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Abstract 
After developing the mathematical means for the correspondence of classical 
phase-space function to quantum-mechanical operators with symmetrical or-
dering of the basic canonical operators in the sense of Weyl the approach is 
applied to an infinite series of classical monomial functions of the canonical va-
riables. These include as well as pure powers of the amplitude ( ), 0,1, 2,k kα =   

as also basic periodic functions ( )ie , 1, 2,l lϕ = ± ±   of the phase ϕ  with 
their quantum-mechanical correspondence. In the representation by number 
states ( ), 0,1,n n =  , all the considered operators involve the Jacobi poly-
nomials as the essential formative element. Whereas the quantity 

{ } { }
2

2 2a a a a− † †  in normal ordering due to its indeterminacy leads to 

the introduction of the notions of sub- and super-Poissonian statistics the 

analogous quantity in (Weyl) symmetrical ordering { } { }
2

2 2a a a a− † †  is 

positive definite and satisfies an inequality. The notions of sub- and su-
per-Poissonian statistics are problematic when they are used for the definition 
of nonclassicality of states since the mentioned measure in normal ordering 
does not determine the Poisson statistics in their middle in unique way but 
determines only a large set of statistics which may be very far in the sense of 
the Hilbert-Schmidt distance from a Poisson statistics that is discussed. 
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1. Introduction 

The basic part of quantum mechanics originated from classical Hamilton 
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mechanics and was developed in the twenties and thirties of last century. The 
canonical variables ( ),q p  of the phase space in the Hamilton function ( ),H q p  
were substituted by operators ( ),Q P  which obey the commutation relations 
[ ], iQ P I=  , (   Planck’s action quantum h  divided by 2π  and I  identity 
operator of the Hilbert space of the representation of the operator algebra). In 
general, a classical function ( ),A q p  of the canonical variables ( ),q p  cannot 
be translated into a corresponding quantum-mechanical function ( ),A Q P  
without additional rules for operator ordering since QP PQ≠ . Luckily, this did 
not play a role in the first very successful applications of the Schrödinger 
equation with a Hamilton operator H  with additively separated classical 
kinetic energy ( ) ( )T T→p P  from potential energy ( ) ( )U U→q Q  with ≡q r  
the position vector and p  the (canonical) momentum vector. Thus it was 
translated into the quantum-mechanical Hamilton operator ( ) ( )H T U= +P Q  
where ( ),q p  in classical mechanics are, in general, three-dimensional vectors 
and ( ),Q P  corresponding vector operators with independent components and 
independent commutation relations ,, ij k j kQ P δ  =   . Luckily also, this did not 
play a role in the translation of the classical angular momentum ( ) [ ], ,≡L q p q p  
(vector product of q  with p ) or ( ),i ijk j kL q pε≡q p  into a quantum-me- 
chanical operator since there are only combined independent (commutating) 
components of jQ  and ( ),kP k j≠ , in the quantum-mechanical operator 

i ijk j kL Q Pε= . In quantum field theories such as quantum electrodynamics and 
optics where one usually speaks about independent modes the canonical 
variables ( ) ( ), ,q p Q P→  are internal field variables whereas the position r  
and the time t  are classical variables as parameters of each mode determining 
the shape of the field and p  is not the momentum of the field, for example, of a 
wave packet or beam1. In present paper, however, we mainly use the transition 
from canonical coordinates ( ),q p  to complex coordinates ( )*,α α  and from 
canonical operators ( ),Q P  to annihilation and creation operators ( )†,a a , 
correspondingly. 

Hermann Weyl in [1] and in his book [2] from 1928 (chap. IV, §14) proposed 
a general rule for the translation of arbitrary functions ( ),A q p  of the 
canonical phase-space variables in a unique way into quantum-mechanical 
operator-ordered functions ( ),A Q P  of the operators ( ),Q P . His way was via 
the Fourier transform of the classical function ( ),A q p  (denoted there in the 
way ( ) ( ) ( ), , d df p q e p qσ τ ξ σ τ σ τ

+∞

−∞
= +∫∫  where ( ) ie xe x ≡  and ( ),ξ σ τ  is 

the Fourier transform of ( ),f p q  and ( ),p q  are here operators). On the 
opposite our preliminarily written “function” ( ),A Q P  is not well and uniquely 
defined without an ordering rule. The form proposed by Weyl is called the 
(Weyl) symmetrical ordering and we denote it by ( ){ },A Q P . In this 
symmetrical ordering of the operators ( ),Q P  in a function ( ),A Q P  we may 

 

 

1Therefore, in quantum optics it is usually unfavorable to denote the canonical variables of the phase 
space by ( ),x p  that may lead to confusion with spatial variables. Energy and momentum of a 
light-wave packet are connected with quadratic combinations of the canonical variables q  and p  
involving frequency and wave vector as parameters. 
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consider ( ),Q P  first as the classical variables ( ),q p  with respect, for example, 
of Taylor series expansions and may order then their sum terms in corres- 
ponding way but we can make this also in the form of the Fourier integral as a 
whole. Our way of definition of symmetrical ordering (in the sense of Weyl) in 
the following is fully equivalent to that of Weyl but looks only a little different at 
the first glance. We explain this later in detail. To a classical function ( ),A q p  
over the phase space corresponds then a uniquely defined operator ( ){ },A A Q P≡  . 
The calculation of expectation values of symmetrically ordered operators is best 
suited to the Wigner function ( ),W q p  which is a quasiprobability over the 
phase space introduced in 1932 by Eugen P. Wigner [3] (republished in [4]). 
Together with the Weyl ordering this is often called the Weyl-Wigner formalism 
of correspondence between classical and quantum mechanics [5]. Other corres- 
pondences of classical phase-space functions to quantum-mechanical operators 
are possible, in particular, the normally-ordered correspondence for which 
another quasiprobability ( ),P q p  called the Glauber-Sudarshan quasipro- 
bability [6] [7] [8] [9] is best suited for the calculation of expectation values of 
such operators if we know only the corresponding classical phase-space function. 
For anti-normally-ordered operators, the Husimi-Kano quasiprobability ( ),Q q p  
takes on this place. Other quasiprobabilities for the calculation of the expecta- 
tion values of arbitrarily ordered operators are also appropriate, however with 
more complicated formulae in this case. 

The symmetrical ordering in the sense of Weyl possesses the highest 
degeneracy of the operator kernel in the integral transform defining it and every 
change of this kernel removes this degeneracy in different possible directions 
[10]. From the theoretical point of view the symmetrical ordering is the most 
aesthetical and attractive one but does nature also prefer it? The zero-point 
energy of the modes in quantum optics and its consequences, for example, in the 
theoretically derived and experimentally observed (?) Casimir effect gives some 
evidence that the symmetrical ordering of operators is, at least, in quantum 
optics likely the correct correspondence between classical and quantum physics. 
An early and well organized representation of many problems concerning the 
different quasiprobabilities and ordering used in quantum optics is given by 
Peřina [11]. Problems of the determination of a phase operator in quantum 
optics are discussed and referred in detail by Peřinová, Lukš and Peřina [12]. 

There are some technical difficulties to implement the explicit calculation of 
the symmetrically ordered operators corresponding to given classical 
phase-space functions in general cases, in particular, in the Fock or number state 
representation. A basic result for operators of the form  

( ) { }† †
†

l
k

m naaa a a
a

    ≡   
   
   for integers ( ),k l ,  ( ),k m n l m n= + = − ,  

was communicated in [13] with some promise to give its detailed derivation in 
another paper. We discuss this in present paper but the more technical details of 
this calculation we shift to the Appendices. We connect the results with other 
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already known more special results. In particular, we consider from Section 6 on 
a set of classical basic functions ( ) ( ), *,k lA α α  and determine the corresponding 
basic operators ( ),k lA  in number representation using the Jacobi polynomials 
for the representation of the coefficients. In Section 8 we generalize this to 
smoothing of the operators by means of normalized Gaussian bell functions. The 
results for the special case ( ),0kA  can be also obtained by integration of the 
general Wigner quasiprobability over the angle and the special case ( )0,lA  by 
integration of the Wigner quasiprobability over the radius that for this last case 
was first made by Garraway and Knight [14] (see also [12]). One has to liberate 
oneself in these cases from the general density operator ρ  in the Wigner 
quasiprobability ( )*,W α α  in complex representation and obtain then in last 
case the quantum equivalents ( )0,lA  to the basic classical periodic phase 
functions ( )ie , 0, 1, 2,l lϕ = ± ±  . 

In Section 12 we derive the connection of the symmetrically ordered operators 

{ }†k ka a  to powers of the number operator †N a a≡ . This suggests to use the 
expectation values (notation by overlining operators) { } { }

2
2 2a a a a− † †  

which are positive definite as alternative to the corresponding normally ordered 
quantity { } { }

2
2 2a a a a− † †  which is indefinite and leads in dependence of 

its negativity or positivity to the definition of sub- and super-Poissonian 
quantum statistics which are problematic when they are used for the definition 
of non-classicality of states. 

2. Basic Notions and Displacement Operator 

Note: The trace of an operator A  is denoted by A  and the expectation 
value of A  by overlining the operator A A≡   if   is the density operator. 

In this Section, we prepare the description of the symmetrical (Weyl) 
correspondence of classical to quantum mechanics by some, in principle known, 
basic notions and explain our notations. We consider a Hamilton system of one 
degree of freedom in canonical variables ( ),q p . Additionally, we introduce 
complex variables ( )*,α α  in the following way  

( ) ( ) ( )
* *

* 1, i , i , , 2 , i
2 22

q p q p q p α α α α
α α

 + −
= + − ⇔ = − 

 




 

*
*

1 1 i d d, 2 i , i , d d
2 2 2 2

q p
q p q p

α α
α α

    ∂ ∂ ∂ ∂ ∂ ∂ ∧  = − + ∧ =     ∂ ∂ ∂ ∂ ∂∂      




 (2.1) 

with correspondence to the basic quantum-mechanical operators ( ) ( ), ,q p Q P⇔  
and their combinations ( ) ( )*, ,a aα α ⇔ †  which become the annihilation a  
and creation †a  operator for a harmonic oscillator  

( ) ( ) ( )1, i , i , 2 , i
2 22

a a a aa a Q P Q P Q P
 + −

= + − ⇔ = − 
 




† †
†   (2.2) 

They obey the commutation relations ( I  identity operator of the represen- 
tation space (Hilbert space))  
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[ ] †, i , ,Q P I a a I = =                      (2.3) 

The reason that we introduce the complex substitutes of the canonical 
variables by (2.1) and not simply by ( ) ( )*, i , iz z q p q p= + −  is that we are 
interested in the following mainly in the expectation values of ordered functions 
of ( )†,a a  which are (boson) annihilation and creation operators for harmonic 
oscillators of modes of the electromagnetic field. However, in transitions from 
quantum to classical mechanics and optics setting 0=  one has to be cautious  

using the operators ( )†,a a . For example, in the operator 
2 2

† 1
2 2

Q PN a a I+
≡ = −



  

one cannot set 0=  since N (number operator) does not possess a classical 
analogue and only after multiplication of this operator with   we get an  

operator with a classical analogue in form of the function 
2 2

*

2
q p

αα
+

=   

proportional to the intensity or to energy and momentum of the field. 
Starting from the well-defined operator function ( )†exp a aµ ν+  with 

arbitrary parameters ( ),µ ν  the symmetrical Weyl ordering can be defined by 
(e.g., [15])  

( ) ( ) { } ( ){ }
†

† † †

0 0 0
exp exp

! ! !

j
k l

k l

j k l

a a
a a a a a a

j k l

µ ν µ ν
µ ν µ ν

∞ ∞ ∞

= = =

+
+ = ≡ ≡ +∑ ∑∑    

( ) ( ) { }† †

0

!
! !

jj k j k k j k

k

ja a a a
k j k

µ ν µ ν − −

=

+ =
−∑            (2.4) 

From this follows for integer ( ),k l   

{ } ( )† †

0

exp
k l

k l
k la a a a

µ ν

µ ν
µ ν

+

= =

 ∂
= + 

∂ ∂ 
             (2.5) 

or using the binomial formula for ( )† k l
a aµ ν

+
+  with observation of the 

non-commutativity of a  and †a   

{ } ( ) ( )† †1
!

k l k lk l
k la a a a

k l
µ ν

µ ν

+ +∂
= +

+ ∂
             (2.6) 

The symbol { }  is not a linear operator since2  

{ } { } ( ){ }† † †k l l k k la a a a a a= =                (2.7) 

where ( )†k la a  means here the product of k operators a and l  operators 
†a  in arbitrary order (i.e., permutations) but linear combinations of them are 

understood in the sense of the distributive law  

( ) ( ){ } ( ){ } ( ){ }† † † †, , , ,A a a B a a A a a B a aκ λ κ λ+ = +       (2.8) 

This gives the possibility to determine linear spaces of ordered operators if 
one introduces a system of basis operators. Clearly, two operators ( ){ }†,A a a  
and ( ){ }†,B a a  are, in general, noncommutative. 

 

 

2Some authors write the corresponding classical variables within an ordering symbol (here symbol 

{ } ) that means, e.g., ( ){ }*,A α α  instead of our ( ){ }†,A a a . 
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In the following we use the displacement operator ( )*,D α α  defined by (e.g., 
[7] [8] [11]) 

( ) ( ) ( ){ }
( ) ( )

( ){ }

* * *

*
*

*
*

, exp exp

exp exp exp
2

exp exp
2

D a a a a

a a

a a

α α α α α α

αα
α α

αα
α α

= − ≡ −

 
= − − 

 
 

≡ − − 
 





† †

†

†

          (2.9) 

where the symbol { }  means normal ordering of the content in braces (all 
powers of †a  in front of powers of a ). From (2.9) follows for its Hermitean 
adjoint operator  

( )( ) ( ) ( )( ) ( )1* * * *, exp , ,D a a D Dα α α α α α α α
−

= − = = − −
†

†     (2.10) 

To obtain the normally ordered form of the displacement operator on the 
right-hand side of (2.9) we applied here the well-known theorem (e.g., [7])  

( ) ( ) [ ] [ ] [ ]1exp exp exp , , if , , , , 0
2

A B A B A B A A B B A B     = + + = =      
 (2.11) 

which is true for arbitrary operators A  and B  which commute with their 
commutator [ ],A B . This is a special case of the general  
Baker-Campbell-Hausdorff-Dynkin formula for the product of the exponentials 
of two operators which for the case in (2.11) can be proved more directly, e.g., 
[7]. In the following we apply this theorem repeatedly. 

