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ABSTRACT 

Shutting down a link for the purposes of a scheduled routine maintenance does cause the forwarding path to change. If 
these changes are not done in a required order will cause not only transient micro loops but also an overload in some 
links. Currently, some ISP operators use a graceful link shutdown procedure by first setting up the Interior Gateway 
Protocol (IGP) link metric to MAX_METRIC − 1 and then shutdown the link. In this paper, we present a Pythagorean 
Triple Metric Sequence as a method to use to shutdown a link during such network operations. Conducting a link shut- 
down of any desired link for maintenance purpose is a very delicate duty that requires extreme care to prevent transient 
loops during such topological changes. We thus wish to demonstrate that there exists a Pythagorean Triple Metric Se- 
quence for any given link that can be used to shutdown a link during the routine maintenance by ISPs. 
 
Keywords: MAX_METRIC; Link Shutdown; Pythagorean Triple Metric Sequence; Target Metric; Forwarding Path; 

Planned Failures 

1. Introduction 

Internet Service Providers (ISPs) have an obligation to 
observe the conditions set in the Service Level Agree- 
ments (SLA) with their customers. One of the conditions 
is to ensure that ISPs minimize the duration of the loss of 
connectivity. Losses of connectivity are common occur- 
rences most especially in networks with larger topologies, 
although most of the times such losses of connectivity 
are unavoidable as the ISPs have to shut down the 
equipment for them to be able to conduct the scheduled 
routine maintenance. The link metric of a link can always 
be increased to a larger metric by progressively in- 
creasing the metric of the link by one, until the target 
metric is reached. Therefore the link can be shut down, 
by increasing its link metric until it becomes large that it 
cannot carry packets anymore. When the target metric 
has been reached, the link can then be safely shutdown 
[1]. 

Shutting down a link for the purposes of a scheduled 
routine maintenance alone accounts for about 20% of the 
total failures [2]. The shutting down of a link due to these 
operations is considered as planned failures. In this paper, 
we make reference mainly to these planned failures.  

Some ISP operators do even use some procedures to 
conduct a graceful link shutdown [3]. The procedure 
involves by first setting up the Interior Gateway Protocol 

(IGP) link metric to MAX_METRIC − 1 and then shut- 
down the link that is scheduled for routine maintenance.  

Shutting down a link for the purposes of a scheduled 
routine maintenance does cause the forwarding path to 
change. For instance, using a Simple Network model (in 
Figure 1) the forwarding matrices in Figures 2 and 3 
helps to illustrate the effect of shutting down a link on 
the forwarding path. The forwarding matrix in Figure 2 
is the forwarding information bases (FIB) for all the 5 
nodes when we have no link failure. However, in Figure 3  
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Figure 1. Simple network model—all link metrics equal to n. 
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  NODE TO            0 1 2

FROM     0 - 1 1

1 0 - 2

2 1 1 -

3 0 0 4 -

4 1 1 2 3

3 4

3 1

0 4

4 4

4

-  

Figure 2. Forwarding matrix for simple network with no 
link failure. 
 

  NODE TO            0 1 2

FROM     0 - 1 3

1 0 - 2

2 4 1 -

3 0 0 4 -

4 3 1 2 3

3 4

3 3

0 4

4 4

4

-  

Figure 3. Forwarding matrix for simple network with a link 
between nodes 1 and 2 shutdown. 
 
when we shutdown the link between nodes 1 and 2 does 
cause changes in the FIB, such that node 4 becomes the 
next hop for traffic from node 2 destined for nodes 0 and 
1. The changes in the forwarding path when the link is 
shutdown, if are not done in a required order, will cause 
not only transient micro loops but also an overload in 
some links.  

Shutting down the link due to scheduled routine main- 
tenance is considered as a predictable failure and that the 
effect of such topological changes can be reduced by 
correctly choosing updatable order that does not only 
avoids transient routing loops but also avoids congestion 
and link overflow [4-8].  

