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Abstract 
Sperm motility analysis has a particular place in male fertility diagnosis. Computerized sperm 
tracking has an important role in extracting sperm trajectory and measuring sperm’s dynamic 
features. Due to free movements of sperms in three dimensions, occlusion has remained a chal- 
lenging problem in this area. This paper aims to present a robust single sperm tracking method 
being able to handle misdetections in sperm occlusion scenes. In this paper, a robust method of 
segmentation was utilized to provide the required measurements for a switchable weight particle 
filtering which was designed for single sperm tracking. In each frame, the target sperm was 
categorized in one of these three stages: before occlusion, occlusion, and after occlusion where the 
occlusion had been detected based on sperm’s physical characteristics. Depending on the target 
sperm stage, particles were weighted differently. In order to evaluate the algorithm, two groups of 
samples were studied where an expert had selected a single sperm of each sample to track manually 
and automatically. In the first group, the sperms with no occlusion along their trajectories were 
tracked to depict the general compatibility of the algorithm with sperm tracking. In the second 
group, the algorithm was applied on the sperms which had at least one occlusion during their path. 
The algorithm showed an accuracy of 95% on the first group and 86.66% on the second group 
which illustrate the robustness of the algorithm against occlusion. 
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1. Introduction 
Human semen analysis is an important experiment in male fertility diagnosis in which morphology and dynamic 
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characteristics of sperms are examined. The semen analysis can be performed manually or automatically. The 
manual semen analysis depends on the operator’s experiences and skills, and the results can be affected by hu-
man errors as well. These imperfections and the brilliant abilities of computerized methods in fast and accurate 
distinguishing of sperm movement have motivated researchers to develop the computerized tracking algorithms. 
Usually sperms are divided into four groups in terms of motility [1]: 

1) Rapid progressive motility; 
2) Slow progressive motility; 
3) Non-progressive motility; 
4) Immobility. 
Because of free movements of sperm in semen, mathematical models cannot explain all the above categories. 

Moreover this diversity in sperm movements compounds the tracking problems. 
From the decade of the 1980 designing sperm imaging systems, tracking algorithms, and computerized analy-

sis became center of attention broadly and valuable works were published in this area as well [2]-[4]. Some of 
them dealt with supplementary tools like acoustic device [3], piezo-electric device [5] and lens-free on-chip im-
aging technique [6] to provide 3D trajectory of sperm. Some others utilized optical tweezers to measure both 
sperm motility and energy [7] [8]. In [9], a lens-less charge-coupled device (CCD) and a microfluidic system 
were used to improve field of view (FOV) of microscope and provide automatic recording of sperm. 

In another aspect, it has been tried to develop algorithms in order to achieve more accurate and robust sperm 
trackers. Using visual evaluation of microscopic field [10], template matching [11] [12], particle and Kalman 
filters [13] [14], nearest neighbor technique [15], time differential method [16], optimal matching [17] co-regis- 
tration process based on block matching [18], high-speed visual feedback [19], and optical flow [20] are some 
tracking algorithms for sperm cells employed so far.  

In computer assisted sperm analysis (CASA) system, multi-object tracking algorithm with specific standards 
is utilized [21]. These systems have board applications for human and animal sperm analysis and in-vitro fertili-
zation (IVF) as well [22] [23]. CASA systems are dealt with from a variety of angles like their capability [4] 
[24], comparison of existed methods [25] [26], accuracy and precision [27] [28], and quantitative analysis [29] 
[30]. This paper attempts to improve the algorithmic approach by providing occlusion robust single sperm 
tracking algorithm. 

2. Methods and Materials 
2.1. Object Restrictions 
In this paper, the following object restrictions were assumed: 
• Imaging system is source of some noises and disturbances such as the errors caused by slides, mirrors, mi-

croscope lenses, camera lenses, and ambient. It is assumed that these factors remain constant in all frames 
and are not affected by the sample’s or the sperm’s movements. 

• The sperm can swim out of the plane of focus [31]. Consequently, average intensity for each sperm head 
changes over time. 

• The sperm may occlude along its path especially, when the semen has a high concentration. In this case, the 
algorithm should be able to make a distinction between target sperm and the other ones. 

• Directions of sperm head and movement are not necessarily the same, specially, when the sperm belongs to the 
first or second movement category.  

• There are some local changes in background, hence it couldn’t be considered static. 

