Key Universal Activities of Mathematical Learning in Problem Solving Mathematics Classroom

Saastra Laah-On¹, Pimpaka Intaros², Kiat Sangaroon³

¹Master Program in Mathematics Education, Faculty of Education, Khon Kaen University, Khon Kaen, Thailand
²Doctoral Program in Mathematics Education, Faculty of Education, Khon Kaen University, Khon Kaen, Thailand
³Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

Email: saastra_k@hotmail.com

Received September 25th, 2013; revised October 25th, 2013; accepted November 2nd, 2013

Copyright © 2013 Saastra Laah-On et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To enhance students’ problem solving potential, an important skill for 21st century, teachers should concern what kinds of authentic-mathematics experiences that students can get through problem solving (Cai, Mamona-Downs, & Weber, 2005). In addition, mathematics classroom approach has changed radically from a drill-and-practice approach to more insight-based problem oriented approach (Van Oers, 2002). According to a problem solving mathematics classroom, in which an open approach is used as a teaching approach, students are required to adapt what they have learned to solve problem situations (Inprasitha, 2010). These problem situations are designed based on students’ experiences. Regarding these points, a purpose of this study was to investigate key universal activities, which are based on Bishop (1988) who presented the key universal activities as foundations for students’ mathematical learning. Case study was employed in this study. Video and audio tape recording, and field note taking were used as methods for collecting data of a targeted group including six of grade 1 students in 2010 academic year of a school participating the Project for Professional Development of Mathematics Teachers through Lesson Study and Open Approach. Data were analyzed by using descriptive statistic and analytic description. The results showed that there were various key universal activities in each problem situation occurring in problem solving mathematics classroom. These key universal activities have been enhancing the students to solve the problems efficiently.

Keywords: Key Universal Activities; Problem Solving Classroom; Open Approach; Lesson Study

Introduction

In the 21st century, there are more increasing of a complexity of problems that one could encounter, both in a country and in the world. This has been requiring more dedication of preparing students to be problem solvers as providing the students to learn some strategies that could help them to cope with such problems (Barell, 2010). The purpose of learning has not been providing the students to be problem solvers as providing the students to learn some strategies that could help them to cope with such problems (Barell, 2010). The purpose of learning has not been providing the students to be problem solvers as providing the students to learn some strategies that could help them to cope with such problems (Barell, 2010). The purpose of learning has not been providing the students to be problem solvers as providing the students to learn some strategies that could help them to cope with such problems (Barell, 2010). The purpose of learning has not been providing the students to be problem solvers as providing the students to learn some strategies that could help them to cope with such problems (Barell, 2010).
Illustration of classroom activities using the open approach (Table 1) could be described as 1) Posing open-ended problem—the open-ended problems or problem situations are posed in the classroom and the students are often asked about a meaning of the problems and challenged to solve the problems; 2) Students’ self learning—this phase consists of a combination of two parts: individual work and discussion by the whole class; 3) Whole class discussion and comparison—the students’ activities are crucial to further development of a lesson in which the teacher should try to identify those students who do not understand the problems and provide more suggestions to stimulate the students in a whole class to think according to the problems; and 4) Summarization through connecting students’ mathematical ideas emerging in the classroom—the teacher should include all students’ propositions and concentrate on one point view, lead to a conclusion by integrating and arranging them according to particular point of view, and also facilitate a smooth transition to the next lesson (Inprasitha, 2010).

Moreover, the teachers mostly start the classes with a problem situation which is designed by using open-ended problems and is closed to the students experience or what the students have learned, and the learning organization in this classroom is considered as a interaction process between a teacher and students, and among students themselves where the teacher orchestrate the students’ mathematical ideas resulted from promoting the students to think and solve the problems in their own way. Therefore this process can be described by social and cultural aspects (Inprasitha, Pattanajak, & Prakaikam, 2007). These mean that the approach in this classroom necessarily nurtures the students to learn mathematics in meaningful ways according with the students own experiences.

As a result, what is needed for the teachers or mathematical cultivator is a broad understanding of mathematics as a cultural phenomena (Bishop, 1988). Therefore, the teachers should be conscious about what kind of experiences the students could learn best in mathematical culture. According to these points, deep insight of the problem solving mathematics classroom is very important for the teachers. Lesson study, consequently, is necessary for the teachers to do their practices along with a cycle of the lesson study (Figure 2). Collaboratively observing the research lesson (Do) and collaboratively reflecting on teaching practice (See) would support the teachers to comprehend their classroom where they could analyze the activities occurring in the classroom and promote the students’ learning according with the activities.