In this paper we show that by use of the Pythagorean 
Triple Properties we can compute the Pythagorean Triple 
Metric Sequence that we can use to configure the net- 
work topology such that the desired link can be shutdown. 
In our Pythagorean Triple Metric Sequence method, we 
use the Pythagorean Triple Sequence {3n, 4n, 5n} to 
determine a sequence of metrics as target metrics to use 
to shutdown a link. In this research we performed ex- 
periments using the network model in Figure 1 in which 
we assumed that all links have same IGP metrics of value 
n configured to each link. We then performed experi- 
ments using the network topology in Figure 2 in which 
we assumed that the link metric of Figure 1 are not uni- 
form. To evaluate and validate our Pythagorean Triple 
Metric Sequence method we directly varied and config- 
ured the IGP link metric of each and every link in the 
network topology to {n, 2n, 3n, 4n, 5n} sequence by con- 
sidering each link as a link desired to be shutdown. For 
performance evaluation we have used a Simple Network, 
COST239, and HLDA as example of network topology 
models for evaluation purposes and whilst for validation 
purposes we have used K5 COMPLETE GRAPH, as our 
“litmus test” network topology. In all the cases we use a 

gravity model type of traffic generation according to the 
population distribution. In our performance evaluation 
we demonstrate at what stage of the {n, 2n, 3n, 4n, 5n} 
sequence is the shutting down possible. We performed 
simulations for each and every link in each of the net- 
work topologies to verify when each link stops carrying 
traffic, and thus validating the link being shutdown. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we introduce the Pythagorean Triple Sequence 
Method. We explain the overview of our idea and intro- 
duce our algorithm. In Section 3, we discuss the experi- 
ments and evaluation of the results. Finally, in Section 4, 
we provide the conclusion. 

2. Algorithm to Shutdown a Link Using the  
Pythagorean Triple Sequence 

2.1. Overview 

It has been proved, that the IGP link metric of a link can 
always be increased to a larger metric by progressively 
increasing the metric of the link by one (see Equation 
(1)), until the target metric is reached without causing 
transient forwarding loops.  

1 0 1m m 

0m 1m

                (1) 

where  is the initial metric and  is the new met- 
ric. 

It has been proved further that the link can be shut 
down by increasing its IGP link metric until it becomes 
large that it cannot carry traffic anymore. It was shown 
that when the target metric has been reached, the link can 
then be safely shutdown [1]. 

It was illustrated in [1], that we can have a sequence of 
three elements to sufficiently provide a loop free con- 
vergence: 

 0 0, 1, tm m m

MAX_METRIC 1

16 2MAX_METRIC 1 2 1 256 1

               (2) 

We also know that currently, ISP operators must first 
set the IGP link metric to  to “grace- 
fully” reroute traffic before shutting down the link. An 
expression that can be expanded to an equation expressed 
as follows: 

           (3) 

In Equation (3), we have a difference of two squares, 
which is a property of the Pythagorean Triple. It is from 
this fact that we believe if the property of Equation (3) 
holds for any given network topology then there must 
exist a Pythagorean Triple that can be used to shut down 
the link considering the fact that to perform the graceful 
shut down, ISPs are currently using a Pythagorean pro- 
perty as illustrated in Equation (3). 

It was illustrated in [5] that there exist infinitely many 
right-angled triangles with integral sides in which the 
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lengths of two non-hypotenuse sides differ by 1. That is, 
the triple sides as a sequence will be; 

 , 1,x x y

0m x 1m x 
m y

, 1

                (4) 

2 2m n

2mn

2 2m n

Comparing Equations (2)-(4), we can see some simi-
larities in these expressions, i.e. the first term in Expres-
sion (2) , the second term 1  and the 
third term t . This analogy in the Expressions (2) 
and (4) also provide us with the motivation to believe 
that the use of the Pythagorean Triple Sequence is worth 
exploring. Further, our idea is very much encouraged by 
the fact that in the graceful shutting down of a link 
method a Pythagorean property as illustrated in Equation 
(3) is valid. 

It was further stated in [5], that there exist positive in- 
tegers x and y such that the lengths of the sides of the 
triangle are x x  y

 22 21

 and  respectively fulfils the Py- 
thagoras Theorem, that is: 

x x y  

 , , 2 ,d a d  

1k 

m n

2 2a m n 

2b mn

2 2c m n 

             (5) 

Examples of the Pythagorean triples are {3, 4, 5} and 
{20, 21, 29}.  