2.2. Preprocessing 
In order to reduce the undesirable effects caused by imaging system, freely movement of sperm, the following 
preprocessing algorithms were used.  
• Smoothing 

Based on report of WHO [1], a progressive sperm can move more than 100 μm per second. In [32] it is dis-
cussed that based on selected sampling rate sperm’s motility characteristics are partly different. In this paper, 
image acquisition was performed with 30 fps. Thus, rapid progressive sperm’s movements were unconnected to 
some extent. To obviate the problem, a sampled spatiotemporal Gaussian filter was utilized [33]: 
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where Σ  is a 3 × 3 covariance matrix and p = (x, y, t) denotes a pixel position (x, y) at time t. In practice, a se-
parable kernel was used in which the standard deviation for every dimension was 1.5 and its length was 5 pixels. 
• Morphological filtering 

Proper use of morphological filters, gives this opportunity to employ the appearance-based information for the 
objects and also partly expunges undesirable cells. In addition to sperm cells, human semen includes blood cells 
and cytoplasmic parts. According to WHO, size of sperm head is 3 - 5 μm which is a useful constraint to seclude 
sperms from other types of cells [1]. Nonetheless, in some samples, non-sperm cells move slowly and locally 
which misleads motion-based segmentation methods into misdetection. In this paper, a sperm-shaped top hat fil-
ter was employed to address this problem. Size of the structure element was designed considering sperm head size. 

2.3. Background Removing 
Although the morphological filtering reduces the background to some extent, some debris still appear in the im-
ages. Furthermore, the images are labeled by the camera. Therefore, a proper background removing algorithm 
was utilized. Because of some unwanted local slow movements, the statistical methods did not have enough 
proficiency. Therefore, an adaptive temporal median filter was employed to detect the background. In this me-
thod, original image was defined as sum of background and foreground as follows: 

( ) ( ) ( ), , ,O t I t B t= +x x x                                 (2) 

( ) ( ) ( ) ( ), 1 1 , ,B t B t I tα α+ = − +x x x                            (3) 

where α denotes the update constant changing in each step. I and B depict foreground (sperm objects) and back-
ground intensity respectively [34]. The median changes in accordance to standard deviation and length of time 
series in each point. Moreover, if a local ramp arises in the median, it will be modified. Finally, median meas-
ures are limited by Chebyshev constrain whose magnitude is 0.777 time of standard deviation of the data.  

2.4. Particle Filter 
Generally, particle filtering is a method for estimating probability distribution. In the other words, particle fil-
tering is a sequential Monte Carlo estimation using importance sampling method. In this method, particles are 
utilized for point representation of probability distribution and are allotted weights to determine the probability 
in each point. This is the important sampling technique which determines particle weights. To use particle fil-
tering, it is only needed to express the problem in state space. If tx  is a state variable at time t, then the par-
ticles and their weights are shown as { },i i

t tx W  and posterior probability is approximated by: 

( ) ( )i i
t t t t t

i
P x Y W x xδ= −∑                                (4) 

where tY  denotes measurements. Based on the Bayesian network principal, posterior probability can be ap-
proximated by computing ( )1 1t tP x Y− − . Nonetheless, computing ( )1 1t tP x Y− −  is in need of solving complex 
integrals [35]. Therefore, reaching optimum solution based on approximate integrations is impracticable. Instead, 
importance sampling is a competent candidate to solve this problem in which a specific distribution q is used to 
generate random samples. Assuming chain rule and Markovian condition on the state variable ( )x t  and condi-
tional independency of ( )y t , the weights can be obtained using importance sampling as follows [35]: 
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where { }, 1, ,i
t tX x i n= =  . By rewriting the equation as recursive form, we have: 

( ) ( )
( )

Likelihood Transition

1
1

1,
t t t t

t t
t t t

P y x P x x
W W

q x X Y
−

−
−

×
= ×

 

                             (6) 

The likelihood or the transition probability is mostly chosen as the proposal distribution. Using the prior dis-
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tribution instead of the proposal distribution makes the sampling easier and accelerates the weighting process. 
Replacing q with ( )1t tP x x −  in Equation (4), final normalized weights will be obtained as follows: 

1

i
i t

t N i
ti

W
W

=

=
∑

W                                     (7) 

This process is repeated in each step to approximate the state variable [35].  

2.5. Object Representation 
The first step of each tracking algorithm, is selecting a proper type of representation [36]. Based on a specific 
application and object characteristics, different types of representations are utilized. Of all object representation 
types, point representation is the simplest and most popular one causing decrease in computational costs. This is 
often employed where objects are small [36]. Sperm cells occupy small areas on every frame. In addition, the 
subsequent analysis such as computing percent motility and curvilinear velocity are defined based on point loca-
lization. Therefore, in this paper the point representation was used to locate the sperms. Due to free movement 
of sperm, the sperms do not have invariant appearances and their average intensity may change a long time. 
Therefore, object representations which are based on shape and boundaries of an object were not considered in 
this paper. Figure 1 depicts five consecutive frames of a singular sperm. Each frame includes sperm elliptic 
boundary and a line which illustrates its head direction. It shows that the head direction doesn’t change neces-
sarily smoothly. In conclusion, in this study a head-independent sperm tracking algorithm was addressed.  

