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Abstract 
We consider nonlinear evolution equations with logistic term satisfying initial Neu-
mann-boundary condition and show global existence in time of solutions to the 
problem in arbitrary space dimension by using the method of energy. Applying the 
result to a mathematical model of tumour invasion, we discuss the property of the 
rigorous solution to the model. Finally we will show the time depending relationship 
and interaction between tumour cells, the surrounding tissue and matrix degradation 
enzymes in the model by computer simulations. It is seen that our mathematical re-
sult of the existence and asymptotic behaviour of solutions verifies our simulations, 
which also confirm the mathematical result visibly. 
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1. Introduction 

In this paper we consider the initial Neumann-boundary value problem of nonlinear 
evolution equations with logistic term, arising from tumour invasion models with pro-
liferation and re-establishment: (NE) 
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where ( ): ,u u x t=  for ( ) ( ), 0,x t T∈Ω× , D and μ are positive constants, Ω is a 
bounded domain in nR  and ∂Ω  is a smooth boundary of Ω and ν  is the outer unit 
normal vector. 

Let us introduce function spaces used in below. First, ( )lH Ω  denotes the usual 
Sobolev space ( ),2lW Ω  of order l on Ω. For functions ( ),h x t  and ( ),k x t  defined 
in [ )0,Ω× ∞ , we denote 
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where β  is a multi-index for ( )1, , nβ β β= ⋅ ⋅ ⋅ . 
The eigenvalues of −∆  with the homogeneous Neumann boundary conditions are 

denoted by { }| 0,1, 2,i iλ =   satisfying 0 10 λ λ= < ≤ → +∞  and ( )i i xϕ ϕ=  in-
dicates the 2L  normalized eigenfunction corresponding to iλ . For a non-negative in-
teger l, we set ( )lW Ω  as a closure of { }1 2, , , ,nϕ ϕ ϕ   in the function space ( )lH Ω . 
It is noticed that we have ( )d 0h x x

Ω
=∫  for ( ) ( )lh x W∈ Ω , which enables us to use 

Poincare’s Inequality. 
Putting ( ) ( ), ,u x t a bt v x t= + +  in (1) it follows from (1) that 

( )( ) ( ) ( ) ( )2 , e e 1 2 1a bt v a bt v
t t tt tv D v b v v v t b v b bχ µ µ− − − − − −= + ∇ ⋅ + + − +∂ −∆ ∇ −  

where a  and b  are positive parameters. (NE) is rewritten by the following problem. 
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where ( ) ( ), , e .a b a bt v
tv b vχ χ − − −= +  We will show the global existence in time of solu-

tions of (RP), which gives our desired result of (NE). 
Applying the above result to the following mathematical model of tumour invasion 

proposed by Chaplain and Lolas [1], we have a rigorous mathematical understanding to 
tumour invasion for the key variables n , m  and f . 
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where ( ): ,n n x t=  is the density of tumour cells, ( ): ,m m x t=  is matrix degradation 
enzymes (MDEs) concentration and ( ): ,f f x t=  is extracellular matrix (ECM) den-
sity in ( )0,TΩ×  and nd , γ , 1µ , η , 2µ , md , α  and β  are positive constants. 
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In the right hand side of (4) the second, third and fourth terms mean chemotaxis, hap-
totaxis and proliferation of tumour cell respectively. Also the second term of the right 
hand side of (5) describes the re-establishment of ECM. We consider an initial boun-
dary value problem for (C-L) satisfying 

( )0, on 0, ,n f m
ν ν ν
∂ ∂ ∂

= = = ∂Ω× ∞
∂ ∂ ∂

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0, 0 , , 0 , , 0n x n x f x f x m x m x= = = , 

where ( ) ( ) ( ){ }0 0 0, ,n x f x m x  are initial data of ( ) ( ) ( ){ }, , , , ,n x t f x t m x t . 
Chaplain and Anderson [2], corresponding to the case of 1 2 0nx µ µ= = =  in (C-L), 

proposed a mathematical model on generic solid tumour growth at the avascular stage. 
While most tumours are asymptomatic at this stage, it is still possible for cells to escape 
and migrate to the lymph nodes and for more aggressive tumours to invade. 

In our previous papers [3] [4], we consider only the case of 2 0µ =  and 0nx =  for 
our convenience. In this paper we may consider the case where nx  is sufficiently small 
positive constant. Actually compared with the effect of haptotaxis, the one of chemo-
taxis is very small. Furthermore we study the case of 1 2, 0µ µ > , which describes tu-
mour invasion phenomena with tumour cell proliferation and re-establishment of ECM 
respectively. 

In the final section by computer simulations of our model (by Mathematica 8) we 
can easily observe time-dependent interaction and the relationship between the above 
components in complicated procedure of tumour invasion and a comparison to our ri-
gorous mathematical result. Comparing our mathematical result with computer simu-
lations we will gain a better understanding of the mechanism of tumour invasion. 