The {3, 4, 5} triple and its multiple {3n, 4n, 5n} are 
the only Pythagorean triple that are in arithmetic pro- 
gression and consecutively incrementing. It is for reason 
we have decided to use this particular type of Pythago- 
rean Triples Sequence. 

We know that in Arithmetic Sequence the difference 
between one term and the next is a constant as given 
Equation (6), a fact that we see in the triple sequence of 
{3n, 4n, 5n}.  

a a              (6) 

where: 
 a is the first term, and 
 d is the common difference between the terms. 

2.2. Pythagorean Triples Using Euclid Formula  

In mathematics it has been shown that if {a, b, c} is a 
Pythagorean triple, then so is {ka, kb, kc} for any posi- 
tive integer k, and that the smallest Pythagorean Triple is 
{3, 4, 5} when . 

As illustrated in [6], Euclid provided a formula to find 
Pythagorean triples from any two positive integers m and 
n, where . For instance using Euclid formula in 
terms of a sequence (see Figure 4) we have {a, b, c}: 

                 (7) 

                   (8) 

                 (9) 

As an Example, Table 1 illustrates the possible Py- 
thagorean triples using the Euclid formula given in Equa-  

 

Figure 4. Euclid’s parameterization. 
 

Table 1. Example of pythagorean triples. 

m n TRIPLE 

2 1 3, 4, 5 

3 2 5, 12, 13 

4 3 7, 24, 25 

5 4 9, 40, 41 

6 5 11, 60, 61 

 
tions (7)-(9). 

Further, as an Example using the Euclid formulas in 
(7-9), assuming n 1  we have triples given as a se- 
quence  2 21, 2 , 1m m m  1m 

16MAX_METRIC 1 2 1 2 6

, and where  for a to 
be a positive number. Thus Equation (3) can be com- 
puted as follows: 
 25 1     
 Assuming 256m   and 1n  

 2 1 65,535; MAX_ME R Ca m T I 1    
b m

  
 2 512 

2 1 5c m 
 

 6 ,537  
The above example shows that Equation (3) fulfils the 

Euclid formula, again qualifying our idea of using the 
Pythagorean Triple Sequence Method when shutting 
down the link for routine maintenance purpose. 

2.3. The {3n, 4n, 5n} Triple Algorithm 

As stated earlier in this paper, the {3, 4, 5} triple and its 
multiples {3n, 4n, 5n} are the only triples that are in 
arithmetic progression and consecutively incrementing. 
It is these two reasons that we have chosen to use this 
particular type of Pythagorean Triples Sequence in this 
paper. 

In our method we show that using the Pythagorean 
Triple Metric Sequence {3n, 4n, 5n}, and given that n is 
the initial element of the sequence {n, 2n, 3n, 4n, 5n} and 
the hence the common difference of the arithmetic pro- 
gression, we can determine the target link metric and 
directly reconfigure to the link desired to be shutdown. In 
Table 2 below we illustrate the idea of our algorithm in 
determining the target metric. When we wish to shut- 
down any given link in any given topology we configur-  
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Table 2. The {3n, 4n, 5n} triple algorithm. 
 

n PRIMITIVE TRIPLES 

1 1 × 3, 4, 5 3, 4, 5 

2 2 × 3, 4, 5 6, 8, 10 

3 3 × 3, 4, 5 9, 12, 15 

4 4 × 3, 4, 5 12, 16, 20 

··· ··· ··· 

n n × 3, 4, 5 3n, 4n, 5n 

2

1

0

4

3

2n

n

n

n

2n

n

 

 
ing all other links in the network topology with a uniform 
IGP link metric which we denote as n, except for the link 
we wish to shutdown to which we vary its link metric as 
per sequence {n, 2n, 3n, 4n, 5n}. 

