A Systematic Error Leading to Overoptimistic Item Analysis of a Medical Admission Test

Gilbert Reibnegger1, Hans-Christian Caluba2, Daniel Ithaler2, Simone Manhal3, Heide Maria Neges2

1Institute of Physiological Chemistry, Center of Physiological Chemistry, Medical University of Graz, Graz, Austria
2Organisational Unit for Studies and Teaching, Medical University of Graz, Graz, Austria
3Office of the Vice Rector for Studies and Teaching, Medical University of Graz, Graz, Austria

Received July 31st, 2012; revised August 26th, 2012; accepted September 12th, 2012

Introduction

Item analysis examines the responses of students or, more generally, of test subjects to individual test items, and it is one of the standard tools for assessing the quality of test items and of a test as a whole. The basic statistics used in item analysis are the indices of difficulty and of discrimination (Lienert & Raatz, 1988). The index of difficulty of a test item is simply the proportion of correct answers among all tested subjects. Thus, if 60 percent of all test subjects give the correct answer to an item, the index of difficulty of this item is 0.60. Normally, a range of item difficulties between 0.20 and 0.80 would be desirable. Some item analysts define the index of difficulty as the proportion of wrong answers, but clearly, this does not really alter the substance of this index.

The computation of the index of test discrimination is mathematically a bit more complex; briefly, this index measures whether or not the proportion of correct answers to a given test item is reliable in comparison with the overall abilities of the tested subjects, estimated from their response behavior regarding the complete test. The index of discrimination should be positive; in practice, it seldom would exceed 0.50. If it lies above 0.30, it would be judged as “good”, between 0.10 and 0.30, as “fair”, and below 0.10, as “poor”. A negative index of discrimination would indicate that the test item under scrutiny is correctly answered by a higher proportion of test subjects performing worse on the test as a whole, and by a lower fraction of those performing globally better. Such test items are not desirable and should be either changed or even removed from the test before applying the test in the future.

In Austria, admission to university studies has generally been open, but for few studies, among them the medical studies of human medicine and dentistry, admission is regulated by admission tests since 2005. The Medical University of Graz has developed an admission test based on secondary school level-knowledge in biology, chemistry, mathematics and physics, and on comprehension of scientific texts. Recent studies have shown a strong improvement of study progress as well as a dramatic reduction of study dropout rates after introducing this admission test (Reibnegger, Caluba, Ithaler, Manhal, Neges, & Smolle, 2010, 2011).

The admission procedure consists of three steps: after an electronic preregistration period during February, applicants have to provide written material of application until the end of April. The admission test takes place during the first days of July as a paper and pencil-based multiple choice test. Evaluation is performed electronically after scanning in the answer sheets. At this stage, test quality is assured by item analysis. The aim of this important step is to check the test items, based on the response behavior of the applicants, for their quality. If by item analysis one or more test items would be detected with, e.g. a negative index of discrimination, this item could be removed from the test and, by re-evaluation, a fair test result would be obtained.

By the end of July, a provisional list of results is published via the internet. At this time each applicant is provided an electronic copy of her or his answer sheet, and is entitled to raise an objection if she or he believes something might be wrong with test evaluation. For example, she or he might think that the sum of correct answers had been counted incorrectly. By the mid of August, after due consideration of each objection, a final list of results is published via the internet.

The admission test is clearly a high-stakes test: at the Medical University of Graz, the number of available study places is 360 per year, and there are much more applicants. For example, in 2011 and 2012, there were between 1700 and 1800 applicants. Importantly, the applicants are ranked according to their test achievements, and only the 360 top ranking applicants are...
accepted for study. Public interest is generally very strong, and therefore, the university is extremely keen on high quality of the test results. Both item analysis internally performed by the university as well as the external control provided by the responses of the applicants after having received the provisional results, are the cornerstones of quality assurance.

In 2009, immediately after having published the provisional list of results, there was an unusual large number of objections critizing in the vast majority of cases the provisional results of the text-comprehension part of the admission test. Close inspection of the details by the test evaluators quickly revealed that indeed a severe mistake had occurred in assessing the text-comprehension part. Painfully enough, 67 applicants who on the provisional list were among the successful candidates, had to be informed that they were replaced by other candidates who had been erroneously classified as unsuccessful. Due to the strong public interest in the admission tests for medical studies in Austria mentioned above, the case was quite unpleasant for the university. In order to avoid a similar accident in the future, the reasons for the occurrence of the mistake were investigated in detail.

Surprisingly, this in-depth analysis revealed that due to a systematic error having occurred during test evaluation, the item analysis which had been performed before publishing the provisional list, had contributed significantly by yielding strongly over-optimistic quality parameters of the text comprehension items. Here, we explain the detailed nature of the mistake as well as the misleading results of the initial item analysis having led to the publication of an erroneous provisional list of test results. We think that this case is of interest for test evaluators in general because by a chain of unfavorable incidents a central tool for test quality assurance turned out to point in a wrong direction and encouraged publication of wrong provisional test results. We also present a simple recipe how to safely avoid such a mistake in the future.

How the Mistake Occurred

The Test Evaluation Process in General

The admission test takes place in one huge hall. Four students each are placed, side-by-side, at one table. Each of the 1126 applicants receives two separate booklets containing the questions: 1) the larger knowledge test and 2) the smaller text comprehension part, respectively. In order to impede cheating, each booklet is produced in four versions with different ordering of the items; so each of the four applicants sitting at one table receives a different version of each booklet. It goes without saying that in the test evaluation step due consideration of the correct item ordering, depending on the actual version of the booklet received by each applicant, is of uttermost importance.