2.6. State Space Model 
In this paper, in order to model sperm movement the expansion of Taylor series around sperm head position was 
used in which center of the target sperm is shown by variable x. This expansion around x leads to the sperm mo-
tion equation: 

2

1 2t t t t
Tx x Tx x+ = + + + 



                                (8) 

1t t t tx x Tx v+ = + +                                    (9) 

where ( ),x x y=  and T denotes the time interval between two consecutive frames. Although, using higher or-
der equations bring complex models, a large number of particles are required to reach accurate estimation. So, 
because of calculating higher order derivatives the computational cost extremely goes up. Hence, truncated 
Taylor series including only first order derivative was used and the rest of series were modeled by a Gaussian 
random process denoted by tv  [37]. For simplification, a vector representation was utilized in which two-di- 
mensional (2D) position and velocity explain the state of motion. The state vector variables is { }, , ,t t t t tX x x y y=    
where ( ),t tx y  denotes the target position and ( ),t tx x y=    shows its velocity. Equation (9) can be written as: 
 

 
(a)                      (b)                     (c)                      (d)                     (e) 

Figure 1. Variation in size, shape and direction of a low contrast sperm during image acquisition.                                            
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1t t tX X V+ = +A C                                   (10) 
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where A is the transition matrix and C shows the gain matrix [17].  

2.7. Likelihood 
Euclidian distance is common criterion to measure the likelihood. In this paper also the distance between the po-
sitions and the velocities were computed for the particles. 
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where ( )* *,K
t ty x y=  shows the most probable measurement for target sperm position. For combining norma-

lized distances, a simple definition was used. 

j
j

d d= ∑                                      (15) 

After acquiring total distance, the likelihood probability can be calculated as: 

( )
2

2exp
2t t
dP y x
σ

 
=  

 
                                (16) 

where σ  denotes noise standard deviation of measurements [18]. 

2.8. Segmentation and Detection 
Watershed segmentation algorithm is based on topography of intensity. This method comprises principle con-
cepts of other segmentation methods such as thresholding, edge detection and growing region. Furthermore, 
Watershed includes contiguous boundaries [38]. In this method based on topography of intensity, each area in an 
image is divided into three categories. First category, called minimum regions, belongs to local minimum inten-
sity areas. Second category, called catchment basin, depicts a set of points if a droplet of water drips there, then, 
it slips down towards a specific minimum region. Third category, called watershed lines, refers to the areas 
where droplets of water have the same chance to slip down towards adjacent minimum regions. 

The main goal in this method is finding watershed lines. At the beginning, assume that minimum regions are 
punched and water gradually goes up from the minimum intensity to the maximum. If level of water is deter-
mined by l ; magnitude of lwill change from minimum intensity up to maximum. If 1lC −  denotes the regions 
relied under the surface of water level 1l − , lT  will comprise the regions under level l . Therefore, there are 
three possible states between 1lC −  and lT  as follows: 

1) 1l lC − = ∅T . 
2) 1l lC − = ∅T  and includes only one flooded catchment basin under level 1l − . 
3) 1l lC − = ∅T  and includes more than one flooded catchment basin under level 1l − . 
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Third state happens just when a new catchment basin is flooded with water, so a new dam is constructed to 
prevent. 

The watershed algorithm suffers from over-segmentation [38] especially in occlusion senses, moreover the 
smoothing filter decreases the possibility of discrimination between occluded sperms. Thus, in this study, a local 
region around the single target was used to apply Otsu thresholding [39], then a binary watershed algorithm 
based on specific distance transform was employed to reach final sperm segments. The experience showed that 
this approach reduces the over-segmentations. Eventually, the segments whose sizes were in the range of a 
sperm were labeled and their centers were determined. 

In binary watershed algorithm, the distance between each 0 pixel and the nearest 1 pixel is defined as basis of 
the transform. The distance has different definitions, however based on [40], the best definition for segmenting 
correlated objects in binary images is the chessboard distance which is defined as: 

( ) ( )1 1 2 2 2 1 2 1, , , max ,chd x y x y x x y y= − −                          (17) 

Therefore, the chessboard distance was applied for binary watershed segmentation. 
In order to avoid superfluous measurements, only a specific neighborhood around the estimated position of 

the target sperm at𝑡𝑡was considered. All detection process was performed in this area called “search window”. 
On one hand, if search window is too small (i.e. as same as a sperm head), the algorithm will not be able to dis-
tinguish whether an occlusion has been occurred or not. On the other hand, if it is too large, it may accommodate 
several sperms which bewilder the algorithm. Hence, there is a tradeoff between large window and algorithm 
complexity. The image system provided 2 μm pixel  resolution under which the progressive sperms were able 
to move more than two pixels in each frame. Moreover, watershed algorithm needed to compute fast fourier 
transform (FFT) for which a window of size 2m  brings faster performance. Consequently, a 2 2m m×  search 
window was assigned for the detection. 

3. Tracking and Occlusion Detection 
The tracking began by selecting a singular sperm in a frame. Center of each detected segment which had ful-
filled the sperm size constraint was considered as ky  (see Figure 2). Since the search window had a specific 
size, only limited number of sperms was detected. Afterward, the distance between ky  and last position of the 
target sperm at 1t −  was computed. Finally, position and displacement of every ky  were saved as the mea-
surements. Figure 2 shows search window at t where detection algorithm labels only two of four segments. The 
two segments, smaller than sperm head, are rejected. Also y1 and y2 are taken part in target selection where the 
two arrows in Figure 2 represent their displacements. 