3. Results and Discussion 

To validate our idea of the Pythagorean Triple Metric 
Sequence, we have used several different topologies as 
network models for evaluation purposes such as 1) a 
Simple Network Figures 1 and 5; 2) COST239 in Figure 
6; 3) HLDA in Figure 7; and 4) K5 COMPLETE 
GRAPH in Figures 8. We have used gravity model as 
the traffic condition according to the population distribu- 
tion. The routing algorithm assumed is a minimum cost 
routing. We have assumed that the link metric is inver- 
sely proportional to link capacity. 

3.1. Use of Pythagorean Triple to Shutdown a  
Link 

The value of n was varied as shown Table 3 to avoid 
network over load. 

The results shown below in Figures 9 and 10, illus- 
trate the validity of our method. We validate that by 
varying the link metric of links as per the values in the 
sequence {n, 2n, 3n, 4n, 5n}, it is only when the link 
metric reaches the values of all or some of the elements 
of the {3n, 4n, 5n} sequence that the links stops to carry 
traffic. Thus at this point the link is considered to be safe 
for shutdown as the link utilization goes down to zero. 

The graph in Figure 11 shows that 50% of links in the 
Simple Network (in Figure 1), can be shutdown when 
the link metric reaches {3n} of the {3n, 4n, 5n} sequence. 
We further observe that ALL links can be shut down 
after the link metric reaches {4n, 5n} of the {3n, 4n, 5n} 
sequence. Therefore we can say that when the link metric 
of the Simple Network is uniform, 50% of the links can 
be shutdown as per {3n, 4n, 5n} sequence thus making 
our algorithm to be valid. Whereas when we varied the 
values of the link metric (see Figure 5) so that we 
achieved non uniform link metric scenario, our simula-  

 

Figure 5. Simple network model—all link metrics NOT equal 
to n. 
 

 

Figure 6. COST239 model (11 nodes, 25 links). 
 

 

 

Figure 7. HLDA model (11 nodes, 26 links). 
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Figure 8. K5 COMPLETE GRAPH (5 nodes, 10 links). 
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Figure 9. The graph validates that we are able to shutdown— 
some links in the Simple Network (in Figure 1) and COST239; 
ALL links in HLDA and K5 COMPLETE GRAPH after the 
link metric reaches {3n, 4n, 5n} of {n, 2n, 3n, 4n, 5n} se-
quence. 
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Figure 10. The graph validates that other links in the Sim- 
ple Network (in Figure 1); COST239 and ALL links in the 
Simple Network (in Figure 5) can be shutdown ONLY after 
the link metric reaches {4n, 5n} of {n, 2n, 3n, 4n, 5n} se- 
quence. 
 
tion results shown in Figure 11 show that we can ONLY 
shutdown the link after the link metric reaches the values 
of {4n, 5n} of the our algorithm {3n, 4n, 5n}. Thus we 
can say that NO links in the Simple Network (in Figure 
5), can be shutdown when the link metric reaches {3n} of 
the {3n, 4n, 5n} sequence. However, ALL links can be 
shutdown when the link metric reaches {4n, 5n} of the 
{3n, 4n, 5n} sequence.  

Table 3. Topologies for our performance evaluation. 

No. TOPOLOGY Nodes Links n 

1. SIMPLE NETWORK 5 6 10000

2. K5 COMPLETE GRAPH 5 10 10000

3. COST239 11 25 10000

4. HLDA 11 26 1000 

 
In Figure 12, below we show the simulation results 

when each and every link was each in turn configured 
and simulated for a link shutdown in COST239, HLDA 
and K5 COMPLETE GRAPH topologies using our algo- 
rithm. The validity responsiveness of these network to- 
pologies to our link shutdown method is that COST239 
responded favorable to the {3n, 4n, 5n} algorithm is 96%, 
HLDA is 100% and K5 COMPLETE GRAPH is also 
100%. These results demonstrate that our method is valid 
to perform a link shutdown.  

3.2. Use Pythagorean Triple to Shutdown Two  
Links 

To further validate our method we performed experi- 
ments on the Simple Network topology (Figure 1), using 
our algorithm to simultaneously shutdown two links in 
the network topology. The graphs shown in Figures 13- 
15 demonstrate that we are ONLY able to simultaneously 
shutdown TWO links when we have a link metric com- 
bination of {4n, 5n} or {5n, 5n}. 

