
Communications and Network, 2012, 4, 139-145
http://dx.doi.org/10.4236/cn.2012.42018 Published Online May 2012 (http://www.SciRP.org/journal/cn)

An Average Power Reduction Method for Web
Applications on Wireless Terminals

Toshiya Koyasu, Hideki Shimada, Kenya Sato
Department of Information Systems Design, Doshisha University, Kyoto, Japan

Email: t.koyasu35880@gmail.com, hideki-s@is.naist.jp, ksato@mail.doshisha.ac.jp

Received February 11, 2012; revised March 20, 2012; accepted April 17, 2012

ABSTRACT

Recently, there is a widespread use of Web browser-based Web applications such as e-mails and chats. However, fre-
quent communication between mobile wireless terminals and HTTP servers give rise to problematic increases of ave-
rage power consumption for the mobile devices. Current attempts to tackle this problem focus on reducing power con-
sumption at the network and data link layers used by the devices. In this study, we propose a different solution where
certain functionalities of the mobile application are delegated to other devices with abundant power resources (either
from large capacity batteries or power outlets). This method off-loads parts of the communication process normally
done at wireless terminals to amply powered machines. With messages pushed from the machines only when the HTTP
server responds with an update, the wireless terminal needs to transmit data less frequently, thus cutting down on power
consumption. Our prototype implementing the proposed method succeeded in reducing the rise in average power con-
sumption.

Keywords: Web Applications; Ajax; Wireless Communication

1. Introduction

Recent years have seen a growth of smart phones and
other wireless devices with sophisticated Web browsers
[1], making it possible and more practical to use Web
pages and applications from wireless terminals. This has
also made common the use of Ajax applications from
wireless terminals. Ajax applications are notable for their
high usability and their convenience of not having to in-
stall additional software. Some examples of these are
text-based chats and email applications that let users
communicate using the Web browser as the interface.

However, the use of Web applications with Ajax tech-
nology on a wireless terminal, ones that synchronize data
updates on the server with Web browser displays, poses a
problem: High power consumption. In this study, we pro-
pose a method of reducing power consumption at the
wireless terminal while using Ajax [2] applications.

2. Device Power Consumption

2.1. Web Applications

Ajax is an approach to Web applications that attempts to
improve on usability. Web application usability is tied to
the way the browser and the HTTP server communicate
with each other: a critical functionality for a Web appli-
cation. Traditional Web applications without Ajax would

reload the whole displayed page every time this needs to
be done. This action causes unfavorable user experience
because it temporarily removes UI components such as
text boxes and buttons from the display, and could possi-
bly interrupt the user’s tasks. On the other hand, Ajax
applications only update parts of the display, only when
they need to be updated. UI components remain visible,
which leads to higher usability.

Figure 1(a) shows an example of how an Ajax appli-
cation works. In this application, the user types a product
ID in the ID text box and presses the SEARCH button. A
search is then conducted in the remote database for the
corresponding product. The result is displayed in the
NAME text box while other parts of the UI remain as
they are. Figure 1(b) is the sequence of actions begin-
ning with the ID input and ending with the product name
display.
 Web browser: The front-end of the Web application.
 HTTP Server: A collection of Web, application and

database servers that is the back-end of the Web ap-
plication.

 XHTML File: The file that defines the visuals and
functionalities of the Web application.

 Javascript: The scripting language used to embed ex-
tended functionalities on the Web page.

 Ajax engine: The Javascript program (a group of
functions) that provides HTTP communication and UI

Copyright © 2012 SciRes. CN

T. KOYASU ET AL. 140

Figure 1. Behavior of the Ajax application.

updating.
 XML Http Request: An HTTP client library that can

be used from a Javascript program.
 UI Tags: The XHTML tags that define the Web appli-

cation’s UI.
The basic components and actions 1) through 4) in the

figure are as follows:
1) The user types the product number in the ID text

box and presses the SEARCH button. A function defined
in the Ajax engine is called as an event handler for the
button press event.

2) The function retrieves the ID text box value and
sends it to the server using XML Http Request. At the
same time, another Ajax engine function is registered as
a handler for the event that occurs when a response is re-
ceived.

3) The HTTP Server resolves the product name based
on the value received, and sends back a response to XML
Http Request.

4) XML Http Request calls the event handler regis-
tered in action 3). The handler inserts the product name
into the NAME text box.

2.2. Synchronous Applications

An application where browser display updates are syn-
chronized with server data updates, such as a browser-
based chat application, would update the browser display
to show a newly submitted message when it is posted to
the HTTP server. We call this type of application a “syn-
chronous application”. The Web being a pull-based com-
munication system, a synchronous application would need

to somehow send request messages periodically from the
browser to the HTTP server. We will take the chat appli-
cation as an example to describe how these messages can
be sent.

