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ABSTRACT 

In [1], the authors have proposed one high rate transmission scheme for Space-Time Block Codes (STBC) without ad-
ditional system source such as power, bandwidth and time slot. To maintain the full rank property of the coding gain 
matrix, we propose a set of STBCs for 4 transmit antennas transmission to transmit one additional information bit 
achieving rate-9/8. Another orthogonal STBC code with rate-1 is proposed in this paper within the set. It shows by 
computer simulation results that by employing the set of STBCs, it achieves better bit error rate (BER) performance and 
throughput than that of [1] with a valid BER improvement at the high SNR region above 20dB. 
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1. Introduction 

Since transmit diversity for wireless communication has 
been introduced in [2,3]. Space-time block coding (STBC) 
is an efficient transmit diversity scheme to combat detri- 
mental effects of wireless fading channels. STBC from 
orthogonal designs are attracting wider attention due to 
their amenability for fast maximum likelihood (ML) de- 
coding algorithm and full diversity [3,4]. STBCs are a set 
of practical signal design techniques aimed at approach- 
ing the information theoretic capacity for multiple-input 
and multiple-output (MIMO) channels. Alamouti code is 
an elegant and seminal STBC design for a two-transmit 
antenna system [4]. It achieves full-rate, i.e. rate one, full 
diversity transmission using two time slots for signals 
with complex constellations, which are employed in most 
current commercial wireless systems. The orthogonal code 
design from Tarokh et al. is a generalization of Alamouti 
code for systems with an arbitrary number of transmit 
antennas [2,3]. It has been proved however, the orthogonal 
design for complex signals with linear decoding com-
plexity achieving full-rate full-diversity transmission is 
not available for the number of antennas more than two 
[3]. The system with higher number of antennas has to 
either suffer from rate loss or put up with more decoding 
complexity. 

The class of linear STBC is the major category of 
space-time codes and can be divided into subclasses like 
Linear Dispersion Codes [5], Orthogonal STBC (OSTBC) 
[2-4] and Quasi Orthogonal STBC (QOSTBC) [6] which 

is typical designed for more than two antenna systems 
with increased, but not exponentially, decoding complex-
ity [4-6]. 

A class of STBCs [1,7] is proposed for a high rate>1 
transmission scheme by exploiting the inherent algebraic 
structure for 2 and 4 transmit antennas. In order to main-
tain the full rank property of coding gain matrix for two 
STBC codewords selected from two STBCs, respectively, 
one of two STBCs should be scaled by weighted factor 
and rotated by an angle. To compare the high rate trans-
mission scheme with the rate-1 case such as Alamouti 
and Jafarkhani schemes, the system performance is at-
tenuated due to rotating or scaling one transmit matrix 
selected from the class. In order to compensate the loss 
of system performance, we propose another orthogonal 
STBC matrix with rate-1 as one candidate in the set to 
maintain the full rank property of coding gain matrix for 
4 transmit antennas case while two codewords are se-
lected from two candidate matrices, respectively. Simu-
lation results show that the BER performance is similar 
with Jafarkhani code in the high SNR region (20-25dB) 
due to full rank property of coding gain matrix. 

2. System Model 

Consider a MIMO system with N transmitting and M 
receiving antennas with transmit vector 1[ , , ]Nx xx   
and flat block-fading channel [4] can be expressed as 

 Y XH N                (1) 
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are the matrices of the received signals, transmitted sig- 
nals, and noise, respectively,  is the  com- 
plex channel matrix which is composed of i.i.d complex 
Gaussian entries, and  is a vector of size M repre- 
senting the additive noise, T is the block length. Here, 

H N M

( )tn

1( ) [ ( ), , ( )],Mt y t y ty    1( ) [ ( ), , ( )],Nt x t x tx 

1( ) [ ( ), , ( )],Mt n t n tn   

are the complex row vectors of the received signal, trans- 
mitted signal, and noise, respectively. 

3. Original Works 

The author proposed one transmission scheme to transmit 
one additional information bit without additional source. 
The transmission scheme employs two STBC matrices 

1  and 2  to represent the information of bit b for 0 or 
1, respectively 
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column represents either a time instance for STBC, and 

1 2 3 4, , ,x x x x  are selected from an alphabet (QPSK 
 Superscript   denotes complex conjugate. 

The system performance is mainly dependent on the 
coding gain matrix between 1  and 2 . The coding 
gain defined in [2] 

Modulation).
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must be a full rank matrix with the determinant as large 
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coding gain matrix for 1  and 2.  

ˆ

 S at

1 2

2 1
1 2

1 2

2 1

ˆ 0 0

ˆ ˆ 0 0
,

ˆ ˆ0 0

ˆ ˆ0 0

x x

x x
C C

x x

x x

 

 

   
 
 

 

 



1̂x  and 2x̂



       (6) 

where   
Rem e co
 and  is one full rank matrix, the
uld fferent depending on the values of

arks: Although th ding ween 
 determinate 1

wo
2

 be di  .je   The 
m performance is weak because there are m ny null 

 th g matri

4. m

mulation results [1,7] show 
d Jafarkhani code [6] 

 SNR region (15-25dB). 

syste a
parts in e codin x. 