2. Existence Theorem of (NE) 

By deriving the energy estimate of (RP) (see [3]-[9]) and considering the iteration scheme 
we obtain existence of solutions to (RP) by the standard argument to show the conver-
gence of solutions of the iteration scheme. 

In the same way as used in [3] [4] [5] [6] [7] we have the following estimates of (RP). 
We begin with [ ]( ), 0tQ v v =  in order to obtain a basic estimate of (RP). Then we 
have for 1b = , 

( )( )( ) ( )( )2 ,2 e , 2 1 ,a b a bt v
t t t t t tv D v v v v v v vχ µ− − −∂ − ∆ −∇ ⋅ ∇ − − −  

by the integration by parts 

( )( ) ( )( )2 2 ,2 2 e , 2 1 , 0.a b a bt v
t t t t tt tv D v v v v v v vχ µ− − −= + ∇ + ∇ ∇ + + =∂     (7) 

It is noticed that the following estimate is obtained in [4] [5] [6] [7] for 0 1b′< < , 

e e .a t u b tC ′− − − −<                         (8) 

Then for the nonlinear term we have by using (8) 
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where we used Dionne [10] for the estimate of nonlinear terms and ε  is sufficiently 
small positive constant. Therefore we have by integrating the both sides of (7) over 
( )0, t  and using (9) 
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where we denote [ ]( ) ( ) ( )2 2 .tE v t v t v t= + ∇  
Since the last term of the right hand side of (10) is negligible for sufficiently small ε , 

we have by integration by parts with respect to t 
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Taking a  sufficiently large for the second term of the right hand side of (11) is neg-
ligible. Since ( )1 0tv+ >  if 1tv  , the third term in the left hand side of (11) is posi-
tive. Then we obtain a basic energy estimate 

( ) ( ) ( ) [ ]( )2 2 2

0 0

d d 0 .
t t

tv t v v CE vτ ττ τ τ τ+ ∇ + ≤∫ ∫ 　          (12) 

Replacing kv∇ , k M≤  instead of ν  in the above procedure, we obtain the fol-
lowing estimate of higher order. 

Lemma 1 (Energy estimate of (RP)) Assume that ( )1 2,s sχ  for ( ) 2
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energy estimate of (RP) for [ ]2 3M n≥ +  
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where we denote for any non-negative integer k M≤ , [ ]( ) .k
kE v t E v = ∇   

We consider the iteration scheme of (RP): 
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(13) guarantees the uniformly bounded estimate of ( )1i +  for 1,2,i = ⋅⋅⋅ . We deter-
mine ( )ijf t  by the solution of the following ordinary equations with initial data. 

[ ]( )
( ) ( ) ( )

1

1 1 1 1

, 0,

0 , 0 . 

i i j

i j i i j it

Q v

f h f h

ϕ+

+ + + +

 =


′= =
 

The local existence in time of ( )ijf t  is shown by the theory of ordinary differential 
equations. Therefore, by the energy estimates, the global existence in time of the solu-
tion { }iu  satisfying the regularity required for Lemma 1 and justification of the limit-
ing process are assured by the standard method. The energy estimate enables us to get 
the solution of (RP) in 
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0
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

 

by considering [ ] [ ]1 1i i i iQ v Q v+ −−  and standard argument of convergence for 1i iv v+ −  
(see [3]-[9]). 

Then we obtain the following result of (NE) by using the above result of (RP). 
Theorem 2 Assume that ( )1 2,s sχ  for ( ) 2

1 2,s s R∈  satisfies appropriate smooth 
regularity condition, initial data ( ) ( )( )0 1,v x v x  are sufficiently smooth for

( ) ( )0 0v x u x a= − , ( ) ( )1 1 1v x u x= −  and that ( )1 m
v x  is small enough. For suffi-

ciently large a , there is a solution for [ ]2 3m n≥ +  
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to (NE) such that it satisfies the following asymptotic behavior 

( )
1

lim , 1 0.t mt
u x t

−→∞
− =  

3. Application to a Tumour Invasion Model 

In the last several decades, a number of mathematical models describing the procedure 
of tumour growth have been the remarkable subject of research (cf. [1] [2] [11]-[19], 
further references therein). Especially our main concern in this section is mathematical 
models of avascular tumour growth proposed by Chaplain et al. (see [1] [2]). They are 
considered mainly by three components in the process of tumour invasion, tumour 
cells, ECM (extracellular matrix) and MDEs (matrix degradation enzymes) without the 
effect of proliferation of tumour cell. Anderson and Chaplain [2] has been developed by 
Chaplain and Lolas [1] additionally considering into chemotaxis, proliferation of tu-
mour cells and re-establishment of ECM. 

Their mathematical approach to above models mainly depends on numerical analysis. 
In this paper first we show the rigorous mathematical result of (C-L) and then comput-
er simulations, of which the validity is guaranteed by our mathematical result. 