1) Non-Ajax method
B-Chat [3] achieves periodical requests with client pull,

a feature in which XHTML files are re-retrieved and re-
displayed periodically. B-Chat uses this feature to get the
XHTML file with the latest messages every once in a
while. With client pull, the whole browser display must
be reloaded every time synchronization occurs, so the
user wouldn’t be able to operate on the page if the sync
interval is too short. Therefore, applications that use
client pull tend to set the sync interval to longer periods
compared applications using Ajax. B-Chat uses a 30 se-
cond sync interval.

2) Ajax method
Ajax Chat [4] achieves periodical requests using Java-

script functions in its Ajax engine. Applications using
this method can set shorter sync intervals because only
specific parts of the browser display needs to be updated.
The user is not interrupted by synchronization. Rather,
the shorter the sync interval, the smaller the latency of
display update after data is updated on the server, so ap-
plications that use Ajax tend to set shorter sync intervals
compared non-Ajax applications. Ajax Chat uses a 2 se-
cond sync interval.

Mobile wireless terminals consume more power when
communicating via its wireless network interface. A
study [5] done by Carroll et al. shows that a particular
device’s power consumption while communicating was
1016.4 mW, which was 6.31 times higher than while off
communication (161.2 mW). We can generally say that
using an application with a high rate of communication
on a wireless terminal increases its energy consumption.
A synchronous application is one of them. Ajax applica-
tions in particular communicate more frequently com-
pared to others, so the problem is grave and needs to be
addressed.

3. Proposed Method

Approach

To reduce average power consumption on a device using
synchronous Ajax applications, we propose the two fol-
lowing approaches to off-load transactions and reduce
communication frequency.
 Delegating communication to other machines:

We use other devices to carry out the actual commu-
nications for the wireless terminal while data updates
are less frequent. We call this other device the “Sur-
rogate Device”. Devices fit for this role are ones with
network connections that have large capacity batteries
or enjoy access to steady power from outlets. Some

Copyright © 2012 SciRes. CN

T. KOYASU ET AL. 141

examples would be desktop PCs with their screen
savers running, idle servers, and networked home ap-
pliances [6] that are to be introduced in the near fu-
ture.

 Using push-based communications to deliver updates:
We use push-based communications to send updated
data to the wireless terminal after the Surrogate De-
vice retrieves them from the HTTP server. In push-
based communications, the data is sent from the pub-
lisher to the recipient without the recipient requesting
it. Thus the wireless terminal does not need to poll the
Surrogate Device for updates.
Figure 2 shows the proposed communication model

for this transaction off-loading. Descriptions of the com-
munications 1) through 4) are as follows:

1) Direct communication: This phase is used to detect
communication done by synchronous Ajax applications
against the HTTP server. After a communication is de-
tected, the system checks to see if there are updates at the
HTTP server. If the data is updated frequently at the re-
mote server, the wireless terminal continues to commu-
nicate directly with the server, as off-loading would only
have trivial effects. This also avoids the overhead time
produced by off-loading.The same is done for non-Ajax
synchronous applications; they communicate directly
with the HTTP server.

2) Surrogate Communication Request: If data updates
at the HTTP server are infrequent, then the wireless ter-
minal requests the Surrogate Device to carry out the ac-
tual communications. We call this request the “Surrogate
Communication Request”, and the message sent at this
time the “Surrogate Communication Request Message”.
The wireless terminal suspends communications after
sending out this request.

3) Surrogate communication: The Surrogate Device,
upon receiving a Surrogate Communication Request,
checks the HTTP server for data updates.

4) Surrogate Communication Response: If data is up-
dated on the remote server, the Surrogate Device ends

Figure 2. Communication model of the transaction offload.

communications with the HTTP server and pushes the
updated data back to the wireless terminal. We call this
push the “Surrogate Communication Response” and the
message sent at this time the “Surrogate Communication
Response Message”.

4. Prototype Implementation

Figure 3 shows the setup of the prototype we imple-
mented to evaluate the proposed method. Each of the
components are shown corresponding to Figure 2. The
prototype consists of the Master Gateway (MGW), re-
siding on the wireless terminal, and the Slave Gateway
(SGW), residing on the Surrogate Device.