The Mistake in Test Evaluation in 2009

In 2009, however, after the initial completion of the test evaluation, one of the question authors suggested a correction to be made for one out of 20 text comprehension items, and hence, a re-evaluation of the text comprehension part was performed following this correction step. Errorneously, in this re-evaluation step the item ordering issue was not taken into account, resulting in a wrong item order used for evaluation compared with that printed in three out of four different booklets. Thus, only for 25% of the applicants (i.e. those who had worked with booklets corresponding to the item ordering used in the re-evaluation) the text comprehension part was re-evaluated correctly.

The Role of Item Analysis

Separate item analyses were performed for the knowledge test part and for the test comprehension test part. Here, only the latter is of relevance and results are reported only for this part which consisted of 20 items.

Item analysis was performed by commercially available software (Questionmark Perception, version P 3.4.4; Questionmark™, 535 Connecticut Avenue, Suite 100, Norwalk, CT 06854, USA). Indices of item difficulty and item discrimination were obtained as indicators for item quality.

Item Analysis after Erroneous Test Evaluation

Following the re-evaluation step, item analysis of the text comprehension part was done initially, i.e. before the detection of the error having been made during the re-evaluation, by using all data together, irrespective of the actual ordering group. As Figures 1(a) and (c) demonstrate, this initial analysis (light-grey boxes) suggested a very high index of item discrimination (median of 20 items = 0.683) and a quite high test difficulty (median index of difficulty of 20 items = 0.282, indicating that on average only 28% of the items were correctly answered).

In fact, these seemingly excellent initial results for item quality prompted us to publish the provisional and erroneous list of results which then evoked the above-mentioned flood of objections.

The failure to consider the correct item orderings in 3 out of 4 test booklets evaluation had two serious consequences corrupting the item analysis: the indices of item difficulty indicated a high degree of difficulty because for 75% of the appli-

![Figure 1](image-url)
cants most answers were falsely judged as being “wrong”. For
the indices of discrimination, a particularly fatal interaction
occurred: the 25% of applicants who worked with the question
booklet with the correct item ordering performed very well on
the text comprehension test while the remaining 75% failed
nearly completely. So apparently for each of the 20 items those
test participants who responded correctly were also particularly
successful globally, while those with a seemingly wrong an-
swer to each of the 20 items (mainly due to the item ordering
issue) also failed on the test as a whole. As the index of dis-
crimination judges for each item how well it is mastered by
those being among the successful applicants, compared with the
performance of the failing applicants, in a self-fulfilling manner
the indices of discrimination became very high due to the sys-
tematic error made in the re-evaluation step.

Item Analysis after Correction of Test Evaluation

After detection of the error, the re-evaluation step was re-
peated, now using the correct item orderings. The results
changed dramatically (Figures 1(a) and (c), black boxes): the
indices of discrimination dropped to “normal” values (median
0.307) and the indices of difficulty increased (median 0.736)
indicating that the text comprehension test with an average of
about 74% percent correctly answered items was only moder-
ately difficult.

A Simple Recipe to Avoid Mistakes of This Kind

Given the fact that in complex processes like the evaluation
of a high-stakes admission test with several hundreds or even
thousands of participants mistakes may occur despite all efforts,
could the unpleasant consequences of this mistake have been
avoided? The answer is “yes”: had we performed the item
analysis separately for each item ordering scheme (i.e. for each
of the four versions of the test booklet), the systematic error
would have been safely detected and the publication of the
erroneous results would have never occurred. Figures 1(b) and
(d) illustrate the results that would have been obtained: for all
ordering schemes with the exception of the correct one (de-
noted by group 1), highly suspicious results (light-grey boxes)
would have had resulted. The strong deviation between the
correct ordering group and the remaining ones as well as the
unusual poor and partly even negative discrimination indices
with certainty would have attracted enough attention to revise
the whole assessment and to detect the error prior to publication
of the provisional list.

Conclusion

Item analysis is a powerful tool to detect suspicious test items,
and therefore, it constitutes an important cornerstone in the
process of quality assurance of a test. Usually problematic test
items as well as errors in the test evaluation step become evi-
dent for the test evaluators by the results of item analysis. Un-
der certain circumstances, however, systematic errors in the
evaluation process like the one reported here can lead to mis-
leadingly optimistic results of item analysis falsely suggesting a
particularly high item quality. Whenever in an assessment situ-
ation more than one ordering schemes of items are being used
for different subgroups of the test subjects, based on the ex-
perience reported herein we strongly suggest to include in the
test evaluation process separate item analyses for each of the
different item ordering schemes in order to avoid the pitfall
reported in this paper.

One additional lesson that can be drawn from the case re-
ported in this paper, is the value of the external source of qual-
ity control due to a transparent communication of the test re-
sults: in fact, the quick and immediate objections raised by a
considerable number of test applicants after publication of the
erroneous provisional list of results led to the expeditious de-
tection of the error and its correction.

REFERENCES

Weinheim, Baden-Württemberg: Psychologie Verlags-Union.
Reibnegger, G., Caluba, H.-C., Ithaler, D., Manhal, S., Neges, H. M., &
Smolle, J. (2010). Progress of medical students after open admission
or admission based on knowledge tests. Medical Education, 44,
205-214. doi:10.1111/j.1365-2923.2009.03576.x
Reibnegger, G., Caluba, H.-C., Ithaler, D., Manhal, S., Neges, H. M., &
Smolle, J. (2011). Dropout rates in medical students at one school
before and after the installation of admission tests in Austria. Aca-
demic Medicine, 86, 1040-1048.
doi:10.1097/ACM.0b013e3182223a1b