In this paper, in order to improve target detection and avoid mistracking after occlusions, three stages were 
defined for target sperm called “before occlusion”, “occlusion” and “after occlusion”. 
• Before occlusion shows that the target sperm never had an occlusion along its trajectory or it has passed oc-

clusion stage already. 
• Occlusion shows the stage when the detection algorithm is not able to make distinction between the target 

and occluded sperms. The basic idea is that detecting a mass, remarkably larger than sperm size, is the sign 
of occlusion. 

• After occlusion shows the stage when an occlusion has been obviated and detection algorithm is able to 
separate the target again.  

If the target sperm is in before occlusion or occlusion stages, the closest ky  to approximate state xMMSE will 
be the most likely position for the target sperm shown by Ky . The main problem appears when the target sperm 
is in after occlusion stage, since the nearest distance cannot be trusted any more. In this case, history of the tar-
get sperm movements is utilized to discern it. Hence, the average direction and velocity of the target along three 
prior frames were calculated: 

( ) ( ) ( )( )* * *
1 2 3 3

o o oa t t tx x xθ θ θ θ− − −= + +  
                          (18) 

( )* * * *
1 2 3 3

o o oa t t tx x x x− − −= + +   
                             (19) 

where ot  denotes the moment at which the sperms has just separated. Thus, Ky  after occlusion is determined 
by the estimated position of the target sperm using * ,a ax θ . 
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Figure 2. Labeling sperms in the search window. Of all 
detected objects only the two meeting the sperm constraints 
are labeled as y1 and y2.                                  

 
Following the determination of Ky , those particles which are closer to Ky  in terms of position and velocity, 

are allocated more weights. The distance between measurements obtained from Ky  and particles were com-
puted by Equations (12), (13) and (14) and the likelihood was measured by Equations (15) and (16). 

4. Implementation 
200 particles were used for tracking. On the assumption that tv  is uncorrelated, particles were propagated 
throughout the search window where their initial weights had been assigned 1/N. Then, the weighting was per-
formed using likelihood function. In addition, the systematic resampling was utilized to avoid generating inef-
fective or too dominant particles [41]. Finally, using minimum mean square error estimation, approximate state 
was computed as follows: 

( ) { } ( )
1

ˆˆ
N

i
MMSE t t t t

i
t E Y P Y

=

= = ∑x x x x                            (20) 

Using MMSEx , next position of search window was determined: 
x MMSE MMSEc x x= +                                    (21) 

y MMSE MMSEc y y= +                                    (22) 

where ( ),x yc c  denotes center of Search Window. 

Figure 3 depicts flowchart of the algorithm which explains how this algorithm uses the measurements to 
change the weights of the particles regarding the stage of the target sperm. 

5. Results and Discussions 
In this section, different steps of the sperm tracking algorithm used for the microscopic sperm images are dis-
cussed. 

Figure 4 shows the result of morphological filtering and background removing. As shown in Figure 4, not 
only the sperms were highlighted, but also average intensity of the background was decreased intensely so that 
the sperms were observed as bright objects.  

As the second step in preprocessing, the median adaptive background removing technique was responsible for 
eliminating imaging artifacts and very slow moving non-sperm cells. Figure 4(c) displays the preprocessed im-
age after adaptive median background removing and open filtering. In the obtained image both the marker and 
noisy pixels have been disappeared drastically. 

After preprocessing, in tracking, this is the sperm occlusion determines approach of the algorithm in selecting 
proper criteria for diagnosing the target sperm. Figure 5 schematically exhibits the algorithm manner toward 
sperm occlusion via the three consecutive frames. The solid ellipse shows the target and the dashed one denotes 
a pesky sperm. 1y  and 2y  are the detected segment centers, t is time, and the dashed square refers to the 
search window. The small solid circles show the previous target sperm positions selected by the algorithmwhile 
the small hollow circle shows the predicted position for the target sperm in each frame. In the frame Figure 5(a), 
the target is in the before-occlusion status and the arrows reveal the distance between xMMSE and the segments  
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Figure 3. Flowchart of the proposed low contrast sperm tracking 
algorithm.                                                 

 

 
(a)                      (b)                      (c) 

Figure 4. Video preparation. (a) Original image; (b) Morphological filtering; (c) Back- 
ground removing.                                                           

 

 
(a)                        (b)                         (c) 

Figure 5. The scheme of sperm tracking in a occlusion scene. (a) Before occlusion; (b)  
Occlusion; (c) After occlusion.                                                      

 
1y  and 2y . According to the nearest distance criterion 1y  is selected as the sperm position. In the frame 

Figure 5(b), the occlusion occurs so that the watershed algorithm detects a unique segment. So, merely 1y  is 
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observed and considered as the sperm position. Eventually in frame Figure 5(c), the pesky sperm which is as-
sumingly unwilling to travel long distance, causes misdetection, if the nearest distance criterion is applied for 
tracking. In such scenarios, in this paper the average velocity was used to predict the new target position as 
shown by the hollow square. Afterward, proximity to the new point was the criterion for 1y  and 2y . 