The displacement operator possesses the property  

( ) ( )( ) ( ) ( )( )* * * * *, , , , ,D a D a I D a D a Iα α α α α α α α α α= − = −
† †

† †  (2.12) 

For the product of two displacement operators one finds applying (2.11)  

( ) ( ) ( ) ( )* * * * * *1, , exp ,
2

D D Dα α β β αβ α β α β α β = − + + 
 

    (2.13) 

Furthermore, we need the normal ordering of operators of the form 

( )†exp a aκ  with parameter κ . The following relation is well known, e.g., [16] 
(chap. 3.3., pp. 156/157)3  

( ) ( ) ( ) ( )( ){ }† † †

0

e 1
exp exp exp e 1

!

k

k k

k
N a a a a a a

k

κ
κκ κ

∞

=

−
= = ≡ −∑   (2.14) 

 

 

3Louisell gives two proofs, the first using the diagonal matrix elements with coherent states and the 
second by a differential equation. One may add a further easy one using the matrix elements in the 
basis of number states ( ), 0,1,n n =   as the eigenstates of the number operator †N a a≡ , with 

N n n n= , 1a n n n= − , † 1 1a n n n= + +  and the completeness relation 
0n

n n I∞

=
=∑  

( )( ){ } ( ) ( ) ( )

( ) ( ) ( )

2

† †

0 0 0 0

0 0 0

e 1 e 1 !
exp e 1

! ! !

! e 1 e 1 1 e
! !

k k

k k

k n k n

n k n N

n k n

n k
a a a n n a n k n k

k k n

n n n n n
k n k

κ κ
κ

κ κ κ

∞ ∞ ∞ ∞

= = = =

′∞ ∞

′= = =

 − − +   − ≡ = + +      
 ′

′ ′= − = − + =  ′ − 

∑ ∑ ∑ ∑

∑ ∑ ∑



. 
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The conversion of (2.14) with respect to the parameter κ  as it is easily seen 
is  

( ){ } ( ) ( )
†

† †

0
exp 1 1

!

k
a a Nk k

k
a a a a

k
λ

λ λ λ
∞

=

≡ = + = +∑        (2.15) 

For 1,0, 1, 2λ = − −  one obtains the operators  

( ){ } ( ){ } { }† †exp 2 , exp 0Na a a a I I= = =    

( ){ } ( ){ } ( )† †

0
exp lim 0 0 , exp 2 1 NNa a a a

ε
ε

→
− = = − = − = Π   (2.16) 

All these special operators play a certain role in quantum optics, in particular, 

( ){ }†exp 0a a  is the unity operator I , ( ){ }†exp a a−  is the vacuum-state 
operator 0 0  and ( ){ }†exp 2a a−  the parity operator Π  which we 
consider more in detail in next Section. 

3. Basic Relations of the Weyl Formalism and the  
Parity Operator 

The general formula for the transition from arbitrary classical phase-space 
functions ( ),A q p  in the symmetrical Weyl ordering to quantum-mechanical 
operators ( ){ },A A Q P≡   can be written  

( ) ( ) ( ) ( ), d d , expA q p A q p A q p Q P q p
q p

δ δ
 ∂ ∂

→ = ∧ − − ∂ ∂ 
∫      (3.1) 

or in complex representation by complex variables ( )*,α α  (see (2.1)) as 
follows (we do not use a new function symbol and set ( ) ( )*, ,A q p A α α≡ )  

( ) ( ) ( )

( ) ( ){ }
( ){ }

* * * *
*

* * *

i, d d , exp ,
2
i d d , ,
2

,

A A A a a

A I a I a

A a a

α α α α α α δ α α
α α

α α α α δ α α

∂ ∂ → = ∧ − − ∂ ∂ 

= ∧ − −

≡

∫

∫ 



†

†

†

 (3.2) 

where ( )*,δ α α  is the two-dimensional delta function in complex representa- 
tion according to  

( ) ( ) ( ) ( ) ( ) ( )* * * *i d d , , 0,0 , , 2
2

f f q pα α δ α α α α δ α α δ δ∧ = =∫    (3.3) 

The integration goes in both representations over the whole phase-plane in 
real or complex coordinates ( ) ( )*, ,q p α α↔ . After partial integration in the 
first line we find equivalently to (3.2)  

( ) ( )

{ } ( )
*

* * *
*

†
*

*
0 0 0

i d d , exp ,
2

,
! !

k l k l

k l
k l

A a a A

a a
A

k l
α α

α α δ α α α α
α α

α α
α α

+∞ ∞

= = = =

∂ ∂ = ∧ + ∂ ∂ 

 ∂
=  

∂ ∂ 

∫

∑∑


†

      (3.4) 

For the trace A  of the operator A  we find from (3.2) or (3.7)  
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( ) ( )( )* *1 i d d , , Trace
π 2

A A A Aα α α α= ∧ ≡∫         (3.5) 

The factor 
1
π

 in (3.5) in front of the integral ( )* *i d d ,
2

Aα α α α∧∫  is  

already an indication that non-orthogonal (“overlapping”) states are involved in 
the definitions (these are the displaced number states; see below). The form of 
the classical-quantum correspondence in the second line of (3.2) is very near to 
the form given by Weyl if we make in addition the Fourier transformation of 

( ){ }*,I a I aδ α α− − †  but our form has the advantage that we do not have to 
discuss the exact form of this transform (i.e., coefficient in front and factors in 
the exponent). 

The inversion of (3.1) is (we denote the trace of an arbitrary operator B  by 
B )  

( ) ( ) ( ), 2π expA q p A Q P q p
q p

δ δ
 ∂ ∂

= − − ∂ ∂ 
         (3.6) 

or of the complex form (3.2) 

( ) ( )* *
*, π exp ,A A a aα α δ α α

α α
∂ ∂ = − − ∂ ∂ 

†         (3.7) 

The transformation ( )*,A Aα α →  in (3.2) together with the inverse 
transformation ( )*,A A α α→  in (3.7) is a mapping which preserves the 
distribution law for arbitrary complex numbers µ  and ν   

( ) ( ) ( ) ( )* * * *, , , , ,A A B B A B A Bα α α α µ α α ν α α µ ν↔ ↔ ⇔ + ↔ +  (3.8) 

due to the linearity of the transformation. 
We now make the normal ordering of the operator which plays a role in (3.2) 

in the transition from classical phase-space functions ( )*,A α α  to quantum- 
mechanical operators A  which are symmetrically ordered equivalents in the 
sense of Weyl  

( )

( )

( )

( )( )( ){ }
( ) ( ){ } ( )( )
( )( ) ( )( )

*
*

2
*

* *

*
*

† *

* *

* *

exp ,

1exp exp exp ,
2

2exp exp exp 2
π

2 exp 2
π
2 , exp 2 ,
π
2 , 1 ,
π

a a

a a

a a

a a

a I a I

D aa D

D D

δ α α
α α

δ α α
αα α α

αα
αα

α α

α α α α

α α α α

∂ ∂ − − ∂ ∂ 
 ∂ ∂ ∂   = − −     ∂∂ ∂ ∂     

∂ ∂   = − − −   ∂∂   

= − − −

= −

= −





†

†

†

†

†
†

†

      (3.9) 

In the derivation we used the identity  

( )
2 *

*
*

2 2exp , exp
2 π
r zzz z

r rz z
δ

   ∂
= −   ∂ ∂   

          (3.10) 
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specialized to 1r = , which generally can be proved by two-dimensional Fourier 

transformation. The operator 
2

*exp
2
r

z z
 ∂
 ∂ ∂ 

 with positive values of the para- 

meter r  applied to a function ( )*,f z z  makes a smoothing of this function. 

The operator Π  defined by (see also (2.15) and (2.16) for the different 
representations)  

( ) ( ) ( ) ( ){ } ( )†
† †

0

2
1 1 exp iπ exp 2

!

k
a a N k k

k
N aa a a

k

∞

=

−
Π ≡ − = − = ± = − =∑

 
 (3.11) 

is called the parity operator and the operator ( )*,α αΠ  defined by  

( ) ( ) ( )( )†* * *, , ,D Dα α α α α αΠ ≡ Π               (3.12) 

the displaced parity operator, correspondingly. Thus we obtained in (3.9) the 
basic relation  

( ) ( )
( ) { } ( )

* *
*

† *
*

0 0

2 , exp ,
π

1
,

! !

k l k l
k l

k l
k l

a a

a a
k l

α α δ α α
α α

δ α α
α α

+ +∞ ∞

= =

∂ ∂ Π = − − ∂ ∂ 

− ∂
=

∂ ∂∑∑ 

†

       (3.13) 

which plays a role in the following. We see here that the limiting transition 

( ) ( )*, 0,0α α →  on the right-hand side in (3.13) is not possible in this way and 
the representation of the parity operator ( )*0, 0α αΠ = Π → →  is not locally 
possible and the representation of Π  by the symmetrically ordered operators 

{ }†k la a  does not exist in contrast to the representation by the normally 
ordered operators { }† †k l k la a a a=  (see (3.11)). 

The parity operator Π  is a Hermitean and at once an idempotent operator 
(squared it is equal to the identity operator)  

† 1 2, ,I−Π = Π = Π Π =                  (3.14) 

with the following interesting properties of transformation of ( )†,a a  justifying 
its name  

[ ] ( ) [ ] ( )

( ) ( )

2
† iπ iπ

0

iπ * *

iπ iπiπe e , , ,
1! 2! !

e , , ,

n
N N

na a

a a a N a N N a a
n

a a a a D Dα α α α

∞
−

==− =+

−

 −
  Π Π = = + + + =   
 

= = − Π Π = − ⇒ Π Π = − −

∑






† † † †

 (3.15) 

From these commutation properties follows using (3.15) 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

†* * * * *

* * * *

, , , , ,

2 , 2 , , 2 , 2

D D D D

D D D D

α α α α α α α α α α

α α α α α α α α

Π = Π = Π

= Π = Π − − − − = Π − −
 (3.16) 

The parity operator Π  possesses only the two eigenvalues 1+  and 1−  to 
even and odd number states n  and n  as right-hand and corresponding 
left-hand eigenstates  

( ) ( ) ( ) ( ) ( )†1 1 , 1 1 ,N n N nn n n n N a a− = − − = − ≡        (3.17) 
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that leads to the following possible representations by eigenstates  

( ) ( ) ( ) ( ) ( )( )†* * *

0 0
1 , , 1 , ,n n

n n
n n D n n Dα α α α α α

∞ ∞

= =

Π = − Π = −∑ ∑    (3.18) 

It is a highly degenerate operator which therefore admits many other 
representations by linear combinations of the eigenstates to the eigenvalues 1+  
and 1−  separately. The displaced parity operator ( )*,α αΠ  defined in (3.12) 
possesses the same eigenvalues 1+  and 1−  but to displaced number states 

, nα  defined by  

( ) ( )*, , , 0,1, 2,n D n nα α α≡ =                 (3.19) 

as right-hand eigenstates of ( )*,α αΠ  according to  

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

1* * * *

* *

, , , , ,

, 1 , 1 ,n n

n D D D n

D n D n n

α α α α α α α α α

α α α α α

−
Π = Π

= Π ≡ − = −
  (3.20) 

and similar for the left-hand eigenstates ,nα . The displaced number states 
, nα  are ortho-normalized for discrete ( ),m n  and arbitrary fixed α  

according to  

( )( ) ( )†* *
,, , , , m nm n m D D n m nα α α α α α δ= = =       (3.21) 

and they obey the following relation (see below (3.25)) 

*
,

1 i d d , ,
π 2 m nn m m n I Iα α α α δ∧ = =∫            (3.22) 

This means that the states , nα  are mutually orthogonal for m n≠  and 
that they are (over-) complete for fixed m n=  in the quantum phase space of 
variables ( )*,α α  such as the coherent states α  which are their special case 

0m n= =  with the well-known completeness (over-)relation  

*1 i d d .
π 2

Iα α α α∧ =∫                  (3.23) 

Relation (3.22) is a consequence of the more general relation for arbitrary 
operators A  (remind that A  denotes the trace of A )  

( ) ( )( )†* * *1 i d d , ,
π 2

D A D A Iα α α α α α∧ =∫           (3.24) 

We do not derive it here (see, e.g., [9] (chap. I: A coherent state primer) and 
[10]). In the special cases ( ); , 0,1, 2,A n m m n= =   follows from (3.25)  

( ) ( )( )†* * *
,

1 i d d , ,
π 2 m nD n m D m n I Iα α α α α α δ∧ = =∫    (3.25) 

In (3.19) we defined by ( )*, ,D n nα α α≡  as the displaced number states. 
For 0, 0n m= ≠  relation (25) expresses the overcompleteness of the coherent 
states 0,α α≡ . 

The displaced parity operators possess the trace equal to 1
2

 and are (over-)  
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complete in the quantum phase space in the sense described by the resolution of 
the identity operator I   

( ) ( )* * *1 2 i, , d d ,
2 π 2

Iα α α α α αΠ = Π = ∧ Π =∫     (3.26) 

and they are mutually orthogonal expressed by  

( ) ( ) ( )* * * *π, , ,
4

α α β β δ α β α βΠ Π = − −             (3.27) 

Therefore, operators A can be expanded in integrals over phase-space 
functions as given in (3.2) and the function ( )*,A α α  in dependence on A  is 
then determined by the operator A  and vice versa. 

4. The Wigner Quasiprobability and Reconstruction of  
Density Operators 

The Wigner quasiprobability ( )*,W α α  in the complex variables ( )*,α α  can 
be defined in (not full) analogy to (3.7) by (remind,   means trace of 
content)  

( ) ( )

( ) ( )

* *
*

* * *

, exp ,

2 i, , d d , 1
π 2

W a a

W

α α δ α α
α α

α α α α α α

∂ ∂ = − − ∂ ∂ 

= Π ∧ =∫





†

       (4.1) 

The reconstruction of the density operator   from it is then determined by  

( ) ( )

( ) ( )

* * *

* * *
*

i2 d d , ,
2
iπ d d , exp ,
2

W

W a a

α α α α α α

α α α α δ α α
α α

= ∧ Π

∂ ∂ = ∧ − − ∂ ∂ 

∫

∫



†

      (4.2) 

that after partial integration leads to  

( ) ( )

{ } ( )
*

* * *
*

†
*

*
0 0 = =0

iπ d d , exp ,
2

π , , 1
! !

k l k l

k l
k l

a a W

a a
W

k l
α α

α α δ α α α α
α α

α α
α α

+∞ ∞

= =

∂ ∂ = ∧ + ∂ ∂ 

 ∂
= = 

∂ ∂ 

∫

∑∑






†

      (4.3) 

The calculation of expectation values A A≡   of operators A  for density 
operators   using the Wigner quasiprobability ( )*,W α α  has to be made by 
the formula  

( ) ( ) ( ) ( )* * *i d d , , d d , ,
2

A A W A q pW q p A q pα α α α α α≡ = ∧ = ∧∫ ∫  (4.4) 

in analogy to the classical probability theory. 
If one compares the relations between classical phase-space functions 
( ),A q p  with the quantum-mechanical equivalent operators A  in the Weyl- 

Wigner formalism in (3.2) and (3.7) with that of the Wigner quasiprobability 

( )*,W α α  and the reconstruction of the density operator   from ( )*,W α α  
in (4.1) and in (4.2) then we find a difference in the factors in front. One may be 
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astonished about this but it is not very principal and finds a simple historical 
explanation4. 