4.1. Master Gateway

The MGW is the module to be used by the browser as a
local proxy server. As with a generic local proxy server,
the MGW relays communications between the browser
and the HTTP server and caches the server responses. In
addition to this basic functionality, it also distinguishes
the transactions that are taking place. This is done based
on the request URI after stripping it of the query para-
meters. Each of the transactions is assigned a defined
state. The state assigned to a transaction is checked when
the browser sends a request. Subsequent behavior of the
MGW depends on the state of each of the transactions.
The four states and their corresponding actions are as
follows:
 Ajax Communication Detection State AJAX_DET:

In the initial state, AJAX_DET, the MGW scans the
communications between the browser and the HTTP
server and detects those that are done by Ajax appli-
cations. This is done by finding JSON objects (pack-
ages of data often used with Ajax applications) in the
HTTP server’s response messages. The MGW finds
JSON objects by checking the Content-Type header
in HTTP responses. Once the MGW detects an Ajax
communication, the state transitions to UPSTOP_
DET.

Figure 3. Components of the prototype.

Copyright © 2012 SciRes. CN

T. KOYASU ET AL. 142

 Update Stop Detection State (UPSTOP_DET):
In the UPSTOP_DET, the MGW attempts to detect
whether updates at the HTTP server has ceased tem-
porarily. The MGW decides that updates have ceased
temporarily when the latest response from the HTTP
server is identical to the most recently cached response.
Once a temporary cease in communications has been
detected, the MGW sends a request message to the
SGW (the Surrogate Communication Request Mes-
sage) that contains both the browser’s request and the
server’s response, combined as a multi-part message
body. This is the Surrogate Communication Request
Message. The state now transitions to RES_WAIT.

 Response Waiting State (RES_WAIT):
In RES_WAIT, the MGW waits for a response from
the SGW. Any Ajax requests sent from the browser
are responded with cached contents. Completing all
communications within the wireless terminal in this
way has the effect of practically suspending its com-
munications. Once the SGW responds with a Surro-
gate Communication Response Message, the cache is
overwritten with the newly arrived data. The state
now transitions to RESD.

 Surrogate Response Delivery State (RESD):
In RESD, the MGW delivers the Surrogate Commu-
nication Response Message to the browser. The mes-
sage, which is the cache contents that have been over-
written, is delivered in response to requests from the
browser. The state transitions back to UPSTOP_DET
at this point.

4.2. Slave Gateway

The SGW is the module that receives Surrogate Commu-
nication Requests from the MGW and carries out the
communications for the wireless terminal; it sends out
the request message contained in the Surrogate Commu-
nication Request Message periodically to the HTTP ser-
ver. Consecutive responses from the server are checked
to see if they differ from the sample response message
contained in the Surrogate Communication Request
Message. If in fact the responses do differ, the SGW
decides that the remote data has been updated, and
pushes the new response (the Surrogate Communication
Request Message) to the MGW and terminates com-
munications with the server.

4.3. Method of Content Transmission

For content transmission from the SGW to the MGW, we
adopt the long polling method, which is used to achieve
pseudo-pushing in pull-based communication systems
such as the Web. In long polling, the client initially sends
a request to the server. The server, instead of responding
instantly, holds the request until a certain event occurs
(usually the arrival of newly available data). Once this

event occurs, the server sends a response to the client.
In this prototype, the SGW holds the Surrogate Com-

munication Request until it detects data updates at the
server.

5. Evaluations

5.1. Evaluation Items

To evaluate the proposed method, we implemented and
ran a sample application (described later) in various situ-
ations for 10 minutes each and evaluated the following
two points.
 The Number of transmissions by the wireless termi-

nal: We compared the number of times the wireless
interface was used to send and receive messages.

 Average latency: We compared the average latency of
the browser display update since the data update on
the server.

5.2. Evaluation Method

We used an application resembling the communication
model of an Ajax synchronous application, the chat. This
application has the following two front-ends.

1) Sender
The Sender front-end is the one that submits new chat

messages. It submits messages at normally distributed
random time intervals having an average of μ (msec.) and
a standard deviation of 250 (msec.). The requests have
two parts to its query parameter. One is a timestamp of
the request (the number of milliseconds since January 1st,
1970 at 00:00) that represents the time of submission of
the chat message. The other is a sequence of 140 ran-
domly selected Japanese Hiragana characters, encoded in
UTF-8, that represents the actual chat message.

2) Receiver
The Receiver front-end is the one that retrieves sub-

mitted chat messages. It sends out a request to the HTTP
server once every 3 seconds. The request has the time-
stamp of the request as the query (in the same format as
the Sender). The HTTP server responds with chat mes-
sages that were submitted later than this timestamp.