Figure 6 represents operation of the algorithm for real data in which 4 consecutive frames discover a real 
sperm occlusion scene. Figures 6(a1)-(a4) display distance transform of the search area around the target sperm 
after thresholding. As you can see in this raw (a) although the chessboard distance has usually acceptable per-
formance for sperm discrimination however, some cases like Figure 6(a2) challenge it. Therefore, based on size 
of the detected object an occlusion is flagged. 

Figures 6(b1)-(b4) denote object boundaries corresponding to Figures 6(a1)-(a4) including single points re-
ferring to the target sperm positions selected by the algorithm. The marker points show the algorithm success in 
coping sperm occlusion problem. 

In order to assess the method, two groups of patients were established. The proficiency and compatibility of 
the method with the categories of sperm motility was evaluated using the first group including 20 videos where 
a target sperm from different movement categories was selected from each video so that it had no occlusion 
along its trajectory. In contrast, to evaluate the robustness of the algorithm against the occlusion, 30 videos were 
considered so that the chosen sperms had one or more occlusion during their paths. 

In the first hand, an expert was asked to label the target in each frame. Then, every sperm was tracked by the 
algorithm. The comparison between the manual track and the algorithm result was fulfilled by object tracking 
error (OTE) [21] which measures errors in every frame as: 

( )( )2

1

1OTE
n

MMSE M
k

t
n =

= −∑ x x                              (23) 

where Mx  denotes the manual sperm position and n is number of frames until the sperm exits the scene. In 
each group, the average tracking errors was determined. In the case that a sperm hides or the tracker misses the 
target, the correspondent error extremely increases. Thus, in order to avoid the misconception caused by this 
phenomenon, average error was computed for only sperms which were tracked completely. Table 1 illustrates 
the results of low contrast sperm tracking for both groups. Of all 20 sperms with no occlusion in their path, only 
one sperm was missed. This can be interpreted as the ability and compatibility of the algorithm in tracking all 
sperm categories. Figure 7 shows the trajectories detected by the algorithm for the sperms of different types of 
motility. 

Also, the algorithm achieved satisfactory results in the case of occlusion scenes. In this respect, Table 2 
shows the accuracy and the average tracking error in each group. When a sperm is crossing another, it is hard to 
locate the target sperm even for an expert, therefore the second group shows higher average tracking error. 
However, through the eyes of specialists, this range of error has trivial influence on subsequent examinations.  

6. Conclusions 
This paper described different phases of single sperm tracking including preprocessing and localization with 
special attention to be devoted to properly adapting them to moving sperm objects and the occlusion problem. 
Although it has been trying to cope with sperm occlusion through advanced imaging device such as laser and 
acoustic waves, this paper attempted to find a solution by virtue of a sheer algorithmic approach which helps 
small laboratories to be involved with this research field without having access to modern electronic equip-
ments. 

In the case of preprocessing, the sperm movements were smoothed to reduce the effect of the low sampling 
rate, using a spatio-temporal Gaussian filter. In addition, an adaptive background removing technique was ap-
plied to expunge the impact of non-sperm moving objects and undesirable artifacts in the slides. Although ap-
pearance-based methods, such as template matching, are able to segment low-contrast sperms, they are hardly 
able to separate the target sperm from occluded one because low-contrast sperms do not adhere strictly to 
shape-based regularities. Nonetheless, it is still possible to take advantage of some constraints on sperms’ shape 
and size. In this paper, object-oriented morphological filters and the size constraints were used to feature the 
sperm objects and eliminate the waste debris. 

On one side, complex segmentation methods increase computations. On the other side, simple methods are  
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(a1)                   (a2)                   (a3)                   (a4) 

 
(b1)                   (b2)                   (b3)                   (b4) 

Figure 6. Four consecutive frames showing a target sperm from before collision until 
distancing from the other sperm. (a) Denotes chessboard distance transform; (b) Watershed 
segmentation and labeling the target sperm.                                         

 

 
(a)                          (b)                          (c) 

Figure 7. Representation of the performance of the algorithm in tree types of sperm 
movement. (a) Rapid progressive motility; (b) Slow progressive motility; (c) Non-pro- 
gressive motility.                                                                 

 
Table 1. The results of sperm tracking for two groups.                                  

Tracking 20 sperms 30 sperms 

Complete 19 26 

Comparative 1 3 

Wrong 0 1 

 
Table 2. The accuracy and error of the algorithm for two groups.                           