For the transition to the representation by real canonical variable ( ),q p  and 
operators ( ),Q P  one has to use, in particular, the relation  

†
*exp expa a Q P

q pα α
 ∂ ∂ ∂ ∂ − − = − −  ∂ ∂ ∂∂   

            (4.5) 

and, furthermore, the relation  

( ) ( ) ( ) ( )* i i, , 2 i , i 2
2 2

q p q p q p q p q pδ α α δ δ δ δ
+ − = = + − = 

 
 

 

   (4.6) 

Then from (4.1) for the Wigner quasiprobability ( ),W q p  follows (remind 
that   means trace)  

( ) ( ) ( ) ( ), exp , d d , 1W q p Q P q p q pW q p
q p

δ δ
 ∂ ∂

= − − ∧ = ∂ ∂ 
∫  (4.7) 

and the reconstruction of the density operator   from the Wigner quasi- 
probability is possible by  

( ) ( ) ( )2π d d , exp , 1q pW q p Q P q p
q p

δ δ
 ∂ ∂

= ∧ − − = ∂ ∂ 
∫    (4.8) 

One may prove then after some calculation that the definition of ( ),W q p  in 
(4.7) is fully equivalent to the definition by Wigner [3] (see also [4]) (Wigner de- 
notes it ( );P x p  and generalizes it for several variables to ( )1 1, , ; , ,n nP x x p p  ). 
In the following, however, we will stay at the representation by complex vari- 
ables ( )*,α α  and will now discuss representations by number and by displaced 
number states. 

5. Number-State Representations of Displaced Number  
States Using Laguerre 2D Polynomials 

In the following we derive number-state representations of the relations of the 
Weyl-Wigner formalism and as a preparation for our next aim we derive the 
number-state representation of displaced number states. It is advantageous to 
use for this purpose the Laguerre 2D polynomials ( )*

,L ,m n z z  defined as 
follows (see [17] and citations therein)  

( )

( ) ( ) ( )

2
* *

, *

* *
*

L , exp

1 exp exp

m n
m n

m n
m n

m n

z z z z
z z

zz zz
z z

+
+

 ∂
= − ∂ ∂ 

∂
= − −

∂ ∂

         (5.1) 

 

 

4As a quasi probability one is not obliged to accept the normalizations  

( ) ( )*d d , d d , 1
2
i W q pW q pα α α α∗∧ = ∧ =∫ ∫  such as for genuine probability densities since  

( ),W α α∗  involves non-orthogonal states of the variables ( ),α α∗  in its definition but one has in 

this case also to change the calculation of expectation values in corresponding way. For the transition 
from the Wigner quasiprobability to a classical distribution function by the limiting procedure 

0→  it is even favorable to use this normalization but one has before this to make the transition to 
real canonical variables ( ),q p  and thus to ( ),W q p . Therefore, it seems to be unreasonable and 
not useful to change the established normalization. 
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and explicitly  

( )
{ } ( )

( ) ( )
,

* *
,

0

1 ! !
L ,

! ! !

jm n
m j n j

m n
j

m n
z z z z

j m j n j
− −

=

−
=

− −∑            (5.2) 

with the following relation to generalized Laguerre (or Laguerre-Sonin) poly- 
nomials ( )Ln uν   

( ) ( ) ( ) ( ) ( )* * * *
,L , 1 ! L 1 ! Ln mm n m n n m n m

m n n mz z n z zz m z zz− − − −= − = −     (5.3) 

The definition of ( )*
,L ,m n z z  may be generalized to polynomials ( )*

,L ; ,m n U z z  
where U  is a two-dimensional unimodular matrix which makes a linear 
transformation of the two variables [18] that, however, we do not need here. 

First, we calculate the expansion of the displaced number states ( )*, ,n D nα α α≡  
defined in (3.19) in number states m  using the completeness of the number 
states 

0m m m I∞

=
=∑   

( )*

0
, ,

m
n m m D nα α α

∞

=

≡ ∑                    (5.4) 

Using the normally ordered representation of the displacement operator in 
(2.9) we find  

( ) ( ) ( )

( )

( )
( ) ( )

,

*
* *

**

0 0

*
*

0 0
=

, exp exp exp
2

exp
2 ! !

1 ! !
exp

2 ! ! ! !
m k n l

lk
k l

k l

l
k l

k l

m D n m a a n

m a a n
k l

m n
m k n l

m k n l k l
δ

αα
α α α α

α ααα

αα
α α

− −

∞ ∞

= =

∞ ∞

= =

 
= − − 

 

− 
= − 

 

− 
= − − − 

− − 

∑∑

∑∑


†

†      (5.5) 

and by substitution of the summation indices ( ),k l  according to m k n l j− = − ≡   

( ) ( ) { } ( )
( ) ( )

* ,
* *

0

1 1 ! !
, exp

2 ! ! !! !

n jm n
m j n j

j

m n
m D n

j m j n jm n
αα

α α α α− −

=

− − 
= −  − − 

∑  (5.6) 

By definition of the Laguerre 2D polynomials in (5.1) this can be written  

( ) ( ) ( )

( )

*
* *

,

* 2
*

*

1
, exp L ,

2 ! !

1
exp exp

2 ! !

n

m n

n
m n

m D n
m n

m n

αα
α α α α

αα
α α

α α

− 
= − 

 

−   ∂
= − −   ∂ ∂   

     (5.7) 

The expansion (5.4) of displaced number states becomes  

( ) ( )
*

*
,

0

1 1, exp L ,
2 ! !

n

m n
m

n m
n m

ααα α α
∞

=

− 
= − 

 
∑          (5.8) 

For 0n =  using ( )*
,0L , m

m α α α=  one obtains the corresponding expansion 
of coherent states ,0α α≡ . 

For the product of two displacement operators ( )( )†*,D β β  and ( )*,D α α  
one finds from (2.13)  
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( )( ) ( ) ( ) ( )

( )

†* * * *

* *
* *

, , , ,

exp ,
2

D D D D

D

β β α α β β α α

αβ α β
α β α β

= − −

 −
= − − 

 

     (5.9) 

Applying this one obtains for the general scalar product of displaced number 
states  

( )( ) ( )

( )

( ) ( )

†* *

* *
* *

* *
* * *

,

, , , ,

exp ,
2

1
exp L ,

2 ! !

n

m n

m n m D D n

m D n

m n

β α β β α α

αβ α β
α β α β

αα ββ
αβ α β α β

=

 −
= − − 

 

− +
= − − − 

 

   (5.10) 

One sees immediately that for β α=  using ( ) ( ), ,L 0,0 1 !n
m n m nn δ= −  from 

this relation follows the orthonormality (3.21) of the displaced number states 
and for 0m n= =  using ( )*

0,0L , 1z z =  the well-known relation for the scalar 
product of coherent states. 

We now derive the representation of the displaced parity operator by number 
states. From (3.16) and (3.18) follows  

( ) ( ) ( )( ) ( )
( ) ( ) ( )

†* * * *

*

0 0

, , , 2 , 2

1 2 ,2 1 2 ,n n

n n

D D D

D n n n n

α α α α α α α α

α α α
∞ ∞

= =

Π = Π = Π

= − = −∑ ∑
    (5.11) 

and using (5.8) with corresponding substitutions  

( ) ( ) ( )* * *
,

0 0
, exp 2 2 ,2

! !m n
m n

m n
L

m n
α α αα α α

∞ ∞

= =

Π = − ∑∑        (5.12) 

Thus we found the following basic number-state representation of the 

operator ( )† *
*exp ,a a δ α α

α α
∂ ∂ − − ∂ ∂ 

  

( ) ( ) ( )† * * *
,*

0 0

2exp , exp 2 L 2 ,2
π ! !m n

m n

m n
a a

m n
δ α α αα α α

α α

∞ ∞

= =

∂ ∂ − − = − ∂ ∂ 
∑∑ (5.13) 

and the Formulas (3.2) for the transition from a classical phase-space function 

( )*,A α α  to a quantum-mechanical operator ( ){ }†,A A a a=   in the 
Weyl-Wigner formalism takes on the form  

( ) ( ) ( )* * * *
,

0 0

2 i d d , exp 2 L 2 ,2 .
π 2 ! !m n

m n

m n
A A

m n
α α α α αα α α

∞ ∞

= =

= ∧ − ∑∑∫  (5.14) 

The representation of the displaced parity operator and its consequence (5.13) 
leads also to a convenient representation of the Wigner quasiprobability in the 
number-state representation. We express the general density operator   by its 
matrix elements n m  as follows  

=0 =0m n
n n m m

∞ ∞

= ∑∑                     (5.15) 

Then the Wigner quasiprobability (4.1) using (5.13) can be represented by the 
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following expansion  

( ) ( ) ( )* * *
,

0 0

2, exp 2 L 2 , 2
π ! !m n

m n

n m
W

m n
α α αα α α

∞ ∞

= =

= − ∑∑


      (5.16) 

For its importance we will translate this here also into the representation by 
canonical variables ( ),q p  (see (2.1)) with the result  

( ) ( ) ( )
2 2

,
0 0

1 2 2, exp L i , i
π ! !m n

m n

n mq pW q p q p q p
m n

∞ ∞

= =

  +
= − + −       

∑∑
   


(5.17) 

in the given normalization ( )d d , 1q pW q p∧ = . 
For a displaced number state ( )*, ,n D nβ β β≡  the Wigner quasiproba- 

bility ( )*,W α α  follows immediately from (5.16) by argument transformation 

( ) ( )* * *, ,α α α β α β→ − −   

( ) ( )( )( ) ( ) ( )( )
( )( )( )( ) ( )( )( )

* * * * *
,

* * * *

2 1, exp 2 L 2 ,2
π !
2 exp 2 1 L 4
π

n n

n
n

W
n

α α α β α β α β α β

α β α β α β α β

= − − − − −

= − − − − − −
 (5.18) 

as the displaced Wigner quasiprobability for a number state n . Therefore, 
more generally, if   is the density operator of a displaced state to density 
operator 0  according to  

( ) ( )( )†* *
0, ,D Dβ β β β=                    (5.19) 

then the corresponding Wigner quasiprobabilities ( )*,W α α  and ( )*
0 ,W α α  

are related by  

( ) ( )* * *
0, ,W Wα α α β α β= − −                 (5.20) 

that means by a displacement of the arguments. 

6. Quantum-Mechanical Operators Corresponding to  
Classical Monomial Phase-Space Functions 

We calculate and discuss now the operators ( ),k lA  which correspond in the 
Weyl formalism to the basic “classical” phase-space functions ( ) ( ), *,k lA α α  
according to  

( ) ( ) ( ) *, * * i2 2
*, e

l k l k lk kk l lA ϕαα α αα α α α
α

+ − 
= = =  

 
 

( ) ( ) ( ) ( )( ) ( )
*, ,* *, , , 0,1, 2, ; 0, 1, 2,k l k lA A k lα α α α− = = = ± ±      (6.1) 

in the number representation and express the result by means of the Jacobi 
polynomials. The functions (6.1) are chosen to include besides the amplitude 
functions kα  the basic periodic functions ie lϕ  of the phase ϕ  of a 
harmonic oscillator. Expressed by the real canonical variables ( ),q p  according 
to (2.1) this corresponds to the complex functions  

( ) ( ) ( )

( )
( ) ( ), , 2 2

i i 1, , i i
2 2 2

k l k l
k l k l

k

q p q pA q p A q p q p
+ −+ − ′ ≡ = + − 

  



  (6.2) 
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Due to factors ( )2 k
  in the denominator the functions ( ) ( ), ,k lA q p′  are 

strictly speaking for 0k ≠  not genuine classical functions without multipli- 

cation by these factors. For positive integer 
2

k lm +
=  and 

2
k ln −

=  one has 

the identity  

( ) ( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

,

,

0

1, i i
2

1 2 P 0 i , , 0,1, 2,
2

m nm n m n
m n

m n jm j n jj m n j
jm n

j

A q p q p q p

q p m n

+ −
+

+
− − + −

+
=

′ = + −

= =∑







    (6.3) 

With ( ) ( ),Pn uα β  we denote the Jacobi polynomials in the now generally 
accepted definition by Szegö [19] (chap IV) in which they are also programmed 
in Wolfram’s “Mathematica”. An older definition with direct reference to Jacobi 
can be found in [20]. Formulas (6.3) suggests that working with the canonical 
variables ( ),q p  one may choose the functions ( ), , 0,1, 2,i jq p i j =   as a basis 
of a space of functions which one may translate into quantum-mechanical 
symmetrically ordered operators { }i jQ P  in the sense of Weyl plus distri- 
butive law for arbitrary functions of this space. This space of functions, however, 
is narrower than the space of functions built with the basis functions (6.1). We 
come back to this at the end of this Section. 

We now calculate the quantum-mechanical Weyl equivalents to the basic 
functions (6.1). Some formal part of these calculations we delegate to Appendix 
A where we also give the most necessary formulae for the Jacobi polynomials by 
means of which we represent the results. The calculation of the double integral 
in (5.14) in Appendix A leads to the following number-state representation of 
the operator ( ),k lA  (see (A.2))  

( ) ( )
( )

( ) ( )

( )

, 2

0 0

†
†

1 !
22 ! ! 2

! ! !

j
k l m

k l m j

m j

l
k

k lm j
A m m l m m l

j m j m l j

aaa
a

− ∞− −

= =

+ − + − 
 = + +
− + −

   ≡    
   

∑ ∑



   (6.4) 

This may be represented using the Jacobi polynomials ( ) ( ),Pn uα β  in two 
alternative forms as follows (already communicated without detailed derivation 
in [13])  

( )

( ) ( )

( ) ( )

,, 22

0

, 1
2 22

0

!2 ! P 3
2 !

!2 ! 2 P 0
2 !

k lk l m lk l
m

m

k l k lk l m m
m

m
m

k l mA m m l
m l

k l m m m l
m l

− − ∞ − +−  
 

=

− + − ∞ − + − − −−  
 

=

+ = +  + 

+ = +  + 

∑

∑
   (6.5) 

Explicit representations of the Jacobi polynomials in two different forms are 
given in (A.3) of Appendix A. The general transformation relation of the Jacobi 
polynomials specialized from a transformation relation of the Hypergeometric 
function which lead in our case from argument 3u =  to argument 0u =  are 
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written down in (A.4). A more detailed treatment of Jacobi polynomials we find 
besides cited [19], e.g., also in vol. 2 of the monographs of Bateman and Erdélyi 
[21], in the article of Koornwinder et al. [22] in the NIST Handbook [23] and in 
our article [24]. 

There is another transformation relation of the Jacobi polynomials ( ) ( ),Pn uα β  
with integer upper index α  or β  specialized from a corresponding transfor- 
mation relation of the Hypergeometric function and given in (A.8). It leads from 
(6.5) to the following essentially different representations  

( ) ( ) ( )

( ) ( )

,, 22

0

, 1
2 22

0

!
2 ! P 3

2 !

!
2 ! 2 P 0

2 !

k lk l m lk l
m l

m

k l k lk l m m
m l

m l
m

m lk lA m m l
m

m lk l m m l
m

− + ∞ − + −−  
 
+

=

− + + ∞ − + − − −−  +  
+

=

+− = + 
 

+− = + 
 

∑

∑
   (6.6) 

In comparison to (6.5) it establishes some symmetry by transformations 
l l↔−  and changing then the summation index m n m l↔ = +  between 
functions which are involved in these relations as coefficients of m m l+  and 
if one makes the Hermitean conjugation of these relations. All 4 forms (6.5) and 
(6.6) for ( ),k lA  are useful since in special cases parts in these formulae become 
singular and using then the other representations one may avoid limiting 
considerations. Furthermore, by transformation of l l→−  the forms (6.5) are 
transformed into the forms (6.6) and vice versa and one easily proves the 
conjugation relation  

( ) ( )( ) ( )
†, , , 0, 1, 2,k l k lA A l− = = ± ±                (6.7) 

With the Formulas (6.5) and (6.6) we gave four essentially different number- 
state representations of the quantum-mechanical (Weyl) equivalents to the 
classical functions (6.1) by means of the Jacobi polynomials. In some cases one 
or two of these formulae are not equally appropriate for the calculation of these 
equivalents because they do not provide the results directly without limit 
considerations. 