5.3. Method of Content Transmission

Table 1 shows the combinations of evaluation conditions,

Table 1. Evaluation cases.

 case 1 case 2 case 3 case 4

μ (msec) 3000 3000 9000 9000

T (msec) n/a 1500 n/a 1500

 case 5 case 6 case 7 case 8

μ (msec) 9000 27000 27000 27000

T (msec) 3000 n/a 1500 3000

Copyright © 2012 SciRes. CN

T. KOYASU ET AL. 143

consisting of μ (the average time intervals between mes-
sage submissions by the Sender) and T (the time intervals
between surrogate communications by the surrogate
communication device). T is shown as “n/a” where this
method is unnecessary.

5.4. Method of Content Transmission

Specifications of each device used in the evaluation are
shown in Tables 2-4. The devices all reside in different
networks, and the Sender and Receiver are used on the
wireless terminal.

During evaluation, we turned off the wireless device’s
HSDPA interface and used its IEEE 802.11 g interface,
and limited its throughput to that of HSDPA, which we
had measured in advance. This is in consideration of the
possibility that the HSDPA interface’s unstable through-
put may cause unpredictable effects on evaluation. We
used Iperf 1.7.0 [7] with a window size of 32 KB to mea-
sure the HSDPA interface’s through put. The limit ap-
plied to the IEEE 802.11 g interface is the average of 20
transmissions between the wireless terminal and the
HTTP server. The actual values are 80 Kbps upstream
and 40 Kbps downstream. We used NEGiES 1.57 [8] to
apply the throughput limits.

5.5. Evaluation Procedure

First, the Receiver starts retrieving chat messages. Once
the first response from the HTTP server is retrieved, the
Sender starts submitting chat messages. Both front-ends
are stopped after 10 minutes (counting from the initial
message retrieval by the Receiver). The number of trans-
missions by the wireless terminal and the average latency
are then evaluated.

Table 2. Specification of the wireless terminal.

CPU Atom Z520 1.33 GHz

Memory 1.00 GB

Network HSDPA [9], IEEE 802.11 g

Web Browser Firefox 3.6.13

Table 3. Specification of the surrogate device.

CPU Core2 Duo U9400 1.40 GHz

Memory 3.00 GB

Network 100 BASE-TX

Table 4. Specification of the HTTP server.

CPU Core 2 Duo E7500 2.93 GHz

Memory 2.00 GB

Network 100 BASE-TX

5.6. Evaluation Results

The resulting number of communications and the average
latency are shown as follows: cases 1 and 2 in Figures 4
and 5, cases 3 through 5 in Figures 6 and 7, cases 6
through 8 in Figures 8 and 9.

6. Discussion

Let us define the average increase in the wireless termi-
nal’s power consumption, compared to when the termi-
nal’s communications are halted, as

 1 com
avg com

t
w W

t
 

6.31comW 

10 60 600comt

. (1)

Here, Wcom is the rate in which power consumption in-
creases or decreases when communicating, compared to
when it is not. We set this according to the study by Car-
roll et al. (cited in Chapter 2) to

 (2)

it is the length of time the sample application ran, which
is

 (3)   

tcom is the total length of time (sec) the Receiver used the
wireless terminal’s interface to communicate.

Figure 10 shows the values of Equation (1) when ap-
plied to the evaluation results for cases 3 through 5. Fig-
ure 11 is for cases 6 through 8.

Figure 4. Number of communications on cases 1 and 2.

Figure 5. Average delay on cases 1 and 2.

Copyright © 2012 SciRes. CN

T. KOYASU ET AL. 144

Figure 6. Number of communications on cases 3 to 5.

Figure 7. Average delay on case 3 to 5.

Figure 8. Number of communications on cases 6 to 8.

Figure 9. Average delay on cases 6 to 8.

From Figure 11, we can see that the wireless termi-
nal consumed 14% more power when using the sample

Figure 10. Increase of average power on cases 3 to 5.

Figure 11. Increase of average power on cases 6 to 8.

application (case 6) and that our proposed method low-
ered it to 7% (cases 7 and 8). However, in Figure 10, the
average power consumption when not using our method
is 19% (case 3), which is lower than the 20% when it was
used (case 4).

There are two possible reasons for this. One is that the
HTTP server’s data update rate (approximately once
every 9 seconds) was relatively low for the sync rate
(approximately once every 3 seconds). As such, the num-
ber of transmissions eliminated was a trivial 14 times.
The other is that the size of the Surrogate Communica-
tion Request Message (963 bytes) was larger than that of
the data update request message in long polling (434
bytes) and the wireless terminal had to communicate for
a longer total time.