Research Methodology

Theoretical Frameworks

The theoretical frameworks used to conduct this research were composed of 2 theoretical frameworks; 1) Open Approach as a Teaching Approach (Inprasitha, 2010) used to analyze phases of the classroom that emphasize on problem solving, and 2) Key Universal Activities (Bishop, 1988) used to analyzed activities occurred in each phase of the classroom whether these activities composed of the key universal activities which are the foundations for students’ mathematical learning.

Objective of the Study

This research was aimed to investigate key universal activities, in which are the foundations for students’ mathematical learning based on Bishop (1988), in the problem solving mathematics classroom, in which the open approach is used as the teaching approach based on Inprasitha (2011), that would yield more realization for the teachers of how to promote the students’ learning in meaningful ways.

Target Group of the Study

The target group in this research included six of grade 1 students, who were studying at Ban Bueng-neum-bueng-krai-noon School, Khonkaen province, and attending 5 learning activities of the Length Comparison learning unit in the second semester of the 2010 school year. The school has been participating in the Project for Professional Development of Mathematics Teachers through Lesson Study and Open Approach since 2007 school year, the teachers have been organizing learning activities by using the open approach as a teaching approach which is supervised by the Center for Research in Mathematics Education (CRME), Khon Kaen University.

Data Collection and Analysis

In this research, the lesson study team, including the teacher, observing teachers, the author as a researcher, and a researcher assistant, cooperatively designed the learning activities by using a Japanese textbook “Study with Your Friends Mathematics for Elementary School 1st grade” which emphasizing on “students’ how to learn” that supports students’ self learning (Inprasitha, 2010). Several methods were used to collect and analyze the data in the classroom; video and audio recording, and field note taking were used as methods for collecting data, the collected data were then analyzed by using descriptive statistic and presented by using analytic description.

Results and Discussions

In the problem solving mathematics classroom of the learning unit of comparing length, there were all of 6 key universal
activities occurred in the classroom and there are various key universal activities occurred in each phase of the classroom as shown in the table as follows.

Information (Table 2) revealed that all kinds of key universal activities occurred in the problem solving mathematics classroom especially in the phase of Students’ self learning in which the students were encouraged to think about the problem situations and solve the problems by themselves, although there was no the key universal activity occurred in some phases of the classroom. Examples of those scenarios which the students participate each key universal activity as follows.

Counting Activity

In the activities of constructing a paper chain that the students in each group cooperated to make the paper chain and comparing them among all groups, the students discussed about how to compare paper chains’ length. The students tried to solve the problem related to a certain number of the papers used to make paper chain whereby they started to count one by one, and then changed to count by two pieces of papers while they were struggling in re-counting the papers, as a following protocol.

Student A: 39 and then 40.
Student B: 48, 49, 50.
Teacher: Oh, why all of you didn’t get the same number of paper?
Student C: Let’s count them again.
Student B: 2, 4, 6, 8, 12, 14, 16, 18. (Student B stopped to count.)

Measuring Activity

In the activities of constructing a length of two strings which were straight and tied, respectively, one of the students compared two strings’ length. The student tried to solve the problem related to length comparison whereby she untied the string first and compared them directly as putting the strings’ end to be on the same level. This was resulted from her experience in an activity of comparing two straight things (pencils) and identifying which one was longer, as a following protocol.

Teacher: Okay, there are two strings here. Which one is longer? (Figure 3)
All students: Red./Blue.
Teacher: How could we do? (Student F brought the strings from the teacher and then put a couple of their ends on the same level.)
Student D: Untie that string. (Figure 4)
Teacher: Like this? (Student F untied the string, and then stretched them from the bottom to the up side.)

Locating Activity

In the activities of measuring and comparing the students’ part of body and the students have to put a ribbon represented their arms’ length on a presenting paper, one group of the all the students’ groups tried to solve the problem related to referring point whereby they used an upper edge of the presenting paper to be the referring point for making these two lines were parallel and easy for comparison. This was resulted from their experience in an activity of comparing two strings that have to put their ends on the same level, as a following protocol.

Student B: (Student B was putting the ribbon representing a length of her arm on the presenting paper)
Student A: It’s enough? (Student A asked student B who was putting the ribbon representing a length of her arm on the presenting paper).
Student B: Hey, it’s not straight. (Student B tried to stretch the ribbon after she used the upper edge of the presenting paper to be the starting point of comparing the ribbons.)