We may consider the operators ( ) ( ), , 0,1, ; 0, 1, 2,k lA k l= = ± ±   as basis of 
a linear space of symmetrically ordered operators with the possibility to add 
such operators and to multiply them by numbers under validity of the 
distributive law. Before we discuss special cases of the relations (6.5) and (6.6) 
we make in generalization of them in next Section a smoothing of the classical  

functions ( )*
*

l
k α

αα
α

 
  
 

 by a normalized Gaussian function and calculate 

their quantum-mechanical equivalents. 
Before implementing the announced programme we establish now the 

connection between symmetrically ordered powers of operators ( )†,a a  and of 
operators ( ),Q P . According to (6.3) we have  

{ }
( )

( ) ( ) ( ) { },†

0

1 i2 P 0
2

m n j m j n jm n m n j j
jm n

j
a a Q P

+
− − + −

+
=

= ∑


         (6.8) 
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with the inversion  

{ } ( ) ( ) ( ) ( ) { }, †

0

12 i P 0
2

m nm n n m j n jm n m n j j
jm n j

j
Q P a a

++ − − + −
+ −

=

= − ∑     (6.9) 

The symmetrically ordered operators { }m nQ P  can be represented in 
standard and anti-standard ordering according to  

{ } { } ( ){ }
{ }

( ) ( )
{ }

( ) ( )

,

0

,

0

! ! i
! ! ! 2

! ! i
! ! ! 2

m n n m m n

jm n
m j n j

j

jm n
n j m j

j

Q P P Q Q P

m n Q P
j m j n j

m n P Q
j m j n j

− −

=

− −

=

= =

 = − − −  

 = + − −  

∑

∑





   

      (6.10) 

where ( )m nQ P  means an arbitrary permutation of the operators m nQ P  in 
analogy to (2.7). 

In the special case m n=  using the following special values of the Jacobi 
polynomials ( ) ( ),P n j n j

j u− −  of argument 0u =   

( ) ( ) ( )
( )

( ) ( )2 , 2 2 1, 2 12 2 1
2 2 1

1 !
2 P 0 , 2 P 0 0

! !

k
n k n k n k n kk k
k k

n
n k k

− − − − − −+
+

−
= =

−
     (6.11) 

we obtain from (6.8)  

{ }
( ) ( )

( ){ }2† 2

0

1 !
! !2

n
n kn n k

n
k

na a Q P
n k k

−

=

=
−∑



           (6.12) 

and from (6.9)  

{ } ( )
( )

( ){ }2 †2

0

1 !
i

2 ! !

kn n
n kn n k

k

n
Q P a a

n k k
−

=

− = −  − 
∑

           (6.13) 

with only powers of the squared operators ( )2 2,Q P  or ( )2 2,a a† , respectively, 
within the ordering symbol { }  on the right-hand sides. In particular, for 

1n =  we find  

{ } ( ) ( ) { } { }( )† † † 2 2 2 21 1 1
2 2 2

aa aa a a Q P Q P= + = + = +
 

     (6.14) 

and  

{ } ( ) ( ) { } { }( )2 2 2 21 i i
2 2 2

QP QP PQ a a a a= + = − − = − −
 

  † †  (6.15) 

The special values (6.11) for the Jacobi polynomials follow easily from the 
general expansion (6.3) in case of m n=  using the binomial formula. 

7. Quantum-Mechanical Equivalents of Smoothed  
Classical Functions 

We calculate in this Section the transition from a smoothed classical function of 
the canonical variables in representation by the complex variables ( )*,α α  to its 
equivalent quantum-mechanical operator in the sense of Weyl. The smoothing 
of the classical function ( )*,A α α  is made by convolution with a normalized 
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Gaussian function as follows  

( ) ( ) ( )
2 *

* * *
*

2 2, exp , exp ,
2 πr
rA A A

r r
αα

α α α α α α
α α

   ∂
= = − ∗   ∂ ∂   

   (7.1) 

where “ ∗ ” denotes the convolution. It is a smoothing of the function ( )*,A α α  
for 0r > . For 0r <  it is the opposite of smoothing for which we do not find 
an appropriate word. The equivalence of the right-hand sides in (7.1) is related 
to the equivalence (3.10) by representing ( )*,A α α  as convolution  

( ) ( ) ( )* * *, , ,A Aα α δ α α α α= ∗  with a two-dimensional delta function. 
According to (5.14) one has now to calculate the equivalent operator rA  

according to  

( )

( ) ( )

( )

( ) ( )

2
* *

*

* *
,

0 0

2
* *

*

* *
,

0 0

2 i d d exp ,
π 2 2

exp 2 L 2 ,2
! !

2 i d d , exp
π 2 2

exp 2 L 2 ,2
! !

r

m n
m n

m n
m n

rA A

m n
m n

rA

m n
m n

α α α α
α α

αα α α

α α α α
α α

αα α α

∞ ∞

= =

∞ ∞

= =

  ∂ = ∧   ∂ ∂   

× −

  ∂= ∧   ∂ ∂  

× − 


∫

∑∑

∫

∑∑

            (7.2) 

where we applied partial integration. 

Let us first make a remark. The smoothing with an operator 
2

*exp
2
r

α α
 ∂
 ∂ ∂ 

 

does not lead in all cases of 0r ≠  to a new function ( ) ( )* *, ,rA Aα α α α≠ . 

Due to 
2

* 0kα
α α
∂

=
∂ ∂

 and 
2

*
* 0kα

α α
∂

=
∂ ∂

 we have  

( )
2 2

* *
* *exp , exp , , 0,1, 2,

2 2
k k l lr r k lα α α α

α α α α
   ∂ ∂

= = =   ∂ ∂ ∂ ∂   
    (7.3) 

Therefore, the smoothed quantum-mechanical equivalents ( )k

r
a  and 

( )†k

r
a  for 0r ≠  are not different from ka  and †ka , respectively. One may 

look to this also in the following way. The operators ( )
2

*exp ,
2
r r

α α
 ∂

−∞ < < +∞ ∂ ∂ 
  

form an Abelian (i.e., commutative) one-parameter Lie group and as basis for 
(in general, reducible) representations may serve functions ( )*,A α α  of (very 
general) function spaces. The functions kα  and *kα  in (7.3) form a basis of 
the function space for the identical representation of the mentioned group. 
Products of genuine powers of functions α  and *α  do not belong to this last 
function space since, for example  

2 2
* * *

* *1 exp
2 2
r r

αα αα αα
α α α α

 ∂ ∂
= ⇒ = + ∂ ∂ ∂ ∂ 

         (7.4) 

More generally, we find for the smoothed functions ( )*k l

r
α α  to the 
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functions ( )* , , 0,1, 2,k l k lα α =   by Taylor-series expansion of the operator 
2

*exp
2
r

α α
 ∂
 ∂ ∂ 

  

( )
{ }

( ) ( )
2 ,

* * *
*

0

! !exp
2 ! ! ! 2

jk l
k l k l k j l j

r j

r k l r
j k j l j

α α α α α α
α α

− −

=

 ∂  ≡ =   − −∂ ∂   
∑  (7.5) 

Without more detailed discussion (see, e.g., [15]) we mention that for 1r =  
we get antinormally ordered operators { }†k la a  if the corresponding 
operators A  are the symmetrically ordered operators { }†k la a  and similarly 
the symmetrically ordered operators { }†k la a  if the corresponding operators 
A  are the normally ordered operators { }† †k l l ka a a a=  according to  

{ }
{ }

( ) ( ) { }

{ }

( ) ( ) { }

†

,
† †

0

,
† †

0

! !
! ! !

! ! 1
! ! ! 2

l j k j

k l
k l k j l j

j
a a
jk l

k j l j k l

j

k la a a a
j k j l j

k l a a a a
j k j l j

− −

− −

=
=

− −

=

=
− −

 = ≡ − −  

∑

∑



 



 

{ }
{ }

( ) ( ) { } { }
†

,
† † †

0

! ! 1
! ! ! 2

l j k j

jk l
k l k j l j l k

j
a a

k la a a a a a
j k j l j

− −

− −

=
=

 = ≡ − −  
∑



      (7.6) 

These formulae can be represented by the Laguerre 2D polynomials (2) but 
with the imaginary unit “ i ” in their arguments. 

In quantum optics there is often used a class of smoothed ( 0r > ) 
quasiprobabilities ( )*,rF α α  ([7] ( r s= −  there), and, e.g., [10]) according to 
( r  mostly restricted to 1 1r− ≤ ≤ + )  

( ) ( )

( ) ( ) ( ) ( )

2
* *

*

* * * *
1 1

, exp , ,
2

, , , , ,

r
rF W

F Q F P

α α α α
α α

α α α α α α α α+ −

 ∂
≡  ∂ ∂ 

≡ ≡

          (7.7) 

The class of quasiprobabilities ( )*,rF α α  does not belong to function classes 
which for different r  may take on the same functions since kα  and *kα  
cannot be quasiprobabilities to density operators   with trace equal to 1 (the 
traces of the operators ka  and †ka  are 0). Expectation values of smoothed 
operators rA  can be calculated with the “smoothed” quasiprobability ( )*,rF α α−  
according to (remind that   means the trace)  

( ) ( )

( ) ( )

( ) ( )

* * *

2
* * *

*

2
* * *

*

i d d , ,
2
i d d , exp ,
2 2

i d d exp , ,
2 2

r

r

A W A

rW A

r W A

α α α α α α

α α α α α α
α α

α α α α α α
α α

= ∧

  ∂ = ∧ −  ∂ ∂   
  ∂ = ∧ −  ∂ ∂   

∫

∫

∫



   (7.8) 

where we used partial integration. This provides with definition (7.7)  

( ) ( )* * *i d d , ,
2 r rA F Aα α α α α α−= ∧∫            (7.9) 
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On the other side the expectation value of the smoothed operator rA  can be 
calculated using the function ( )*,rA α α  together with the Wigner quasiproba- 
bility ( )*,W α α  according to  

( ) ( )

( ) ( )

* * *

* * *

i , ,
2
i , ,
2

r r

r

A d d W A

d d F A

α α α α α α

α α α α α α

= ∧

= ∧

∫

∫


          (7.10) 

The second form is obtained from the first form by partial integration. 
Formulas (7.9) and (7.10) equip us with different possibilities to calculate the 
expectation values A A≡   and r rA A≡  . 

8. Explicit Expressions for the Quantum-Mechanical  
Weyl Equivalents to Smoothed Classical  
Monomial Phase-Space Functions 

We now calculate the equivalent quantum-mechanical operators ( ),k l
rA  to the 

smoothed classical functions ( ) ( ), *,k l
rA α α  according to (7.1) by means of the 

Formulas (7.2). The detailed calculations are represented in Appendix B. The 
smoothed functions ( ) ( ), *,k l

rA α α  possess the explicit form as a series 
expansions  

( ) ( ) *, * 2 2

0

! !
2 2,

2! ! !
2 2

j k l k lj jk l
r

j

k l k l
rA

k l k lj j j
α α α α

+ −∞ − −

=

+ −   
        =  + −     − −   

   

∑      (8.1) 

For both integer 
2

k l+  and integer 
2

k l−  the right-hand side can be repre-  

sented by the Laguerre 2D polynomials (5.2). It is easy to check that for 0r =   

one obtains the function ( ) ( ) *, * 2 2,
k l k l

k lA α α α α
+ −

=  and for l k=  and l k= −   

the functions ( ) ( ), *,k k k
rA α α α=  and ( ) ( ), * *,k k k

rA α α α− = , respectively, which 
are independent of the parameter r  as discussed in the previous Section.  

However, Formulas (8.1) is problematic for cases when 
2

k l+  or 
2

k l−  is not a  

non-negative integer which restricts the sum over j  to a finite sum since in the 
other cases one has to investigate the character of the convergence of the infinite 
sum over j  which in the neighborhood of * 0α α= =  and for *α α= →∞  
is not guaranteed. 

As the first step we obtained in Appendix B as generalization of (6.4)  

( ) ( )

( )

( ) ( )

2,

0

0

2 1! !
1 1

1 !
22

! ! ! 1

k l m
k l

r
m

j
m jm

j

rA m m l
r r

k lm j
m m l

j m j m l j r

−
− ∞

=

−

=

−   = +   + +   
 +  − + −     × + − + − −  
 
 

∑

∑
       (8.2) 
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This can be represented using the Jacobi polynomials in the following two 
equivalent ways  

( )

( )

( ) ( )

,2, 2

0

, 12 2 2

0

2 ! 1 3! P
1 2 ! 1 1

2 ! 2! P
1 2 ! 1

k l k lm m lk l
r m

m

k l k l k lm m m

m
m

k l m r rA m m l
r m l r r

k l m r m m l
r m l r

− −−  ∞ − + 
 

=

− − +−  ∞ − + − − − 
 

=

+ − +       = +       + + + −       

+     = − +     + + +     

∑

∑

(8.3) 

in generalization of (6.6). Alternatively, using the relation (A.8) this can be also 
represented in the form  

( ) ( )

( ) ( )

,2, 2

0

, 12 2 2

0

!2 1 3! P
1 2 ! 1 1

!2 2! P
1 2 ! 1

k l k lm l m lk l
r m l

m

k l k l k lm l m m

m l
m

m lk l r rA m m l
r m r r

m lk l r m m l
r m r

+ −− +  ∞ − + − 
 
+

=

+ − +− +  ∞ − + − − − 
 
+

=

+− − +       = +       + + −       

+−     = − +     + +     

∑

∑

 

(8.4) 

showing some symmetry of (8.3) to (8.4) under substitutions  
,m m m l l l l′ ′→ = + → = −  and Hermitean adjunction. All alternative forms in 

(8.3) and (8.3) are useful because some in special cases become undetermined 
but the others in these cases, as a rule, can be used without limiting procedures. 

In special case 0r =  we get the Formulas (6.5) and (6.6), respectively, setting 
( ) ( ), ,
=0
k l k l

rA A≡ . 
In special case 1r =  Formulas (8.2) and the first parts in (8.3) and (8.4) 

become indeterminate and have to be dealt with by the limiting transition 
1r →  but from the second parts we find without limiting procedure  

( )

( ) ( )

( ) ( )

, 1, 2 2
1

0

, 1
2 2

0

!! P 1
2 !

