Evaluation of the Proposed Approach
	4.1. Evaluation Based the Ability of SFDR to Heal Different Cases
	4.1.1. Case I: Normal: No Change Has Been Done to the Software
	4.1.2. Case II: Deletion of Component
	4.1.3. Case III: Replacement with Similar Component
	4.1.4. Case IV: Modifying a Component

	4.2. Average Recovery Time Measurement
	4.3. Comparison of SFDR with Other Approaches

	5. Conclusions and Future Work
	References