We have further validated our method by performing 
similar experiments of simultaneously shutting down two 
links for COST239, HLDA and K5 COMPLETE GRAPH 
topologies using our algorithm. The graphs shown in 
Figures 16 demonstrate the responsiveness of the TWO 
links shutdown of each topology. The illustration is that, 
for COST239, we are able to simultaneously shutdown 
TWO links only when we have a link metric combination 
of {4n, 4n}, {4n, 5n} and {5n, 5n}. Whereas in the case 
of the HLDA model, the responsiveness of our algorithm 
is 100% as we are able to simultaneously shutdown 
TWO links for all link metric combination. That is, we 
are able to simultaneously shutdown TWO links for all 
link metric combination of {3n, 3n}, {3n, 4n}, {3n, 5n} 
{4n, 4n}, {4n, 5n} and {5n, 5n}. 

This similar results, is obtained for the K5 COM- 
PLETE GRAPH, which we have used as our “Litmus 
Test” for our algorithm. The results show that the K5 
COMPLETE GRAPH’s performance is 100% validation 
as we are able to simultaneously shutdown TWO links all 
the link metric combination of {3n, 3n}, {3n, 4n}, {3n, 
5n} {4n, 4n}, {4n, 5n} and {5n, 5n}. But as for the case 
of the Simple Network topology, we are only able to 
simultaneously shutdown TWO links when we have a   
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Figure 11. Performance comparison of the Simple Network Models, that is when the value of the link metric is uniform for all 
links and when it is not as shown in Figures 1 and 5. 
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Figure 12. Performance of shutting down a link. 
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Figure 13. The graphs illustrate that in the Simple Network 
(in Figure 1); we are not able to shut down a link when we 
have link metric combination of {3n, 3n} and {3n, 4n}. 

Figure 14. The graphs illustrate that in the Simple Network 
(in Figure 1); we are able to shutdown only ONE link when 
we have link metric combination of {3n, 5n} and {4n, 4n}. 
  

link metric combination of {4n, 5n} or {5n, 5n}. topologies to the TWO link shutdown is that the Simple 
Network responds favorable to the {3n, 4n, 5n} algo- 
rithm by 33%, COST239 response is 50%, whereas 
HLDA and K5 COMPLETE GRAPH is 100% for both of 
them. The results demonstrate that our method is valid to  

In Figure 17, we show the performance of the TWO 
links shutdown using our algorithm for the Simple Net- 
work, COST239, HLDA, and K5 COMPLETE GRAPH 
topologies. The validity responsiveness of these network  
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Figure 15. The graphs illustrate that in the Simple Network 
(in Figure 1); we are able to shutdown TWO links when we 
have a link metric combination of {4n, 5n} and {5n, 5n}. 
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Figure 16. Effect of shutting down TWO links on Maximum 
Load. 
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Figure 17. Performance of shutting down TWO Links. 
 
perform a TWO links shutdown.  

3.3. Performance Evaluation 

When each and every link of the Simple Network model, 
in Figure 12, was each in turn configured and simulated 
for a link shutdown using our Pythagorean Triple Metric 
{3n, 4n, 5n} Sequence, 50% of the links validates our 
algorithm whilst the other 50% the sequence could only 
be shutdown when their link metric reached values of 
{4n, 5n}, the results which we can still consider as valid 

the fact that the {4n, 5n} is a subset of the Pythagorean 
Triple Metric {3n, 4n, 5n} Sequence.  

The similar link shutdown experiments reveal that 
were performed for other topologies, as shown in figure 
12, reveals that using our Pythagorean Triple Metric {3n, 
4n, 5n} Sequence, the validity is 96% for COST239 
model, 100% for HLDA model and 100% for K5 COM- 
PLETE GRAPH. 

To further validate our method we performed experi- 
ments by shutting down TWO links simutaneously for all 
the four topologies. The results shown in Figure 17, 
summaries our dicoveries that our method still remains 
valid even when we conduct and shutdown TWO links 
simultaneously. 