!
! P 1

2 !

k l k lm mk l
r m

m

k l k lm m

m l
m

k l mA m m l
m l

m lk l m m l
m

− + ∞ − + − − − 
 

=
=

− + ∞ − + − − − 
 
+

=

+ = − +  + 

+− = − + 
 

∑

∑
      (8.5) 

Using the Formulas (A.6) for the Jacobi polynomials of argument 1u = −  

observing the decomposition 1 1
2 2

k l k lm m l+ −   − − − = − − − −   
   

 and apply- 

ing the general relation ( ) ( )
( )

( )
( )

1 ! 1 !
! 1 !

k k
k

γ γ
γ γ

− − + −
=

− − −
 for integer k  we obtain 

from both relations (8.5)  

( )

( )
†, 2 2

=1
0

!
2

! !

k l k l
k l

r
m

k lm
A m m l a a

m m l

+ −∞

=

+ +     = + ≡  
+   

∑         (8.6) 

The same result can be also calculated by applying the Formulas (B.9) with the 
specialization (6.1) of the functions ( )*,A α α  or simpler by limiting transition 

1r →  in (8.2). We mention yet that for 1r → −  the above formulae (8.2), (8.3) 
and (8.4) possess a singularity and ( ),

1
k l

rA →−  becomes genuinely singular. 
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In (7.3) we found that smoothing of the functions kα  and *kα  with 
normalized Gaussian functions does not influence these functions. It is 
interesting to consider this from the point of view of our general formulae (8.3) 
and (8.4). Therefore, we consider now the special case l k=  of the classical 
function ( ) ( ), *,k lA α α   

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,* *, , , = 0,1,2,k k k k k k k kk k
r rA A A A a kα α α α α= = ⇔ = =   (8.7) 

which shows some interesting aspects. As result for the corresponding operators 
( ),k k
rA  which do not depend on the parameter r  we find in number represen- 

tation  

( ) ( ) ( ) { }, ,

0

!
!

k k k k k k
r

m

m k
A A m m k a a

m

∞

=

+
= = + = ≡∑         (8.8) 

On the other side from (8.3) follows  

( ) ( )
( )

( )

( )
( )

( ) ( )

, ,

0

1

, 1

0

1

! ! ! 1 3P
! ! 1 1

! ! ! 2 P
! ! 1

m
k k m k

r m
m

m
m m k

m
m

m k m k r rA m m k
m m k r r

m k m k r m m k
m m k r

∞
−

=

=

∞
− − − −

=

=

+ − +   = +   + + −   

+  = − + + + 

∑

∑





  (8.9) 

and, in analogous way, from (8.4)  

( ) ( ) ( )

( ) ( ) ( )

, ,

0
1

, 1

0
1

! 1 1 3P
! 1 2 1

! 2 P
! 1

m k k
k k m k

r m k
m

m
m m k

m k
m

m k r r rA m m k
m r r

m k
r m m k

m r

+∞
− −
+

=

=

∞
− − − −
+

=

=

+ − + +     = +     + −     

+  = − + + 

∑

∑





 (8.10) 

We see here that from the knowledge of the result (8.8) we find identities for 
special classes of Jacobi polynomials which are representable in these cases by 
simple expressions and, clearly, can be derived also in pure mathematical way 
from explicit representations of the Jacobi polynomials by finite sums (e.g., 
second line in (A.3) or third line in (A.3) together with the symmetry (A.5)). 

In a widely analogous way we may consider the special case l k= −  of the 
classical functions  

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,* * *, , , 0,1, 2,k k k k k k k kk k
r rA A A A a kα α α α α− − − −= = ⇔ = = = 

† (8.11) 

which leads to  

( ) ( ) ( ) { }, , † †

0

!
!

k k k k k k
r

m

m k
A A m k m a a

m

∞
− −

=

+
= = + = ≡∑       (8.12) 

which is independent on the smoothing parameter r  and provides us 
evaluations for special cases of the Jacobi polynomials if we do not know them 
already from direct considerations. 
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9. Classical Amplitude Functions and Their Equivalent  
Quantum-Mechanical Weyl Operators 

We now investigate the equivalent quantum-mechanical operators to amplitude 
functions ( ) ( ),0 *,k

rA α α  according to  

( ) ( ) ( ) ( ) ( )
2 2

,0 ,0* * 2, , ,
2

k
k

kk k
r

q pA A q pα α α αα
 +′  = = =
 
 

     (9.1) 

Due to ( )k
  in the denominator of ( ) ( ),0 ,kA q p′  the transition 0→  of 

Planck’s constant 
2π
h

≡  is not possible and the quantum-mechanical opera-  

tors ( ),0k
rA  do not possess a direct correspondence to classical functions of the 

canonical variables without multiplication by ( )k
 . From (8.2) follows for 

0l =  and arbitrary smoothing parameter r   

( )
( )

( )
2,0

2
0 0

1 !
2 1 22!

1 1 1! !

jk m m jm
k

r
m j

km j
rA m m m

r r rj m j

− −∞

= =

  − + −  −       =      + + −−      
 
 

∑ ∑  (9.2) 

with the special case of the identity operator I  for 0k =   

( )0,0

0
r

m
A m m I

∞

=

= =∑                      (9.3) 

for arbitrary smoothing parameters r . The operators (9.2) are diagonal in the 
number states and are therefore functions of the number operator N  alone. 
Expressed by the Jacobi polynomials both Formulas (8.3) and (8.4) provide in 
this case the same representations as follows  

( )

( )

,02,0 2

0

, 12 2 2

0

2 1 3! P
1 2 1 1

2 2! P
1 2 1

k km mk
r m

m

k k km m m

m
m

k r rA m m
r r r

k r m m
r r

−  ∞ − + 
 

=

−  ∞ − + − − − 
 

=

− +       =        + + −       

     = −     + +     

∑

∑

      (9.4) 

For smoothing of ( ),0kA  with parameter 1r =  follows (see also (8.6)) 

( ),0
1

0

! !
2 2
! !

k
r

m

k km N I
A m m

m N

∞

=
=

   + +   
   = =∑              (9.5) 

The two cases 1k =  and 2k =  are illustrated in Figure 1. 
For even 2k l=  we have the following decomposition of ( )2 ,0

1
l

rA =  in powers 
of the operator N   

( ) ( ) ( ) ( )2 ,0
1

0

!
1 s 1, 1

!

l jl l j
r

j

N lI
A l l j N

N
−

=
=

+
= = − + + −∑         (9.6) 

where ( )s ,k l  are the Stirling numbers of first kind (e.g, [25] [26], from 

decomposition of 
( )

!
!

x
x k−

 in powers of x ). For odd numbers 2 1k l= +  it is  
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Figure 1. C oefficients ,m mc  in ( )1,0
,0r m mm

A c m m∞

=
= ∑  and of ( )2,0

,0r m mm
A c m m∞

=
= ∑  

from (9.4). The upper points are for the smoothed operators ( )1,0
1rA =  but apart from the 

first they are difficult to distinguish for ( )1,0
1rA =  from the points for ( )1,0A  in the chosen 

scale. It is easy to generate these figures from the formulae in a larger scale. 
 
not possible to find a finite decomposition only in powers of N . 

The case 0r =  (that means without smoothing) of the Weyl correspondence 
follows from (9.2) ( ( ) ( ),0 ,0

0
k k

rA A =≡ )  

( )
( )

( )
,0 2

2
0 0

1 !
22 ! 2

! !

j
k m

k m j

m j

km j
A m m m

j m j

∞− −

= =

  − + −    =
− 

 
 

∑ ∑         (9.7) 

and expressed by the Jacobi polynomials, alternatively  

( ) ( )

( )

,0,0 22

0

, 1
2 22

0

2 ! P 3
2

2 ! 2 P 0
2

kk mk
m

m

k kk m m
m

m
m

kA m m

k m m

 ∞ − +−  
 

=

 ∞ − + − − −−  
 

=

 =  
 

 =  
 

∑

∑
          (9.8) 

The Formulas (9.7) and (9.8) can be extended from integer k  to arbitrary 
real k κ=  since the upper indices ( ),α β  of the general Jacobi polynomials 

( ) ( ),Pn zα β  can be arbitrary real (or even complex) numbers [21]. 
For even 2k k′=  one obtains from (9.7) and (9.8) 

( ) ( ) ( )
( )

2 ,0
2

0 0

1 !1 !
2 ! !

jm
k

l
m j

m k j
A m m m

j m j

∞
′

= =

 ′− + −
 =
 − 

∑ ∑          (9.9) 

and, in particular, for 1k′ =  

( ) { }2,0 †

0

1 1
2 2m

A m m m N I a a
∞

=

 = + = + ≡ 
 

∑           (9.10) 

and for 2k′ =   

( ) { }
2 2

4,0 †2 2

0

1 1 1 1
2 4 2 4m

A m m m N I a a
∞

=

     = + + = + + ≡    
     

∑    (9.11) 

More general relations for { }†k ka a  are given in Section 12 and in 
Sequence 1 and Sequence 2 of Appendix C. 

In the special case 1k =  we find for the Jacobi polynomials ( )
1,0
2P 3

m

m

 − + 
   
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where we have to distinguish the even case 2m n=  and the odd case 2 1m n= +   

( ) ( ) ( ) ( )1 1 32 ,0 2 , 2
22 2 2

2 2 2 2

2 !
P 3 2 P 0 4 1

2 !

n n n
n

n n n

n
n

n

   − + − + − −   
   = = +  

( ) ( ) ( ) ( )1 1 52 ,0 2 , 2
2 12 2 2

2 1 2 1 2 2

2 !
P 3 2 P 0 2 2 1

2 !

n n n
n

n n n

n
n

n

   − − − − − −   +   
+ += = +        (9.12) 

and from (9.8) follows  

( ) ( ) ( )

{ }

1,0
2 2

0

†

2 !π 12 2 2 2 1 2 1 2 1
2 22 !n

n

n
A n n n n n n

n

a a

∞

=

  = + + + + +  
  

≡

∑



 (9.13) 

In the special case 3k =  we find for the Jacobi polynomials ( )
3,0
2P 3

m

m

 − + 
   

where again we have to distinguish the even case 2m n=  and the odd case 
2 1m n= +   

( ) ( ) ( )3 3 5 22 ,0 2 , 2
22 2 2

2 2 2 2

2 !32 16 3P 3 2 P 0
3 2 !

n n n
n

n n n

nn n
n

   − + − + − −   
    + +

= =  

( ) ( ) ( )( ) ( )1 1 72 ,0 2 , 2
2 12 2 2

2 1 2 1 2 2

4 4 3 2 1 2 !
P 3 2 P 0

3 2 !

n n n
n

n n n

n n n
n

   − + − + − −   +   
+ +

+ +
= =    (9.14) 

and from (9.8) follows  
( )

( ) ( )( )

{ }

3,0

2

2 2
0

†3 3

2 ! 4 3 2 1π 32 16 3 2 2 2 1 2 1
2 8 22 !n

n

A
n n nn n n n n n
n

a a

∞

=

+ + + + = + + + 
  

≡

∑



(9.15) 

It is difficult to find such explicit forms for higher odd k . 
One may even calculate the case 1k = −  according to the Formulas (9.8). For 

the Jacobi polynomials ( )
1,0
2P 3

m

m

 − − 
   we find  

( ) ( ) ( )1 1 12 ,0 2 , 2
22 2 2

2 2 2 2

2 !
P 3 2 P 0

2 !

n n n
n

n n n

n
n

   − − − − − −   
   = =  

( ) ( )
3 3 32 ,0 2 , 2

2 12 2 2
2 1 2 1P 3 2 P 0 0

n n n
n

n n

   − − − − − −   +   
+ += =              (9.16) 

and we obtain  

( ) ( )1,0
2 2 †0 0

1 !2 ! 122π 2 2 2 2 2
!2 !n

n n

nn
A n n n n

nn a a

∞ ∞
−

= =

 −     = = ≡  
  

∑ ∑   (9.17) 

We have here only the even number states involved. 

10. Classical Periodic Phase Functions and Their Equivalent  
Quantum-Mechanical Weyl Operators 

After the amplitude functions we now investigate the equivalent quantum- 
mechanical operators to periodic phase functions ( ) ( )0, *,l

rA α α  according to  
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( ) ( ) ( ) ( )
20, 0,* i

*

i, e , ,
i

l l
l ll q pA A q p

q p
ϕ α

α α
α

 +  ′= = =     −   
 

( ) ( ) ( )*0, * i i, e el l lA ϕ ϕα α− −= =                  (10.1) 

The expression ( ) ( )0, ,lA q p′  does not contain Planck’s constant   and the 
limiting transition setting 0=  is possible but number states are nonclassical. 
From (8.2) follows for 0k =  and arbitrary r   

( ) ( )

( )

( ) ( )

20,

0

=0

2 1! !
1 1

1 !
22

! ! ! 1

l m
l

r
m

j
m jm

j

rA m m l
r r

lm j
m m l

j m j m l j r

∞

=

−

−   = +   + +   
  − + −     × + − + − −  
 
 

∑

∑
 

( ) ( )( )†0, 0,l l
r rA A− =                       (10.2) 

For 0l ≠  it is “non-diagonal” in the number-state representation. 
If we express (10.2) by the Jacobi polynomials we find from (8.3) the 

representations  

( )

( )

( ) ( )

,20, 2

0

, 12 2 2

0

2 ! 1 3! P
1 2 ! 1 1

2 ! 2! P
1 2 ! 1

l lm m ll
r m

m

l l lm m m

m
m

l m r rA m m l
r m l r r

l m r m m l
r m l r

 ∞ − − 
 

=

 ∞ − − − − − 
 

=

− +       = +       + + + −       

     = − +     + + +     

∑

∑

 (10.3) 

or alternatively from (8.4)  

( ) ( )

( ) ( )

,20, 2

0

, 12 2 2

0

!2 1 3! P
1 2 ! 1 1

!2 2! P
1 2 ! 1

l lm l m ll
r m l

m

l l lm l m m

m l
m

m ll r rA m m l
r m r r

m ll r m m l
r m r

− +  ∞ − − − 
 
+

=

− +  ∞ − − − − − 
 
+

=

+ − +       = − +       + + −       

+     = − − +     + +     

∑

∑

 (10.4) 

For the Weyl correspondence which corresponds to 0r =  we find from 
(10.3)  

( )

( ) ( )

( ) ( )

,0, 22

=0

, 1
2 22

=0

!2 ! P 3
2 !

!2 ! 2 P 0
2 !

ll m ll
m

m

l ll m m
m

m
m

l mA m m l
m l

l m m m l
m l

 ∞ − − 
 

 ∞ − − − − − 
 

 = +  + 

 = +  + 

∑

∑
     (10.5) 

or alternatively  

( ) ( ) ( )

( ) ( )

,0, 22

0

, 1
2 22

0

!
2 ! P 3

2 !