 Trans ission Scheme 

To check previous works [1,7], the diversity gain of high 
rate transmission of STBCs is weak compared to Jafark- 
hani code with rate-1. The si
that the BER gap between [1] an
has an almost 3dB gap in the high
We propose a new set of STBCs in this paper to transmit 
one additional information bit b with an improvement of 
BER performance compared to [1]. 

4.1. A Set of STBC Matrices 

Similar to the method of [1], we consider a set of 4 4  
STBCs consisting of two STBC matrices  QOSTBC 
[6] and  Here, we propose 

11
OSTBC as a

ission 
22. 22  

s tr
tion 

 can-
scheme didate and use 11  for 4-antenna

to transmit one additional informa
ansm
bit 

1 2 4

2 1 4 3
11 1 2 3 4

3 4 1 2

( , , , , 0) .

3

4 3 2 1

x x x x

x x x x
x x x x b

x x x x

x x x

   

   

 
 
       
  

   (7) 

x 


)

The is the Alamouti code [4] and shown as 



0
22 1 2 3 4

0

( , ) 0
( , , , , 1) .

0 ( ,

y z
x x x x b

y z

 
   

 





  (8) 

0 ( , )y z  

  
1 2

2 1

1 2 3 4

0

3 4 1 2

( , )

j j

j j

x e x x e x
y z

x e x x e x

 

  

  
      
 

    (9) 

   j j    

 
1 2

2 1

1 2 3 4

0

3 4 1 2

( , )
j j

x e x x e x
y z

x e x x e x 

       

  

j

  (10) 

where we denote y as 1
1 2x e x  and denote z as 

2
3 4 .jx e x   

rate proper
It is easy to ch orthogonality and full 

ty of 
eck the 

22  

2 2

2

2 2

0 0 0
,

0 0 0

y

y z

 
 

 


 
2

22

2 2

0 0 0

0 0 0

H

y z

z

y z

 

  

  

 

(11) 

where  denotes absolute value and H denotes the 

Copyright © 2013 SciRes.                                                                                   CN 



Y. YAN  ET  AL. 50 

Hermitian of a matrix. 

4.2. Angle Selections for 1  and 2  
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5. Numerical Results 

In this section, some simulation results demonstrate va- 
lidity of the propose

1Y HX

it tric

d transmission scheme. QPSK modu- 
lation and flat fading channel are consid
lations. Two combinations of 

ered in all simu- 

1  and 2  are shown to 
verify the BER performance depending on different val- 
ues of 1  and 2  in Figure 1. 

Figure 2 shows the BER performances versus SNR to 
compare the proposed design with the QOSTBC  (7) 

nal high rate desi 1] 
 and receiving an he 

gh

 v a R  10-2 he 
re

1
gn [

tennas. T

0dB. T

ate

design [6] and conventio
equipped with 4 transmitting
system performance of the proposed OSTBC 22  (8) 
deserves a similar performance with 11  above 20dB. In 
the high SNR region 20-25 dB of 11 , the BER per-
formance of the proposed hi  rate-9 8 transmission 
scheme is similar to the QOSTBC case, but there also 
exists a isible g p in the low SN

/

region
ason is that the system performance depends on 11,  

22  and coding gain matrix between them, and the curve 
should deserve a similar form with 11  and 22 . 
Moreover, the BER performance of proposed design is 
almost 2dB away from the conventional high r -9/8 
design with power scaling or angle rotation [1] at the 
BER of 510 .  

In Figure 3, the effective throughput performance is 
shown to compare the proposed scheme and the original 
works [1]. The effective throughput is defined as   
2 (1 ),R FER  where R is the space-time code rate  

 FER means the frame error rate, and each frame 
 

 [2]
and  

 

 

Figure 2. BER performance of high rate design for 4 an-
tennas. 
 

 

Figure 3. Effective throughputs of high rate design for 4 
ntennas. 

 
contains 9 bits information. In the high SNR region 

a

0FER   similar to Figure 2 that the $FER$ corre-
sponds to BER and the BER performance of the pro-
posed scheme is better than that of [1], the proposed 
transmission scheme achieves 2.25 bits per channel 
transmission whereas the effective throughput of the 
QOSTBC is 2 bits. A crossing point exits at a SNR level 
of 12dB. Similarly, the effective throughput performance 
of high rate-9/8 [1] is also simulated in this figure. From 
10dB to 20dB of SNR, the effective throughput has been 
improved compared to [1] due to low FER in the pro-
posed design. 

6. Conclusions 

to transmit one additional information bit 
A new set of STBCs including OSTBC and QOSTBC is 
proposed 
achieving high rate-9/8. The OSTBC is an candidate in 
the set to maintain the full rank property of the coding 

Figure 1. BER performance of high rate design with differ-
ent angles. 
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ix. From the simulation results, the system per-
formance is improved with a similar BER performance to 
Jafarkhani scheme in the high SNR region. In the future 
works, we are interested in enlarging the set of STBC 
matrices and combining some error correcting codes to 
reduce the coding rate to achieve better system perform-
ance by exploiting the additional information bit. 
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