Group Accuracy Error 

20 sperms 95 3.56 

30 sperms 86.66 5.63 

 
not effectively able to cope with the sperm occlusion problem. Gray Watershed algorithm counts as a powerful 
segmentation method, however internal changes of intensity in a small object causes over-segmentation in Gray 
Watershed method. Therefore, in this paper, the binary watershed algorithm based on the chessboard distance 
transform was utilized. In addition, combination of the thresholding and the binary watershed algorithm pro-
vided high-efficiency sperm segmentation. 

The proposed low-contrast sperm tracking method is a plain and efficient solution to the occlusion problem. 
In contrast to statistical tracking methods, selecting complex weighting techniques to encompass all sperm 
movement categories, the proposed method defines three stages for each target sperm to reduce the composi-
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tional cost and improve the performance of tracking. In this regard, extra computations are carried out only 
when an occlusion occurs which saves the operation time. In addition, all computations were limited to a search 
window. It was designed so that it had the minimum size for searching space and was large enough to monitor 
sperm occlusions. 

The result showed that the switchable weight particle filtering has the great ability to track low-contrast 
sperms. It provided the opportunity to track the sperms based on their motion models instead of the head direc-
tions. In this paper, the weights were given so that the particles were congregating around the target position. 
Therefore, it is expected that the performance of the algorithm can be improved, using more complex proposal 
distributions and sampling methods. 

References 
[1] Organization, W.H. (2010) World Health Organization Laboratory Manual for the Examination and Processing of 

Human Semen. http://books.google.com/books?id=SoP5QQAACAAJ  
[2] Hinting, A., Schoonjans, F. and Comhaire, F. (1988) Validation of a Single-Step Procedure for the Objective Assess-

ment of Sperm Motility Characteristics. International Journal of Andrology, 11, 277-287.  
http://dx.doi.org/10.1111/j.1365-2605.1988.tb01001.x 

[3] Vantman, D., Koukoulis, G., Dennison, L., Zinaman, M. and Sherins, R.J. (1988) Computer-Assisted Semen Analysis: 
Evaluation of Method and Assessment of the Influence of Sperm Concentration on Linear Velocity Determination. 
Fertility and Sterility, 49, 510-515.  

[4] Davis, R. and Katz, D. (1989) Computer-Aided Sperm Analysis (CASA): Image Digitization and Processing. Artificial 
Cells, Blood Substitutes and Biotechnology, 17, 93-116. http://dx.doi.org/10.3109/10731198909118272 

[5] Corkidi, G., Taboada, B., Wood, C., Guerrero, A. and Darszon, A. (2008) Tracking Sperm in Three-Dimensions. Bio-
chemical and Biophysical Research Communications, 373, 125-129. http://dx.doi.org/10.1016/j.bbrc.2008.05.189 

[6] Su, T.W., Xue, L. and Ozcan, A. (2012) High-Throughput Lensfree 3D Tracking of Human Sperms Reveals Rare Sta-
tistics of Helical Trajectories. Proceedings of the National Academy of Sciences USA, 109, 16018-16022.  
http://dx.doi.org/10.1073/pnas.1212506109 

[7] Shi, L.Z., Nascimento, J.M., Berns, M.W. and Botvinick, E.L. (2006) Computer-Based Tracking of Single Sperm. 
Journal of Biomedical Optics, 11, Article ID: 054009. http://dx.doi.org/10.1117/1.2357735 

[8] Shi, L.Z., Nascimento, J.M., Chandsawangbhuwana, C., Botvinick, E.L. and Berns, M.W. (2008) An Automatic Sys-
tem to Study Sperm Motility and Energetics. Biomedical Microdevices, 10, 573-583.  
http://dx.doi.org/10.1007/s10544-008-9169-4 

[9] Zhang, X., Khimji, I., Gurkan, U.A., Safaee, H., Catalano, P.N., Keles, H.O., Kayaalp, E. and Demirci, U. (2011) 
Lensless Imaging for Simultaneous Microfluidic Sperm Monitoring and Sorting. Lab on a Chip, 11, 2535-2540.  
http://dx.doi.org/10.1039/c1lc20236g 

[10] Comhaire, F.H., Huysse, S., Hinting, A., Vermeulen, L. and Schoonjans, F. (1992) Objective Semen Analysis: Has the 
Target Been Reached? Human Reproduction, 7, 237-241.  

[11] Pimentel, J.A., Carneiro, J., Darszon, A. and Corkidi, G. (2012) A Segmentation Algorithm for Automated Tracking of 
Fast Swimming Unlabelled Cells in Three Dimensions. Journal of Microscopy, 245, 72-81.  
http://dx.doi.org/10.1111/j.1365-2818.2011.03545.x 

[12] Nafisi, V.R., Moradi, M.H. and Nasr-Esfahani, M.H. (2005) A Template Matching Algorithm for Sperm Tracking and 
Classification. Physiological Measurement, 26, 639. http://dx.doi.org/10.1088/0967-3334/26/5/006 

[13] Sørensen, L., Østergaard, J., Johansen, P. and De Bruijne, M. (2008) Multi-Object Tracking of Human Spermatozoa. 
Proceeding of SPIE, 6914, Article ID: 69142C. 