Designing and Building Activity

In the activities of comparing the ribbon represented the length of the students’ arms on a presenting paper, the students tried to solve about geometric attribute whereby they put one of the ends of the ribbon on a point beyond a starting point of the presenting paper by using tessellation, since the length of her arm was longer than the presenting area. This was resulted from their experience in an activity of comparing two strings while they were adapting to change the starting points for comparing them, as a following protocol.

Student D: Why is a paper not enough? (Student D asked the teacher after she put the ribbon representing a length of her arm on the presenting paper by put one of the ribbon’s ends on the same line of perpendicular line in the presenting paper.)
Teacher: Does it mean that your arms are longer than the presenting paper?
Student D: (Student D moved out the ribbon from the presenting paper and tried to put it back on the presenting paper.)
Teacher: Where is it? (Figure 5) (Student D put the ribbon on the presenting paper again whereby putting one of the ends beyond the perpendicular line in the presenting paper.)

Playing Activity

In the activities of constructing a paper chain, one group of the all the students’ groups tried to solve the problem related to
Table 2. Percentile of occurrence of the key universal activities in each phase of the classrooms.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Posing Open-Ended Problem</th>
<th>Students’ Self Learning</th>
<th>Whole Class Discussion and Comparison</th>
<th>Summarization through Connection</th>
<th>Percentile of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting</td>
<td>0</td>
<td>3.96</td>
<td>1.98</td>
<td>0.99</td>
<td>6.93</td>
</tr>
<tr>
<td>Measuring</td>
<td>10.9</td>
<td>21.78</td>
<td>17.82</td>
<td>1.98</td>
<td>52.48</td>
</tr>
<tr>
<td>Locating</td>
<td>0.99</td>
<td>9.9</td>
<td>2.97</td>
<td>0</td>
<td>13.86</td>
</tr>
<tr>
<td>Designing and Building</td>
<td>0.99</td>
<td>2.97</td>
<td>0</td>
<td>0</td>
<td>3.96</td>
</tr>
<tr>
<td>Playing</td>
<td>0</td>
<td>1.98</td>
<td>0</td>
<td>0</td>
<td>1.98</td>
</tr>
<tr>
<td>Describing</td>
<td>7.92</td>
<td>4.95</td>
<td>3.96</td>
<td>3.96</td>
<td>20.79</td>
</tr>
<tr>
<td>Total</td>
<td>20.8</td>
<td>45.54</td>
<td>26.73</td>
<td>6.93</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 3. Teacher used ribbon strings as instructional material.

Figure 4. Student compared length between 2 ribbon strings.

Figure 5. Student put down a ribbon sting on representing paper.

Student E: I can’t compound them.
Student D: Yes, we can. (Student D glued one side of the paper’ ends.) Glue it like this, I will compound them. (Student D asked student E to glue the papers.)

Describing Activity

In the activities of comparing a length of two strings and the students have to show their reasons to support their answer, one of the students tried to solve the problem related to reasoning whereby she put one couple of the strings’ ends on the same level and then the difference of the couple strings was shown. This could enhance her describing reasonably of which one was longer, as a following protocol.

Teacher: What should be in the same level? (Student D stretched the strings whereby one couple of the ends was in the same level.) Oh, is here be in the same level? What’s about the longer one?

Student D: This part is over then… (Figure 6) (Students D folded the remainder part down at the shorter one’s end.)

Conclusion

This information could be the empirical evidences which support an important characteristic of a new approach used in the problem solving-mathematics classroom that provides the opportunity for the students to learn mathematics in the meaningful ways for their own experiences. These would be promoted by the key universal activities which are the foundation for the students’ mathematical learning. In other words, the students could recall what they have learned based on the key-universal activities to use as the way to solve the problems or do mathematics, and then use as resources to construct the ways of knowing or making sense for themselves. The students can regulate to do problem solving activities by themselves. Therefore, interestingly, the open approach can shift the mathematics classroom from the traditional classroom in which the teachers are the center and students only practice and drill, to a place where the students are able to do mathematics by themselves via the key universal activities.

Acknowledgements

This research is supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the...
Cluster of Research to Enhance the Quality of Basic Education and this research is granted by the Center for Research in Mathematics Education, Khon Kaen University, Thailand.

REFERENCES