To further explain the effect of the wrong combination 
of the link metric as what effect it has on the per- 
formance of the topology, we use Figures 18-20 of the 
Simple Network, to illustrate this fact. An example of the 
comparison of performance is given in Figures 18-20 of 
the Simple Network, when just by a mere swapping of 
the link metric of the topology what effect that it has on 
the Maximum Load. Lets us for instance say we call the 
model—SN1 when the link metric for Link 1-2/2-1 is 
equal to 4n, and for Link 1-4/4-1 is equal to 5n as shown 
Figure 19. We then call the model SN2 when the link 
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Figure 18. Effect on maximum load (for SN1 and SN2) by 
mere swapping the link metric combination of the Simple 
Network. 
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Figure 19. Simple Network (SN1) with two Forwarding 
Trees for transporting traffic whose destination is nodes 1 
and 2 (Link 1-2/2-1 = 4n, Link 1-4/4-1 = 5n). 
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 NODE TO            0 1 2 3 4

FROM     0 - 1 3 3 3

1 0 - 2 0 0

2 4 1 - 4 4

3 0 0 4 - 4

4 3 3 2 3 -

Figure 20. Simple Network (SN2) with two Forwarding 
Trees for transporting traffic whose destination is nodes 1 
and 2—SN2(Link 1-2/2-1 = 5n, Link 1-4/4-1 = 4n). 
 
metric for Link 1-4/4-1 is 4n, and for Link 1-2/2-1is 5n as 
shown in Figure 20. The changes can even be seen in the 
changes of the forwarding trees for traffic destined for 
nodes 1 and 2. In Figure 19, the forwarding tree indicates 
that the link between nodes 1 and 2 is still in use such that 
for traffic destined for node 1 from node 2 and vice versa 
continues to use link 1-2/2-1. Whilst Figure 20 illustrates 
that the link between 1 and 2 is shutdown such that the 
forwarding tree for traffic destined for nodes 1 from node 
2 use node 4 as the next hop, whereas for the case of traffic 
destined for node 2 from node 1 use node 0 as the next hop. 
Figures 21 and 22 provide the forwarding matrices for 
both SN1 and SN2. 

Further the overall effect wrong link combination has 
on performance as shown in Figure 18 when we compare 
SN2 graph to that of graph SN1. The link combination 
between points {3n, 3n} to {4n, 5n}, shows that despite 
not achieving the TWO link shutdown simultaneously 
which is the objective for this link combination we are 
already experiencing the increase in the maximum load as 
early as the point {3n, 4n}. This increase in maximum 
load problem proves worst still when we consider com- 
paring the performance of the SN1, as shown in Figure 23 
with other topologies this can be said SN1 link com- 
bination is indeed poor. The K5 COMPLETE GRAPH 
was used as a “Litmus Test” of our idea and which from 
the results we have seen that in both experiments, that is 
a link shutdown experiments and a TWO link shutdown 
experiments, the Pythagorean Triple Sequence perfor- 
med 100% validation. 

The additional explaination that we can give, that can 
hopefully provide as some scientific explanation of the 
experimental results our method is by using properties 
such as Node Degree, Clustering Coefficient and Ex- 
pected Path Length.   

When comparing performance of these topologies 
using properties such as Node Degree, Clustering Co-  

 

Figure 21. Forwarding Matrix for a SN1 Model (in Figure 
19). 
 

NODE TO            0 1 2 3 4

FROM     0 - 1 3 3 3

1 0 - 0 0 0

2 4 4 - 4 4

3 0 0 4 - 4

4 3 3 2 3 -  

Figure 22. Forwarding Matrix for a SN2 Model (in Figure 
20). 
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Figure 23. Comparison of performance of shutting down 
two links. 
 