[14] Ravanfar, M.R. and Moradi, M.H. (2011) Low Contrast Sperm Detection and Tracking by Watershed Algorithm and 
Particle Filter. 2011 18th Iranian Conference of Biomedical Engineering (ICBME), Tehran, 14-16 December 2011, 
260-263. 

[15] Groenewald, A.M. and Botha, E.C. (1991) Preprocessing and Tracking Algorithms for Automatic Sperm Analysis. 
South African Symposium on Communications and Signal Processing, Pretoria, 30 August 1991, 64-68. 

[16] Abbiramy, V.S., Shanthi, V. and Allidurai, C. (2010) Spermatozoa Detection, Counting and Tracking in Video Streams 
to Detect Asthenozoospermia. 2010 International Conference on Signal and Image Processing (ICSIP), Chennai, 
15-17 December 2010, 265-270. http://dx.doi.org/10.1109/ICSIP.2010.5697481 

[17] Imani, Y., Teyfouri, N., Ahmadzadeh, M.R. and Golabbakhsh, M. (2014) A New Method for Multiple Sperm Cells 
Tracking. Journal of Medical Signals and Sensors, 4, 35-42.  

http://books.google.com/books?id=SoP5QQAACAAJ
http://dx.doi.org/10.1111/j.1365-2605.1988.tb01001.x
http://dx.doi.org/10.3109/10731198909118272
http://dx.doi.org/10.1016/j.bbrc.2008.05.189
http://dx.doi.org/10.1073/pnas.1212506109
http://dx.doi.org/10.1117/1.2357735
http://dx.doi.org/10.1007/s10544-008-9169-4
http://dx.doi.org/10.1039/c1lc20236g
http://dx.doi.org/10.1111/j.1365-2818.2011.03545.x
http://dx.doi.org/10.1088/0967-3334/26/5/006
http://dx.doi.org/10.1109/ICSIP.2010.5697481


M. Ravanfar et al. 
 

 
53 

[18] Yang, H., Descombes, X., Prigent, S., Malandain, G., Druart, X. and Plouraboué, F. (2014) Head Tracking and Flagel-
lum Tracing for Sperm Motility Analysis. IEEE International Symposium on Biomedical Imaging, 2-13 December 2014.  

[19] Oku, H., Ishikawa, M., Ogawa, N., Shiba, K. and Yoshida, M. (2008) How to Track Spermatozoa Using High-Speed 
Visual Feedback. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Van-
couver, 21-24 August 2008, 125-128.  

[20] Berezansky, M., Greenspan, H., Cohen-Or, D. and Eitan, O. (2007) Segmentation and Tracking of Human Sperm Cells 
Using Spatio-Temporal Representation and Clustering. Proceedings of the SPIE, 6512, Article ID: 65122M. 

[21] Gangal, S. (2011) Computer-Assisted Semen Analysis (CASA). A Workbook on Human Spermatozoa and Assisted 
Conception, 15.  

[22] Kime, D., Van Look, K., McAllister, B., Huyskens, G., Rurangwa, E. and Ollevier, F. (2001) Computer-Assisted 
Sperm Analysis (CASA) as a Tool for Monitoring Sperm Quality in Fish. Comparative Biochemistry and Physiology 
Part C: Toxicology & Pharmacology, 130, 425-433. http://dx.doi.org/10.1016/S1532-0456(01)00270-8 

[23] Friedrich, B.M., Riedel-Kruse, I.H., Howard, J. and Julicher, F. (2010) High-Precision Tracking of Sperm Swimming 
Fine Structure Provides Strong Test of Resistive Force Theory. Journal of Experimental Biology, 213, 1226-1234.  
http://dx.doi.org/10.1242/jeb.039800 

[24] Amann, R.P. and Waberski, D. (2014) Computer-Assisted Sperm Analysis (CASA): Capabilities and Potential Devel-
opments. Theriogenology, 81, 5-17. http://dx.doi.org/10.1016/j.theriogenology.2013.09.004 

[25] Krause, W. (1995) Computer-Assisted Semen Analysis Systems: Comparison with Routine Evaluation and Prognostic 
Value in Male Fertility and Assisted Reproduction. Human Reproduction, 10, 60-66.  
http://dx.doi.org/10.1093/humrep/10.suppl_1.60 

[26] Hirano, Y., Shibahara, H., Obara, H., Suzuki, T., Takamizawa, S., Yamaguchi, C., Tsunoda, H. and Sato, I. (2001) 
Andrology: Relationships between Sperm Motility Characteristics Assessed by the Computer-Aided Sperm Analysis 
(CASA) and Fertilization Rates in Vitro. Journal of Assisted Reproduction and Genetics, 18, 215-220.  
http://dx.doi.org/10.1023/A:1009420432234 

[27] De Geyter, C., De Geyter, M., Koppers, B. and Nieschlag, E. (1998) Diagnostic Accuracy of Computer-Assisted 
Sperm Motion Analysis. Human Reproduction, 13, 2512-2520. http://dx.doi.org/10.1093/humrep/13.9.2512 

[28] Davis, R.O. and Katz, D.F. (1992) Standardization and Comparability of CASA Instruments. Journal of Andrology, 13, 
81-86.  