In summary, the proposed method can reduce power
consumption given that data update intervals are suffi-
ciently long compared to the sync interval of the syn-
chronous application. More specifically, we can conclude
that our method is effective if the data update intervals
are more than 9 times longer than the sync interval.

6.1. Overhead Time

Figure 5 shows that when surrogate communications do
not occur (case 2), our method has an increased average
overhead time of under 100 ms compared to when our
method is not used (case 1), which is acceptable. Figures
7 and 9 show that when surrogate communications do
occur (cases 4, 5, 7 and 8), the increased average over-

Copyright © 2012 SciRes. CN

T. KOYASU ET AL.

Copyright © 2012 SciRes. CN

145

head time can be held down to under 1 second if the in-
tervals of surrogate communications are approximately
half of the sync interval.

With the above evaluation results, combined with the
fact that synchronous applications do not impose real-
time constraints, we conclude that the overhead time in-
troduced by our proposed method does not impair prac-
ticality.

6.2. Comparisons with Related Methods

In the method proposed by Ishida et al. [10], the wireless
interface on the terminal is set to sleep mode every time a
transmission ends. A device called the Wakeup Module
is then used in place of the wireless interface to wait for
incoming transmission waves and wake up the wireless
interface when needed.

In the method proposed by Russel [11], the front-end
and the back-end of the Ajax application are modified to
adapt long polling (described in Section 4.3) to reduce
the communication rate: The HTTP server waits until
there is new data available to respond to the browser.

Both of these methods require specific expertise in
mobile devices or Web applications if they are to be ap-
plied to existing applications. As such, it is difficult if not
impossible for the end user to use those methods. In con-
trast, our method has the advantage of being able to be
used by the end user, since it does not require that modi-
fications be made on existing applications.

7. Conclusions

In this study, we proposed a method of off-loading a
wireless terminal’s communications to another device in
order to tackle the problem of increased power consump-
tion that occurs while using synchronous Ajax applica-
tions (applications that synchronize the Web browser’s
display with data updates on the server). Our evaluation
prototype kept the average increase in power consump-
tion.

We used a networked device as the Surrogate Device
in this particular study, but this method could potentially
be adapted to wireless base stations and Web servers
themselves.

Our method is a valuable contribution in the applica-
tion software level to the wide social needs [12] of longer

battery lives. Because this is a high-level method, we can
expect it to be used in conjunction with other low-level
technologies in hardware and communications.

8. Acknowledgements

This work was supported by JSPS Grant-in-Aid for Sci-
entific Research KAKENHI (2100084).

REFERENCES
[1] M. Stanley, “The Mobile Internet Report,” 2009.

http://www.morganstanley.com/institutional/techresearch/
mobile_internet_report122009.html

[2] J. J. Garrett, “Ajax: A New Approach to Web Applica-
tions,” 2005.
http://www.adaptivepath.com/ideas/ajax-new-approach-w
eb-applications

[3] http://www.adaptivepath.com/ideas/essays/archives/0003
85.php

[4] http://wws.cside.com/cgi-plant/b_chat/blueimp.net,
https://blueimp.net/ajax/

[5] A. Carroll and G. Heiser, “An Analysis of Power Con-
sumption in a Smart Phone,” Proceedings of the 2010
USENIX Annual Technical Conference, Boston, 23-25
June 2010, pp. 1-14.

[6] M. Isshiki, M. Hirahara and T. Kishimoto, “FEMINITY
Series Home Network System for Network Home Appli-
ances,” Toshiba Review, Vol. 57, No. 10, 2002, pp. 7-10.

[7] NLANR/DAST, “Iperf 2.0.3,” 2008.
http://iperf.sourceforge.net/

[8] RHOX, “NEGiES Version 1.57,” 2005.
http://hp.vector.co.jp/authors/VA036210/

[9] Japan Communications Inc., “B-Mobile3G,” 2009.
http://www.bmobile.ne.jp/english/3g.html

[10] S. Ishida, M. Suzuki, T. Morito and H. Morikawa, “A
Multi-Step Wake-Up Scheme for Low-Power-Listening
Wireless Communication System,” Technical Report of
IEICE, Information Network, Vol. 107, No. 525, 2008, pp.
355-360.

[11] A. Russel, “Comet: Low Latency Data for the Browser,”
2006.
http://infrequently.org/2006/03/comet-low-latency-data-f
or-the-browser/

[12] ORIMO Inc., “ORIMO Mobile Research, a Study on
Smart Phones,” 2010.
http://www.orimo-r.co.jp/upload_2/gif/phone0601.pdf

	1) Non-Ajax method
	2) Ajax method
	1) Sender
	2) Receiver