efficient (also called “the friend of my friend is also my 
friend”), and Expected Path Length (also called “Close 
Centrality”) [9-11], we use Figures 24-26 to explain 
these phenomena in comparison to the performance our 
algorithm. It can be explained that the Clustering Co- 
efficient (which is often discribed as the tendency for 
triangles of connections to appear frequently in net- 
works) and the Average Node Degree for Simple Net- 
work are lowest as conmpared to both COST239 and 
HLDA. However when we compare COST239 (11 nodes, 
25 links) and HLDA (11 nodes, 26 links) both have the 
same number of nodes, and their only difference between 
them is the extra link in HLDA topology. This extra link 
helps HLDA model to have some improvements in the 
Average Node Degree, Clustering Coefficient and Ex- 
pected Path Length as we can see in Figures 24-26. It 
could be said that, possibly it is same extra link that helps 
HLDA model to respond more favourable even to our 
Pythagorean Triple Sequence as compared to COST239. 
However the major determinant in our algorithm could 
be said to be the Expected Path Length, since it relates 
more to our assumption of the Minimum Cost Routing. 

This fact can be explained using Figure 26. We see  
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Figure 24. Average node degree of Simple Network, COST- 
239, HLDA and K5 COMPLETE GRAPH. 
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Figure 25. Clustering coefficient of Simple Network, COST- 
239, HLDA and K5 COMPLETE GRAPH. 
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Figure 26. Expected Path Length of Simple Network, COST- 
239, HLDA and K5 COMPLETE GRAPH. 

 
that topologies with minimum Expected Path Length, 
that the closer the Expexted Path Length is to UNITY the 
better the result is seen in response to the Pythagorean 
Triple Sequence. The K5 COMPLETE GRAPH helps to 
explain this fact. When we compare the all the three 
properties Expected Path Length, Clustering Coefficient 
and Average Node Degree of K5 COMPLETE GRAPH 
to COST239, HLDA and Simple Network, it is only the 
Expeted Path Length that the K5 COMPLETE GRAPH 
model shows some superiority. This property easily helps 
to provide the explanation that the Pythagorean Triple 
Sequence, is valid to use as a link shutdown method and 
that the determinant phenomena in our method is mini- 
mum cost routing responsiveness.  

4. Conclusions 

We have presented a new link shutdown method for any 
given link desired to be shut down for routine main- 
tenance. The key idea of our method is the introduction 
of the Pythagorean Triple Metric Sequence {3n, 4n, 5n} 
to use to configure a link that is desired to be shut down 
for routine maintenance. When a link is scheduled for 
routine maintenance the link can be configured to one of 
the metric in the sequence as the target metric before shut 
down. In our experiments, each link was configured to {n, 
2n, 3n, 4n, 5n} sequence and we performed some simu- 
lations, and it was discovered that it is only when the link 
metric reached values of {3n, 4n, 5n} were able to 
perform a link shutdown. The simulations result vali- 
dated our idea of using the Pythagorean Triple Metric 
Sequence {3n, 4n, 5n} as a link shut down method. In 
our experiments to performing a link shutdown, we dis- 
covered that using our Pythagorean Triple Metric {3n, 
4n, 5n} Sequence, for the Simple Network model 50% of 
the links validates our algorithm whilst the other 50% the 
sequence could only be shutdown when their link metric 
reached values of {4n, 5n}, the results which we consider 
as valid the fact that the {4n, 5n} is a subset of the 
Pythagorean Triple Metric {3n, 4n, 5n} Sequence.  

The similar link shutdown experiments revealed that 
as for other topologies, the validity response is 96% for 
COST239, 100% for HLDA and 100% for K5 COM- 
PLETE GRAPH. 

To further validate our algorithm we performed ex- 
periments by shutting down TWO links simutaneously 
for all the four topologies. The validity response is 33% 
for the Simple Network model, COST239 response is 
50%, whereas HLDA and K5 COMPLETE GRAPH is 
100% for both of them.  

The simulation results have validated our idea to use 
the Pythagorean Triple Metric Sequence {3n, 4n, 5n} as 
a link shutdown method. We further established that our 
method has positive responsiveness to minimum cost 
routing, as we have illustrated that topologies with Ex- 
pected Path Length near UNITY value tend to have good 
performance. 

As for future work, we plan to investigate further the 
consequences of using other Pythagorean Triple Sequen- 
ces other than the {3n, 4n, 5n}. 
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