[29] Leung, C., Lu, Z., Esfandiari, N., Casper, R.F. and Sun, Y. (2010) Detection and Tracking of Low Contrast Human 
Sperm Tail. 2010 IEEE Conference on Automation Science and Engineering (CASE), Toronto, 21-24 August 2010, 
263-268. http://dx.doi.org/10.1109/COASE.2010.5584613 

[30] Pascual-Gaspar, J., Olmedo, H., Exposito, A., Exposito, A. and Finat, J. (2008) A Simple and Effective System for 
Computer-Assisted Semen Analysis. MEDSIP 2008, 4th IET International Conference on Advances in Medical, Signal 
and Information Processing, Santa Margherita Ligure, 14-16 July 2008, 1-4.  

[31] Wilson-Leedy, J.G. and Ingermann, R.L. (2007) Development of a Novel CASA System Based on Open Source Soft-
ware for Characterization of Zebrafish Sperm Motility Parameters. Theriogenology, 67, 661-672.  
http://dx.doi.org/10.1016/j.theriogenology.2006.10.003 

[32] Morris, A.R., Coutts, J.R. and Robertson, L. (1996) A Detailed Study of the Effect of Videoframe Rates of 25, 30 and 
60 Hertz on Human Sperm Movement Characteristics. Human Reproduction, 11, 304-310.  
http://dx.doi.org/10.1093/HUMREP/11.2.304 

[33] Barron, J.L., Fleet, D.J. and Beauchemin, S.S. (1994) Performance of Optical Flow Techniques. International Journal 
of Computer Vision, 12, 43-77. http://dx.doi.org/10.1007/BF01420984 

[34] Benezeth, Y., Jodoin, P., Emile, B., Laurent, H. and Rosenberger, C. (2008) Review and Evaluation of Commonly- 
Implemented Background Subtraction Algorithms. ICPR 2008, 19th International Conference on Pattern Recognition, 
Tampa, 8-11 December 2008, 1-4.  

[35] Candy, J.V. (2009) Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods. Wiley-Interscience, 
New York. 

[36] Yilmaz, A., Javed, O. and Shah, M. (2006) Object Tracking: A Survey. ACM Computing Surveys (CSUR), 38, Article 
No. 13. http://dx.doi.org/10.1145/1177352.1177355 

[37] Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R. and Nordlund, P. (2002) Particle 
Filters for Positioning, Navigation, and Tracking. IEEE Transactions on Signal Processing, 50, 425-437.  

[38] Hamarneh, G. and Li, X.X. (2009) Watershed Segmentation Using Prior Shape and Appearance Knowledge. Image 
and Vision Computing, 27, 59-68. http://dx.doi.org/10.1016/j.imavis.2006.10.009 

[39] Otsu, N. (1975) A Threshold Selection Method from Gray-Level Histograms. Automatica, 11, 23-27.  

http://dx.doi.org/10.1016/S1532-0456(01)00270-8
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1016/j.theriogenology.2013.09.004
http://dx.doi.org/10.1093/humrep/10.suppl_1.60
http://dx.doi.org/10.1023/A:1009420432234
http://dx.doi.org/10.1093/humrep/13.9.2512
http://dx.doi.org/10.1109/COASE.2010.5584613
http://dx.doi.org/10.1016/j.theriogenology.2006.10.003
http://dx.doi.org/10.1093/HUMREP/11.2.304
http://dx.doi.org/10.1007/BF01420984
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1016/j.imavis.2006.10.009


M. Ravanfar et al. 
 

 
54 

[40] Chen, Q., Yang, X. and Petriu, E.M. (2004) Watershed Segmentation for Binary Images with Different Distance 
Transforms. Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and 
Their Applications, Ottawa, 2-3 October 2004, 111-116.  

[41] Douc, R. and Cappé, O. (2005) Comparison of Resampling Schemes for Particle Filtering. ISPA 2005, Proceedings of 
the 4th International Symposium on Image and Signal Processing and Analysis, Zagreb, 15-17 September 2005, 64-69. 



Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is 
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide 
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes 
to the progress and application of science with its publication. 
 
Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either 
submit@scirp.org or Online Submission Portal. 

 

    

    

    

    

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Occlusion Robust Low-Contrast Sperm Tracking Using Switchable Weight Particle Filtering
	Abstract
	Keywords
	1. Introduction
	2. Methods and Materials
	2.1. Object Restrictions
	2.2. Preprocessing
	2.3. Background Removing
	2.4. Particle Filter
	2.5. Object Representation
	2.6. State Space Model
	2.7. Likelihood
	2.8. Segmentation and Detection

	3. Tracking and Occlusion Detection
	4. Implementation
	5. Results and Discussions
	6. Conclusions
	References