!
2 ! 2 P 0

2 !

ll m ll
m

m

l ll m m
m l

m l
m

m llA m m l
m

m ll m m l
m

 ∞ − − −−  
 

=

 ∞ − − − − −−  +  
+

=

+ = − + 
 

+ = − + 
 

∑

∑
   (10.6) 

https://doi.org/10.4236/apm.2017.710034


A. Wünsche 
 

 

DOI: 10.4236/apm.2017.710034 560 Advances in Pure Mathematics 
 

The Jacobi polynomials to argument 3u =  or to 0u =  with the present 
upper indices in (10.5) or in (10.6) can be expressed by simple formulae of 
multiplicative type (see Appendix A, Equation (A.10)) but we have to distinguish 
the cases of even 2m n=  and of odd 2 1m n= +  of the degree of the 
polynomials. This leads to the following general formula for arbitrary integer l  
and 0r =  (i.e., not smoothed)  

( )0,

0

1! !
2 2 2 2

1! !
2

1 !
2 2 1 2 1

1 !
2

l

n

ln n
A n n l

ln n

n
n n l

ln

∞

=

   + −      = + −  +   
 +    + + + + +  +    

∑

         (10.7) 

The two cases 1l =  and 2l =  are illustrated in Figure 2. 
The Formulas (10.2) for 0r =  can also be obtained by integrating the 

Wigner quasiprobability ( )*,W α α  over the radius α  in polar coordinates 

( ),α ϕ . One obtains in this way observing the generality of the density operator 
   

( ) ( )
( ) ( )

i i
0

π0,i
π

d e , e

1 e , d 1
2π

ll

l

W W

A W

ϕ ϕ

ϕ

ϕ α α α α

ϕ ϕ

+∞ −

+∞ +−

−
=−∞

≡

= =

∫

∑ ∫
         (10.8) 

where   denotes the trace of the content in brackets and ( )0,lA  are the 
operators explicitly given in equivalent representations in (10.5) and (10.6). The 
right-hand side of (10.8) possesses the form of the Fourier decomposition of the 
2π-periodic function ( )W ϕ  with Fourier coefficients ( )0,lA  determined by  

( ) ( ) ( )2π0, i
0

d e , 0, 1, 2,l lA W lϕϕ ϕ= = ± ±∫           (10.9) 

 

  

Figure 2. C oefficients ,m m lc +  in ( )0,1
, 10

1m mm
A c m m∞

+=
= +∑  and in  

( )0,2
, 20

2m mm
A c m m∞

+=
= +∑ . This corresponds to classical phase functions ie ϕ  and 

i2e ϕ , correspondingly. The formulae for the quantum-mechanical equivalents are given 
in (10.7) (for 0r = ) and in (10.10) (for smoothed case 1r = ). In the Susskind- 
Glogower formalism (see (11.9)) this corresponds to the operators E−  and 2E− . 
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This is the way in which it was first derived by Garraway and Knight [14] (see 
also Peřinová, A. Lukš and J. Peřina [12]). In our derivation the operators ( )0,lA  
are embedded together with the operators ( ),0kA  into the representation of a 
more general class of operators ( ),k lA  with a more general number-state 
representation by means of the Jacobi polynomials. 

In special case 1r =  of smoothed functions (10.1) (see also (8.1)) follows 
from the second of the representations in (10.3) or from (8.6)  

( )

( )
0,
1

0

!
2

! !
l

r
m

lm
A m m l

m m l

∞

=
=

 + 
 = +

+
∑                (10.10) 

This formula can also be obtained by integration of the Husimi-Kano 

quasiprobability ( )* 1,
π

Q α α α α=   over the radius α  in polar coor- 

dinates coordinates ( ),α ϕ  according to  

( ) ( )
( ) ( )

i i
0

π0,i
1 π

d e , e

1 e 0, d 1
2π

ll
r

l

Q Q

A Q

ϕ ϕ

ϕ

ϕ α α α α

ϕ ϕ

+∞ −

+∞ +−
= −

=−∞

≡

= ≥ =

∫

∑ ∫
          (10.11) 

in analogy to (10.8) as the Fourier series of the 2π-periodic function ( )Q ϕ  with 
the Fourier coefficients  

( ) ( )
( )

( )2π0, i
1 0

0

!
2d e , 0, 1, 2,

! !
l l

r
m

lm
A Q m l m l

m m l
ϕϕ ϕ

∞

=
=

 + 
 = = + = ± ±

+
∑∫   (10.12) 

in analogy to (10.9). 
The phase space distributions ( )W ϕ  and ( )Q ϕ  are normalized as given in 

(10.8) and (10.11) but they are quasiprobabilities. The function ( )W ϕ  can take 
on negative values depending on the states whereas ( )Q ϕ  is non-negative but, 
nevertheless, it is a quasiprobability because it involves the non-orthogonal 
coherent states for its definition. As an example, we calculate their explicit forms 
for coherent states β  with the quasiprobabilities  

( ) ( )
( )( )* *

*
22, exp

1 π 1rF
r r

α β α β
α α

 − −
 = −
 + + 

       (10.13) 

with ( ) ( ) ( ) ( )* * * *
0 1, , , , ,F W F Qα α α α α α α α= =  and ( ) ( )* *

1 , ,F Pα α α α− = . 
From this one finds by integration over the modulus of α  for coherent states 
β  with ( ) ( )* i i, e , eχ χβ β β β −=   

( ) ( )

( ) ( )

2

2 2

1 2 2πexp 1 cos
2π 1 1

2 2exp cos 1 Erf cos
1 1

rF
r r

r r

ϕ β β ϕ χ

β ϕ χ β ϕ χ

 = − + − + + 
    ⋅ − ⋅ + −       + +    

 (10.14) 
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with the special cases ( ) ( ) ( ) ( )0 1,F W F Qϕ ϕ ϕ ϕ= =  and ( ) ( )1F Pϕ ϕ− =  where 
the last becomes singular and has to be considered as a generalized function. 
Since ( )*,rF α α  for 1 1r≥ > −  is positive definite the functions ( )rF ϕ  are 
also positive definite for these parameter values. 

We mention here that the information contained in ( )Q ϕ  cannot be directly 
obtained from the function ( )W ϕ  and that for this purpose the complete 
function ( )*,W α α  is necessary since a part of this information is already 
destroyed in ( )W ϕ . The relation between the Wigner quasiprobability 

( )*,W α α  and the quasiprobabilities ( )*,rF α α  is (see (7.7), “ ∗ ” means 
convolution)  

( ) ( ) ( )

( )( ) ( )

2 *
* * *

*

* *
* *

2 2, exp , exp ,
2 π

22 i d d exp ,
π 2

r
rF W W

r r

W
r r

αα
α α α α α α

α α

α β α β
β β β β

   ∂
= = − ∗   ∂ ∂   

 − −
 ≡ ∧ −
 
 

∫
  (10.15) 

One finds ( )rF ϕ  from this by integration ( )i i
0

d e , erF ϕ ϕα α α α
+∞ −∫  

with ( ) ( )* i i, e , eχ χβ β β β −=   

( )

( ) ( )

( ) ( )

2
π

π 0

2 2

i i

21 d d exp
2π

2 cos2π1 cos exp

2 cos
1 Erf e , e

rF
r

r r

W
r

χ χ

β
ϕ χ β β

β ϕ χ
β ϕ χ

β ϕ χ
β β

+ +∞

−

−

 
 = −
 
 

  −  ⋅ + −    
  −  ⋅ +       

∫ ∫

    (10.16) 

For 1r =  one obtains the special case ( ) ( )1F Qϕ ϕ= . Formulas (10.16) 
shows that it is not possible to get a direct relation between, for example, ( )Q ϕ  
and ( )W ϕ  without knowing the more general function ( )*,W α α . This is 
different from the functions ( )*,Q α α  and ( )*,W α α  which both contain the 
same complete information over the state only coded in different way. 

11. About the Algebra of the Weyl Correspondences to  
Classical Phase-Space Functions 

As system of basis operators for a quantum-mechanical harmonic oscillator the 
operators ( ),k lA  defined in (6.4) are overcomplete since already each set of 
operators { }† †k l k la a a a≡ , { }†k la a , { }† †k l l ka a a a≡  with , 0,1, 2,k l =   
is appropriate as basic set for the expansion of arbitrary non-singular operators 
in connection with the distributive law. 

For the products of classical functions (6.1) we have the following relations  
( ) ( ) ( ) ( ) ( ) ( ), , ,* * *, , ,k l k l k k l lA A Aα α α α α α′ ′ ′ ′+ +=           (11.1) 

The quantum-mechanical equivalent operators do not satisfy analogous 
relations and instead we find from (6.6)  
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( ) ( )

( )

( ) ( )
( ) ( )

, , 2

0

, ,
2 2

, ,

!2 ! !
2 2 !

P 3 P 3

k k l l
k l k l

m

k l k lm l m l l

m m l

k l k l

k l k l mA A
m l l

m m l l

A A

′ ′+ − − ∞−′ ′

=

′ ′− −   ′− + − − +   
   

+

′ ′

′ ′+ +   =     ′+ +   

′⋅ + +

≠

∑

    (11.2) 

that means that the products ( ) ( ), ,k l k lA A ′ ′  are, in general, noncommutative and 
therefore also in contrast to the classical equality (11.1) that they are not equal, 
in general, to ( ),k k l lA ′ ′+ +  that means  

( )

( )

( )
( ) ( )

, 2

0

,
2

, ,

!2 !
2 !

P 3

k k l l
k k l l

m

k k l lm l l

m

k l k l

k k l l mA
m l l

m m l l

A A

′ ′+ − − ∞−′ ′+ +

=

′ ′+ − − ′− + + 
 

′ ′

′ ′+ + + =   ′+ + 

′⋅ + +

≠

∑

     (11.3) 

plus possible further representations using the alternative representations for 
( ),k lA . However these products are associative according to  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ), , , , , , , , ,k l k l k l k l k l k l k l k l k lA A A A A A A A A′ ′ ′′ ′′ ′ ′ ′′ ′′ ′ ′ ′′ ′′= ≡        (11.4) 

This follows from the associativity of the products  
m m l m m l m m l′ ′ ′ ′′ ′′ ′′+ + +  in the arising triple sum over , ,m m m′ ′′ . 

In general, the operators ( ),k lA  and ( ),k lA ′ ′  do not commute. Apart from the 
trivial cases ,k k l l′ ′= =  the operators ( ),k lA  and ( ),k lA ′ ′  commute also for 

0l l′= =  according to  

( ) ( ) ( ) ( )
( ) ( ) ( )

,0 ,0,0 ,0 2 22

0

,0 ,0 ,0

2 ! ! P 3 P 3
2 2

k kk k m mk k
m m

m

k k k k

k kA A m m

A A A

′   ′+ ∞ − + − +−    ′    

=

′ ′+

′   =    
   

= ≠

∑     (11.5) 

In these cases the operators ( ),0kA  and ( ),0kA ′  and thus their products 
( ) ( ),0 ,0k kA A ′  are diagonal in the number representation but generally their 

products ( ) ( ),0 ,0k kA A ′  are not equal to ( ),0k kA ′+ . According to (8.8) and (8.11) in 
the special cases l k=  and l k= −  the operators ( ),k lA  are ( ),k k kA a=  and 

( ), †k k kA a− = , respectively. Since smoothing of these operators does not change 
them we can extend this behavior to arbitrary smoothing parameter r  and 
taking into account (8.9) or (8.10)  

( ) ( ) ( ) ( )

( ) ( )

, ,

0 0

,

0

! !
! !

!
!

k k l l
r r

m n

k l k l
r

m

m k n l
A A m m k n n l

m n

m k l
m m k l A

m

∞ ∞

′
= =

∞
+ +

′′
=

+ +
= + +

+ +
= + + =

∑∑

∑
       (11.6) 

for arbitrary ,r r′  and r′′  and, analogously, taking into account (8.12)  
( ) ( ) ( ), , ,k k l l k l k l
r r rA A A− − + − −

′ ′′=                     (11.7) 

In cases when ( ),k lA  and ( ),k lA ′ ′  do not commutate one may calculate the 
commutator from the given relations and may express it by means of the Jacobi 

polynomials. For example, for the commutator of ( )0,1A  corresponding to 
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classical ie ϕ  with ( ) ( )( )†0, 1 0,1A A− =  follows from (10.7)  

( ) ( )

( )
0,1 0, 1

0

1 1 1! ! !
2 2 2, 2 2 2 1 2 1

2 ! ! 1 !n

n n n
A A n n n n

n n n

∞
−

=

      − − +              = − + +   + 
  

∑  (11.8) 

In the Susskind-Glogower formalism [12] [27] [28], for comparison, we have for 
the analogous operators E−  and ( )†E E+ −=  (correspondence ( )0,1 i~ ~ eA E ϕ

−  
and ( )0, 1 i~ ~ eA E ϕ− −

+ )  

[ ]
0 0

1 , 1 , , 0 0
m m

E m m E m m E E
∞ ∞

− + − +
= =

≡ + ≡ + =∑ ∑  

( ) ( ) ( ) ( )
1

0 0 0
, , ,

ll l l l

m m n
E m m l E m l m E E n n

∞ ∞ −

− + − +
= = =

 = + = + = ∑ ∑ ∑ (11.9) 

For explicit calculation this formalism is often simpler than using the 
formulae in Section 10 resulting from the Weyl correspondence of classical to 
quantum optics. However, one cannot make in this formalism a distinction 
between symmetrical Weyl ordering and normal ordering. To find a simple 
general mathematical relation between these two approaches seems to be 
difficult. It is also easier to deal with the eigenvalue problems (right-hand 
eigenstates) for the operators ( )lE−  than the corresponding eigenvalue 
problems for the operators ( )0,l

rA . 

12. Powers of the Classical Intensity and Their Equivalent  
Quantum-Mechanical Weyl Operators 

The classical intensity is by definition *AA  if A  is the complex amplitude of a 
considered process (e.g., harmonic oscillator). We made in (6.1), (6.2) and (9.1) 
the agreement (not also with some disadvantages) to “normalize” it using the 
Planck constant   to get in the Weyl correspondence directly the symmetrized 
product of annihilation and creation operator { }†aa  connected with the 
number operator †N a a≡ . For its k-th powers we have according to (9.1) the 
“classical” function in representation by canonical variables ( ),q p  and in 
complex variables ( )*,α α  (substitute k k′ →  in (9.9))  

( ) ( ) ( ) ( ) ( )
2 2

22 ,0 2 ,0* *, , ,
2

k
kkk k q pA A q pα α α αα

 +′= = =  
 

     (12.1) 

with the quantum-mechanical equivalent (smoothing parameter is here 0r = )  
( ) { } { }2 ,0 † †k k k k kA a a a a= ≡                   (12.2) 

According to the meaning of the symbol for symmetrical ordering { }  
the ordering of the annihilation and creation operators within the braces is 
arbitrary. 

We now derive the relations between symmetrical ordering { }  and 
normal ordering { }  for products of equal numbers of annihilation and 
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creation operators that means for combinations where the phase of these opera- 
tors is fully eliminated. From (7.6) follows for the special case k l=   

{ } ( )

( ) { }

2
† †

2
0

2
†

2
0

! 1
2! !

! 1
2! !

jk
k k k j k j

j

jk
k j k j

j

ka a a a
j k j

k a a
j k j

− −

=

− −

=

 =  −  

 ≡  −  

∑

∑





          (12.3) 

The inversion of this relation is  

{ } ( ) { }
2

† † †
2

0

! 1
2! !

jk
k k k k k j k j

j

ka a a a a a
j k j

− −

=

 ≡ = − −  
∑        (12.4) 

This can be proved analogously to corresponding more general formulae for 
†k la a  by inserting one of the Formulas (12.3) and (12.4) into the other one and 

using after a simple transformation of the arising double sum the binomial 
formula. In particular, we find from (12.3)  

{ }† † 1 1
2 2

a a a a I N I= + = +  

{ } { }( )
2

22 2 2 2 1 1 1 12
2 2 4 4

a a a a a a I N I I a a I = + + = + + = + 
 

 † † † †  (12.5) 

The explicit form for more initial special cases is given in Appendix C. The 
inversion of (12.5) could be immediately written down from the analogous 
structure of the relations (12.3) and (12.4) with changing signs. In Appendix C 
we also derive general representations of the symmetrically ordered operators 

{ }†k ka a  by powers of the number operator N and by powers of the operator  

{ }†1
2

N I a a+ =   and give them explicitly for a few initial cases. 

We now derive from (12.5) an inequality for expectation values. For this 
purpose we use the Cauchy-Bunyakovski-Schwarz inequality for states ψ  and 
ϕ  in Hilbert space or for operators A and B in a Hilbert space of operators in 

the forms  
*ψ ψ ϕ ϕ ψ ϕ ϕ ψ ψ ϕ ψ ϕ≥ =  

*† † † † † †A A B B A B B A A B A B≥ =           (12.6) 

From the second equation in (12.5) follows (remind that overlining means 
forming the expectation value and C  forming of the trace of an arbitrary 
operator C)  

{ } { }


{ }

2 2 2 2

1

22 2

1 1 1
2 2 4

1 1 1 1 1
2 4 2 4 4

a a a a

N I N I I

N I N I a a

=

≡

  = + + +  
  

   ≥ + + = + + ≡ +   
   

  

    

  

† †

†

 (12.7) 
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The operator   is here defined as a positive semi-definite Hermitean 
operator that is possible since the density operator   itself is also a positive 
semi-definite Hermitean operator. 

From (12.7) we see the inequality  

{ } { } ( )
2 22 2 1 1

4 4
a a a a N− = ∆ + ≥ † †              (12.8) 

with the usual definition of the operator N∆   

( )2 2 20,N N NI N N N N∆ ≡ − ⇒ ∆ = ∆ = −          (12.9) 

One may consider the expression on the left-hand side of (12.8) as quantum- 

mechanical analogue of the variance of a classical function ( )* 2 21
2

q pαα = +


  

proportional to the intensity. Accepting this, in quantum optics this quantity 
possesses a minimum of uncertainty which cannot be undercut in contrast to 
classical optics where it can be equal to zero. However, one may simply consider 
( )2N∆  as analogue to a classical uncertainty where, however, we remind that  

( )† 2 21
2

N a a Q P I= = + − 


 does not admit a limiting transition 0→  to a 

finite classical corresponding quantity (see also remark after Eq. (2.3)). 
The minimum of the left-hand side of (12.8) where the inequality makes the 

transition to an equality is obtained for all number states ( ), 0,1, 2,n n n= =   

{ } { } 22 2 1
4

n a a n n a a n− = † †              (12.10) 

For coherent states α α=  one does not obtain this minimum value on 
the right-hand side and find instead  

{ } { } 22 2 * *1 ,
4

a a a a Nα α α α αα α α− = + = † †      (12.11) 

For thermal states to a harmonic oscillator of frequency ω  with density 
operator ( )N  according to  

( )
0

e 1 1
1 1 1 1e

N nxN

xN
n

N NN n n
N N N N

− ∞

−
=

   
= = =   + + + +   

∑    (12.12) 

with abbreviation x
T
ω
κ

≡
  to temperature T and with κ  the Boltzmann 

constant and with the relations  

( )2

0

1 ee e , , e , 2 1
11 e 1 e

x
xN xn x

x x
n

NN N N N
N

−∞
− − −

− −
=

= = = = = +
+− −∑ (12.13) 

one obtains  

( ) { } ( ) { } ( )22 2 11
4

N a a N a a N N− = + +   † †        (12.14) 

Thus we have illustrated the inequality (12.8) for three important categories of 
states. 

Instead of symmetrical (Weyl) ordering one may consider normal ordering in 
analogy to (12.5) with  
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{ } ( ) ( ) { }( )22 2a a a aa I a N N I a a N= − = − = − † † † †     (12.15) 

In a way which is analogous to (12.7) one derives the well-known inequality  

{ } { } ( )
2 22 2a a a a N N N− = ∆ − ≥ − † †           (12.16) 

The left-hand side of this inequality may take on positive as well as negative 
values. It becomes equal to zero for coherent states α α=  which obey a 
Poisson statistics defined in classical probability theory by the probabilities  

e
!

n

np
n

µ µ−=  with 0µ ≥  as a parameter and in quantum optics with respect  

to the eigenvectors n  and n  of the operator N by  

( ) ( ) ( )
*

* 2 2exp exp
! !

n
n

n
Np n n N N N N

n n

αα
α α αα≡ = − = − ⇒ = +  (12.17) 

as it is well known. The probabilities np  alone do not determine the coherent 
states since information about the phase is absent and much less the normally 
ordered moments †a a N=  and †2 2 2a a N N= −  do this alone. In next Section 
we consider shortly the reconstruction of a (one-mode) state from its normally 
ordered moments. 

If one looks to the quantity (12.16) not only as to a pure definition but as a 
quantity which can be measured and which, moreover, is the quantum- 
mechanical analogue of a classical quantity which last can take on only 
non-negative values then this becomes highly problematic. 

Both quantities on the left-hand sides of (12.8) and in the middle (12.16) 
cannot directly be measured but can only be calculated from measured 
quantities of 2N  (or †2 2a a ) and of N . Glauber in the measurement theory 
within his lectures [7] considered the following two cases: 1. measurement by 
one-atom photon detector (chap. 4) and 2. measurement by multi-atom photon 
detector (chap. 5). The conclusion was that since the detectors are basically in 
the ground state the expectation values of powers of normally ordered 
annihilation and creation operators are measured. On the basis of the inequality 
(12.16) Mandel [29] (see also [30]) defined sub-Poissonian and super-Poissonian 
statistics in quantum optics in dependence on the sign of this quantity, 
“sub”-Poissonian if 

2
2 2 0a a a a− <† †  and “super”-Poissonian if 

2
2 2 0a a a a− >† † . 

With effort to the difficult task to implement the measurement theory to photon 
statistics [7] [8] [11] [31] Paul calculated and discussed anti-bunching of states 
as a typical non-classical property with no correspondence in classical optics in 
[32] and in [33] (anti-bunching occasionally renamed there in anti-correlations). 
In a short paper of Zou and Mandel [34] these authors reclaimed that Paul [32] 
does not consider anti-bunching and bunching but instead of this sub- and 
super-Poissonian statistics and that anti-bunching is not a property of a state but 
a property of the time evolution of a state when the time derivative of the 
quantity †2 2a a  becomes positive. We are not of the opinion that the notions of 
sub- and super-Poissonian statistics of Mandel are much better since the prefixes 
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“sub” and “super” are misleading and suggest too much that the statistics of 
states in quantum optics can be linearly ordered with the Poisson statistics of the 
coherent states in the “middle”. Besides the coherent states a very large category 
of different states possess for arbitrary given N  the same expectation values 

2N  as given in (12.17) (exception: 0N =  which is uniquely only possible for 
the vacuum state 0 0 ). This becomes clear from the reconstruction of states 
by their normally ordered moments. These states can be very far from coherent 
states and may possess even the greatest possible distance to the nearest coherent 
state as can be calculated using the Hilbert-Schmidt distance, for example, for 
sets of some squeezed coherent states or what is the same of displaced squeezed 
vacuum states in the limiting procedure to maximal squeezing but with the same 
values †a a  and †2 2a a  as the considered coherent states. This means that one 
cannot establish a linear ordering by means of the parameter (12.16) under fixed 
N  and that one may continuously go from sub-Poissonian to super-Poissonian 
statistics without touching the Poisson statistics of coherent states and one 
cannot expect a very unique behavior of states with sub- and super-Poissonian 
statistics5. The separation of sub- and super-Poissonian statistics goes amidst 
within the set of squeezed coherent states. Such orderings which are not a full 
linear ordering are called semi-orderings. 

Besides the quantity (12.16) there are often used corresponding relative 
quantities obtained by division of (12.16) by N  [30] or by 2N  [33] where 
only the last corresponds to approaches in classical theory if the investigated 
quantity possesses a dimension. In case of the number operator N such a 
division by the squared expectation value 2N  enlarges without any further 
changes the importance of an effect for small expectation values N , in 
particular, in this case for 1N <  suggesting its highly quantum character for 
very small expectation values 1N  . This was estimated in [33] (in the middle 
of p. 187) as a pleasant agreement with Bohr’s correspondence principle 
according to which in the limiting case of high excitations (here mean photon 
numbers N ) the quantum-mechanical description should make the transition 
to a classical one. On the other side, the smaller N  the nearer the state is to the 
vacuum state 0 0=  and in the limiting case 0N →  it becomes the 
vacuum state. This even can be described by an inequality (Section 14) for the 
distance to the vacuum state which continuously is reached for 0N → . The 
vacuum state is a coherent state with vanishing complex displacement parameter 
and according to the usual opinion, the coherent states are the “most classical 
states”.  

13. Reconstruction of Density Operator from Normally  
Ordered Moments 

A general quantum-mechanical state (here of the free electromagnetic field) is 

 

 

5In the table 1 on p. 187 in [33] such a subdivision is made with respect to the sign of the quantity 
(16) but the case of its vanishing is identified with Poisson statistics and it was forgotten to mention 
that this does not necessarily mean the coherent states with their Poisson statistics. 
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fully characterized by its density operator  . If it is known one may determine 
from it, for example, the matrix element m n  with the number states and 

0 0m n m m n nρ ∞ ∞

= =
= ∑ ∑   is already the reconstruction formula for the 

density operator (suppose that it is only one mode). One may also determine the 
moments of the density operator with powers of the annihilation and creation 
operators, in simplest case in normal ordering †k la a  as another kind of 
“coordinate representation” of the density operator   (analogously to repre- 
sentation of vectors r  by coordinates). The reconstruction of a density 
operator from its moments is more complicated than from matrix elements of 
the number states since it corresponds to a non-orthogonal basis system. 

The reconstruction formula of the density operator   from its normally 
ordered moments †k la a  was derived in [35] with the result (is correct also 
for arbitrary operators A if involved quantities exist)  

† †
, ,

0 0 0 0

k l k l
k l k l

k l k l
a a a a a a

∞ ∞ ∞ ∞

= = = =

= =∑∑ ∑∑                (13.1) 

where ,k la  is the abbreviation for a set of auxiliary operators necessary for the 
reconstruction and defined as follows (remind that A  means the trace of an 
operator A  and l j−  and k j−  are number states)  

{ } ( )
( ) ( )

{ }

( ) ( )
( ) ( )

,

,
0

†
0,0

,

1

! ! !

1 !1 , 0 0
! ! ! !

jk l

k l
j

i
l i k i

i k l

l j k j
a

j k j l j

k l i
a a a

k l k i l i

=

∞
+ +

=−

− − −
≡

− −

− + +
= =

+ +

∑

∑
       (13.2) 

The relation  

{ } ( )
( ) ( )

†,
†

, , ,
0

1

! ! !

j m nk l
m n

k l k m l n
j

k j a a l j
a a a

j k j l j
δ δ

=

− − −
= =

− −
∑         (13.3) 

shows that the two sets of “coordinates” ,k la  and †k la a  are related to 
each other similarly as covariant and contravariant components of a vector. 
From (13.3) follows as special case 0m n= =  for the traces of the operators 

,k la   

, ,0 , ,0 ,0k l k k l k la δ δ δ δ= =                    (13.4) 

and using this together with (13.1) one may check the normalization  

†
,

0 0
1k l

k l
k l

a a a
∞ ∞

= =

= =∑∑                   (13.5) 

In contrast, the traces of †k la a  are also vanishing for k l≠  but do not 
possess finite values for k l= . 

Usually it is assumed that a density operator   expresses the maximum 
knowledge for an ensemble of states which individual members are in states 
described by different exact wave functions that means by averaging over density 
operators for pure states i i iψ ψ=  with probability ip  as coefficients in 
front of them, i.e. ( ), 1i i i ii ip pψ ψ= =∑ ∑ . Then arise problems of 
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determination of the possible pure states i iψ ψ  together with a discrete 
averaging function 0ip ≥  leading to the diagonal form of the density operator. 

For a full reconstruction of the density operator   according to the basic 
Formulas (13.1) we need all normally ordered moments † †k l k la a a a≡  . If one 
determines only the diagonal values ( )† , 0,1, 2,k ka a k =   as in photon statistics 
then one can reconstruct only a part 0  of the density operator   of the form  

( )
( )

( )
†

0 , 0
0 0 0

1! , 1
! ! !

jk
k k

k k
k k j

k j k jNa a a
N kI j k j

∞ ∞

= = =

− − −
= = =

− −∑ ∑ ∑      (13.6) 

where the factorial moments †k ka a  are connected with the expectation values 
lN  of the number operator N together with its inversion by  

( ) ( ) ( ) ( )0 0

! !, , ,
! !

k k
l k

l l

N Ns k l N N S k l
N kI N lI= =

= =
− −∑ ∑         (13.7) 

with ( ),s k l  and ( ),S k l  the Stirling numbers of first and second kind, 
respectively. Writing down explicitly the first four sum terms of (13.6) we have  

( )

( )

2
0

3 2

1 1 0 0 2 2 1 1 0 0
0 0

0!1! 1!0! 0!2! 1!1! 2!0!

3 3 2 2 1 1 0 0
3 2

0!3! 1!2! 2!1! 3!0!

N N N

N N N

   
= + − + − − +   

   
 

+ − + − + − + 
 





  (13.8) 

and we see that it is absolutely insufficient to conclude that in case of 
2 2N N N− =  we have a Poisson distribution to density operator 0   

( ) ( ) ( )0
0 0

!exp , , ,
! !

n k
k k l

n l

N NN n n N N S k l N
n N kI

∞

= =

= − = =
−∑ ∑    (13.9) 

in particular, for high expectation values N , apart from the full absence of 
information about the phases (expectation values †k la a  with k l≠ ). For a 
“sufficient” reconstruction of a density operator 0  we need, at least, 
expectation values lN  up to values l n N→   [35]. For 1N   the density 
operator 0  is near to that for the vacuum state but this is better to see from the 
Hilbert-Schmidt distance to the vacuum state (next Section). 

The treatment of reconstruction of the density operator reveals many 
interesting problems partially not solved up to now. Within which limits can a 
density operator reconstructed with incomplete knowledge of necessary 
quantities (expectation values, moments) if only a small part of them is known 
or if it is assumed that the density operator possesses only one, two, three and so 
far eigenvalues different from zero. If only one eigenvalue is different from zero 
(then equal to 1) we have the problem of reconstruction of pure states. Also in 
this case one has an arbitrariness, for example, if N  and ( )2 0N N∆ − =  is 
known which admits as well as coherent states as different squeezed states and 
also other states. We do not consider this here (some elements of treatment of 
squeezed states we developed already in former publications, e.g., [36]). 
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14. Hilbert-Schmidt Distance of Two Quantum-Mechanical  
States 

A measure how near or far are two quantum-mechanical states is their distance. 
Distances are determined by a few axioms. They have to be non-negative and 
should be zero for equal states and they should obey the triangular inequality (to 
find in almost every monograph about functional analysis). From the many 
possible distances the only distance in quantum theory with which one can 
calculate in convenient way is the Hilbert-Schmidt distance determined by the 
Hilbert-Schmidt norm of the elements of the Hilbert space of states. Since a 
general state is described by a density operator this is in our case the Hilbert 
space of all (normalizable) operators , ,A B   according to their scalar products 

AB . Thus the Hilbert-Schmidt distance of two states described by the density 
operators   and ′  and their special cases of pure states ψ ψ=  or (and) 

ψ ψ′ ′ ′=  we define the distances denoted by   [37] [38]  

( )

( )

( ) ( )

2 2 2

2 2

2

2 ,

1 2 ,

2 1

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

′ ′ ′ ′− ≡ − = + −

′ ′ ′ ′ ′ ′− ≡ − = + −

′ ′ ′ ′ ′ ′− ≡ − = −

      

     (14.1) 

The possible phases of abstract pure states described by ψ  do not play a 
role in these definitions but the normalization 1ψ ψ =  does. The maximum 
difference between two normalized pure states is equal to 2  and happens for 
mutually orthogonal states that is the same as for orthogonal unit vectors in a 
vector space. We mention that the factor 

2 2 21σ ≡ − = −    is often 
called the impurity factor of a state described by density operators  . For 
impurity factors 0σ ≠  the maximum possible difference between such states is 
smaller than 2  in dependence on σ . 

Results derived in quantum optics for coherent states are often most near to 
corresponding results from classical optics and are in this sense the most 
“classical” states. Therefore, it is natural to define the distance ( ),d α α  of 
a state   to the nearest coherent state α α  as a measure of nonclassicality6  

( ) 2
noncl Min Min 1 2d

α α
α α α α

∈ ∈
≡ − = + −

 
          (14.2) 

One may modify this definition for mixed states by substituting the class of all 
coherent states by the class of all displaced Gaussian states (displaced thermal 
states) with the same impurity factor 21σ = −   as the considered state if one 
knows its impurity factor [38]. 

For the distance of a pure state 
0 nn c nψ ∞

=
=∑  to the vacuum state 0  

one finds the inequality  

 

 

6We did not very emphasize this in [37] since at this time we did not want to come in conflict with 
other existing definitions and categories of nonclassicality, in particular, with anti-bunching [32]. 
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( ) ( )

( )

* *
0 0

1

*

1

, 0 0 2 1 0 0 2 1 2

2 2 , 1

n n
n

n n
n

c c c c

nc c N N

ψ ψ ψ ψ
∞

=

∞

=

≡ − = − =

≤ = <

∑

∑
  (14.3) 

Since the maximum possible distance of two normalized pure states in Hilbert 
space is 2  this inequality becomes trivial for 1N ≥ . Thus for 1N <  the 
distance to the vacuum state goes for 0N →  at least with 2 0N →  against 
zero. This means that for 1N   the absolute nonclassical effects for 
sub-Poissonian states cannot very much differ from that for the vacuum state. 
Between the measure of nonclassicality of states by their smallest possible 
distance to a certain coherent state and the negativity of the measure (12.16) it is 
difficult to find some correlation. 

15. Conclusions 

In present article we have investigated in some detail the classical to quantum 
correspondence in the sense of Weyl for an important class of classical 
phase-space functions and quantum-mechanical operators and derived different 
representations, mainly representations by number states. The coefficients in 
these representations could be written in compact form using the Jacobi 
polynomials ( ) ( ),Pn uα β . It was astonishing how all the considered important 
special cases could be obtained by specializing the Jacobi polynomials in 
corresponding way and how they provided in some cases different more simple 
formulae for the even and odd cases of the main indices but which could not be 
joined on a lower level than on the level of the Jacobi polynomials. One may 
state that the considered problem leads to one of the most important 
applications of the Jacobi polynomials showing their magnificence. 

Despite the somehow beautiful application of the Jacobi polynomials to the 
Weyl correspondence this is not fully satisfying because it is not clear how the 
expectation values of large categories of calculated operators may be measured in 
experiments. It is also not clear in which or whether or not in all situations the 
most aesthetical symmetrical ordering of functions of the canonical operators is 
the right one realized by fundamental quantum processes. In the theory of 
Glauber [7] for measurements of the photon statistics there are only considered 
the two cases of devices for measurement of photon numbers with one atom and 
with many atoms. 

In particular, the phase measurements are problematic since in interaction 
with classical devices the amplitude and phase is difficult to separate and the 
interaction operators are involved only as the full annihilation and creation 
operators without separation of the phase. For a long time up to the nineties it 
was common sense that classical action and angle variable should become 
quantum-mechanical Hermitean operators that is problematic for the angle 
operators for which the measured values are determined only up to a multiple of 
2π. For a single measured value of the phase one may say that it is undetermined 
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up to additional multiple value of 2π. However, already for two measured values 
it is then difficult to determine what is its mean value. This difficulty can be 
avoided as we did if one considers only periodic functions of the phase. 

Finally, it should be difficult for the same reason to generate “good” states 
with well determined phase for interference experiments and to distinguish 
experimentally between the quantum-mechanical approaches to the phase in the 
formalisms of Susskind and Glogower and in the Weyl correspondence by the 
symmetrical ordering of annihilation and creation operators applied to the 
phase. 
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Appendix A 

Transition from power functions to symmetrized operators and a few 
relations for Jacobi polynomials 

We now investigate the case of transition from the product of a power 

function ( )*
k

αα  with a phase function 
*

l
α
α

 
  
 

 into a symmetrized  

quantum-mechanical operator in the sense of Weyl. According to the general 
scheme we find applying relation (5.14) with intermediate transition to polar  

coordinate ( )i *
*, e ,ϕ α

α αα
α

 
=   
 
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(A.1) 

This can be represented in the following preliminary explicit form  

( ) ( )
( )

( ) ( )
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2! !2 2

! ! !

j
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We used here the explicit expression (5.3) for the Laguerre 2D polynomials 

( )*
,L ,m n z z  [17]. 

The result (A.2) can be expressed using the Jacobi polynomials ( ) ( ),Pn uα β  or 
the corresponding Hypergeometric function ( )2 1F , ; ;a b c z  in the forms (e.g., 
[21] (chap. 10) and [19])  

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( )

( )

,
2 1

0

0

2 1

! 1P F , 1;1 ;
! ! 2

! !1 1
2 ! ! ! ! 1

! 1 2 ! 1
! ! ! ! 2

! 1 1F , 1;1 ;
! ! 2 1

n

n n jn

j
j n jn

j
n

n uu n n
n

n nu u
j n j n j j u

n n j u
n j n j n j
n u un n
n u

α β α
α β α

α
α β

α β
β α β

α β β
α

β α
α

−

=

−

=

+ − = − + + + + 
 

+ ++ −   =    − + − + +   
+ − + + − + =  + + − + −  

+ + −   = − − − + + −   +  

∑

∑




    (A.3) 
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with the given known transformation relation for the Hypergeometric function 
leading to the relation [19] (chap. IV, Equation (4.22.1); we changed its 
representation slightly)7  

( ) ( ) ( ), , 2 11 3P P
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n
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n n
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u
α β α α β− − − −+ −   =    +   

              (A.4) 

with changing the argument of the Jacobi polynomials and an upper index and 
with the symmetry relation  

( ) ( ) ( ) ( ) ( ), ,P 1 Pn
n nu uα β β α= − −                    (A.5) 

For argument 1u =  and 1u = −  the Jacobi polynomials take on the values  
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This follows from the relations (A.3), (A.4) and (A.5). We apply this in the 
next section. 

Using the explicit representations of the Jacobi polynomials in the third line of 
(A.3) and then the relation (A.4) with argument transformation from (A.2) 
follows  
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   (A.7) 

Using the following general transformation relation for integer l  which 
results from a general transformation relation for the Hypergeometric function 
(e.g., [39], chap. 9.13, Equation 9.131) which changes the lower index of the 
Jacobi polynomials8  
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one may represent (A.7) also in the form  
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In Section 10, we need the Jacobi polynomials of special argument 
( ) ( ),2P 3m
m

α α− −  or, alternatively, ( ) ( ), 1P 0m m
m

α α− − − − −  which for arbitrary α  can be 
expressed distinguishing the even case 2m n=  and the odd case 2 1m n= +  in 

 

 

7This transformation possesses involutory character. Applying it to the right-hand side it leads back 
to the primary form ( ) ( ),Pn uα β . 
8These transformations possess also involutory character such as (4). 
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the following way (see also (A.4)) 
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The equality of the right-hand sides of these relations is a very curious fact. 

Appendix B 

Calculation of expressions for the transition from a smoothed classical 
function to a corresponding quantum-mechanical operator 

We calculate in this Appendix the transition from a smoothed classical 
function of the canonical variables in representation by the complex variables 

( )*,α α  to a quantum-mechanical operator in the sense of Weyl. The 
smoothing of the classical function ( )*,A α α  is made by convolution with a 
normalized Gaussian function as follows  
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  (B.1) 

where “ ∗ ” denotes the convolution. According to (5.14) one has now to 
calculate  
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         (B.2) 

where we applied partial integration. According to Formula A(35) in [17] 
specialized to our case we have the operator identity  
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which applied to ( )*
,L 2 , 2m n α α  in (B.2) provides  
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We applied here first that 
α

αλ
∂
∂  is the multiplication operator of the variable  

α  of a function ( )*,f α α  by λ  that means it makes the transition 

( ) ( )* *, ,f fα α λα α→ . The second transformation can be obtained if we  

rewrite the definition (5.1) of the Laguerre 2D polynomials for 
*

,L ,m n
z z
b b

 
 
 

 

with scalar parameter b   
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Then one finds by application of an arbitrary operator 
2

2
*exp a
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 to it  
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follows the last part in (B.4). 
For the quantum-mechanical operator rA  corresponding in the Weyl 

formalism to the smoothed classical function ( )*,rA α α  we obtain  
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For 0r =  we obtain the Formulas (5.14). 
The case 1r =  has to be considered by a limiting procedure. Setting 

1r ε= −  we find for 0ε →   
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that means  
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where α  are the coherent states which are (over-)complete in the sense of 
(3.22) for special case 0m n= = . 

For the smoothed special classical functions ( ) ( ), *,k lA α α  in (6.1) that means 
for  
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        (B.10) 

starting from (B.7) one obtains in a calculation which is in full analogy to the 
calculation in (A.9) the following generalization for the number representation 
of the corresponding operators to the smoothed classical functions ( ) ( ), *,k l

rA α α   
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       (B.11) 

which, clearly, for 0r =  become identical with (A.9). 
The general Formulas (B.11) can be written in more compact form but in 

alternative ways using the Jacobi polynomials ( ) ( ),Pn uα β . We make this in the 
main text from Formulas (8.2) on and discuss it there. 

Appendix C 

Sequences of relations for symmetrically ordered powers { }k ka a †  of 
annihilation and creation operator 

We give in this Appendix for practical purpose a few initial terms for the 
relations of the symmetrically ordered operators { }†k ka a  to representation 
in normal ordering and to expansion in powers of the number operator N. 

Using relation (12.3) one obtains the following relations of { }†k ka a  to 
normally ordered powers of the annihilation and creation operators up to 

6k = :  
Sequence 1: Representations of symmetrically ordered operators { }†k ka a  

in normal ordering  

{ }0 0a a I= †  

{ }1 1 1
2

a a a a I= + † †  

{ }2 2 2 2 12
2

a a a a a a I= + + † † †  

{ }3 3 3 3 2 29 9 3
2 2 4

a a a a a a a a I= + + + † † † †  
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{ }4 4 4 4 3 3 2 2 38 18 12
2

a a a a a a a a a a I= + + + + † † † † †  

{ }5 5 5 5 4 4 3 3 2 225 75 1550 75
2 2 4

a a a a a a a a a a a a I= + + + + + † † † † † †  

{ }6 6 6 6 5 5 4 4 3 3

2 2

22518 300
2

675 45135
2 4

a a a a a a a a a a

a a a a I

= + + +

+ + +

 † † † † †

† †

                (C.1) 

According to the analogous structure of (12.3) and (12.4) the inversion of the 
relations in (C.1) is very simple and is connected with changing signs of sum 
terms. 

Using for arbitrary real variable x the formula  

( ) ( ) ( )
0

! s ,
!

k
l

k
l

xx k l x
x k =

≡ =
− ∑                     (C.2) 

where ( )s ,k l  denotes the Stirling numbers of first kind one may prove the 
following relation between from †k ka a  to powers of †N a a=  and vice versa  

( ) ( ) ( )† †

0 0

! s , S ,
!

k k
k k l k l l

l l

Na a k l N N k l a a
N kI = =

= = ⇔ =
− ∑ ∑        (C.3) 

where ( )S ,k l  denotes the Stirling numbers of second kind and we obtain 

( ) ( )( ),0 s , S ,k
k ml k l l m δ

=
=∑   

{ } ( )

( ) ( )

2
† †

2
0

2

2
0 0

! 1
2! !

! s ,
2 ! !

jk
k k k j k j

j

k k
k l

j
l j

ka a a a
j k j

k k j k l N
j k j

− −

=

−

= =

 =  −  

 
= − −  − 

∑

∑ ∑



         (C.4) 

The following table gives a few initial members of this relation.  
Sequence 2: Representations of symmetrically ordered operators { }†k ka a  

in powers of N 

{ }†0 0a a I=  

{ }†1 1 1
2

a a N I= +  

{ }
2

†2 2 2 1 1 1
2 2 4

a a N N I N I I = + + = + + 
 

  

{ }
3

†3 3 3 23 3 1 5 12
2 4 2 4 2

a a N N N I N I N I   = + + + = + + +   
   

  

{ }
4 2

†4 4 4 3 2 3 1 7 1 92 5 4
2 2 2 2 16

a a N N N N I N I N I I   = + + + + = + + + +   
   

  

{ }†5 5 5 4 3 2

5 3

5 25 23 1510
2 2 2 4
1 15 1 89 1
2 2 2 16 2

a a N N N N N I

N I N I N I

= + + + + +

     = + + + + +     
     


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{ }†6 6 6 5 4 3 2

6 4 2

35 69 453 30 49
2 2 4

1 55 1 439 1 225
2 4 2 16 2 64

a a N N N N N N I

N I N I N I I

= + + + + + +

     = + + + + + +     
     


     (C.5) 

Since the coefficients 89 and 439 are high prime numbers in comparison to 
5k =  and 6k =  it seems to be not easy to find a simple closed formula for the  

representation of the left-hand sides in powers of { } { }† †1
2

N I aa a a+ = =  .  

Besides a triple sum resulting from (C.4) by application of the binomial formula  

for 
1 1
2 2

k l
k lN N I I

−
−   = + −  

  
 we did not find up to now an approach leading 

to a more compact relation, for example, only by a double sum. The calculated 

coefficients at the powers of 1
2

N I + 
 

 in (C.5) are non-negative and are  

non-vanishing in decreasing steps of 2 beginning from the highest power of k. 
We checked this by computer up to “sufficiently” high k but could not prove this 
up to now. 
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