On the other hand, there are many mathematical models which can be found in the 
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literature describing tumour angiogenesis. In [20] Levine and Sleeman applied the ma-
thematical model of Othmer and Stevens [21] for the understanding of tumour angi-
ogenesis, which arises in the theory of reinforced random walk. Anderson and Chaplain 
[12] proposed a model of tumour angiogenesis taking account of endothelial tip-cell 
migration. The model describes cell migration governed by three factors: diffusion, 
chemotaxis and haptotaxis. 

Rigorous Mathematical approaches to tumour growth models have been known (see 
[3]-[9] [20] [21] [22] [23] [24]). Levine and Sleeman [20] and Yang, Chen and Liu [24] 
studied the global existence in time of solutions and blow up ones to a simplified Oth-
mer and Stevens model. Kubo et al. [3]-[9] show the time global solution and asymp-
totic behavior of the solution to the mathematical models proposed by [2] [12] [20] [21] 
[23]. 

3.1. Reduced Problem 

Following to Levine and Sleeman [20] we reduce our problem to a simpler system (see 
[3]-[9] [20]). It is easily seen in (5) that ( ),f x t  is written by 

( ) ( )2log 1 .t f m n fη µ∂ = − + − − 　                   (14) 

Integrating (14) over ( )0, t  for ( ) ( )0, 0f x f x=  
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Substituting ( ),f x t  by the right hand side of (14), from (4) and (6) it follows that 
for 0nx =  
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     (16) 

and 

2 .t m t t tv d v u vα β∂ = ∆ + −                       (17) 

The nonlinear evolution Equation (1) involves (16) and so we can apply Theorem 2 
to (16). 

3.2. Existence Theorem of (C-L) with nx 0=  

The Equations (16) and (17) are essentially regarded as the same type of equation as (1). 
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Hence the energy estimates of u  and ν  are obtained and combining these estimates 
we obtain the desired estimate (cf. [3] [4] [5] [6] [7]). 

Lemma 3 (Energy estimate of (C-L)) We obtain the energy inequality of the reduced 
problem (16) and (17) with zero-Neumann boundary condition for [ ]2 1m M n> ≥ +  
and sufficiently large a  
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         (18) 

where 0aC →  as a →∞ . 
Then applying the same argument as used for Theorem 2 to the above mathematical 

model, we obtain global existence in time and asymptotic behaviour of the solutions to 
our mathematical model. 

Our main result for 0nx =  is as follows. 
Theorem 4 For smooth initial data ( ) ( ) ( ){ }0 0 0, ,n x f x m x  assume that ( )mH Ω - 

norms of ( ), 0tu x , ( ), 0tu x  and ( )0f x  are sufficiently small, then there are classical 
solutions of (C-L) for 0nx = : ( ) ( ) ( ){ }, , , , ,n x t f x t m x t  such that they satisfy the fol-
lowing asymptotic behavior for [ ]2 1m n> +  

( ) ( )
1

lim , 1 0, lim , 0.
mt t

n x t f x t
−→∞ →∞

− = =  

Also we can deal with the case of 0nx >  as follows. 

3.3. Existence Theorem of (C-L) with nx 0>  

In ( )( ), 0tQ v v =  for 0nx > , especially we may consider 2L -inner product com-
posed of the chemotaxis term and tv  

( )( ) ( )( )( ) ( )( ), , ,n t n t t n t tx n m v x b v u v x b v u v− ∇ ⋅ ∇ = − ∇ ⋅ + ∇ = + ∇ ∇  

in the same way as in Section 2 

( )2 2

11n tC v u≤ +  

where we can take nC  small enough for sufficiently small 0nx > . It is noticed that 
compared with the effect of haptotaxis, the one of chemotaxis may be quite small. 
Hence since we can have the same estimate as Lemma 3 for sufficiently small 0nx > , 
the same result as in Theorem 4 holds for this case too. 

Theorem 5 Under the same assumption as in Theorem 4 we further assume that 
0nx >  is sufficiently small, then we obtain the same result as stated in Theorem 4. 

4. Computer Simulations 

In Kolev and Zubik-Kowal [16] the same type model of (C-L) for 0nx =  was consi-
dered and they obtained numerical solutions. In this paper our advantage is to show 
global existence in time of rigorous mathematical smooth solutions of the model and 
based on it carry out computer simulations. 
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In the following Figures 1-7 illustrated below we show the graphs along the time by 
the computer simulations of the model at 0,0.25,0.5,0.75t =  and 1.35 by Mathema-
tica 8. We use the parameter values of 0.001nd = , 0.001md = , 0.02γ = , 10η = , 

1 0 ~ 10µ = , 2 0 ~ 5µ = , 0.1α = , 0.1β =  and 0 ~ 0.01nx =  specified below. 
We will observe the time dependent relationship and interaction between tumour 

cells (Red line), the surrounding tissue (Black line) and degradation enzymes (Green 
line). In the graphs below a coordinate axis of the horizontal direction indicates the 
spatial position and vertical direction indicates the density or concentration of each 
component of the model. 
 

 
Figure 1. Interactions between the tumour and the surrounding tissue without proliferation of tumour cell, 
migration, and ECM re-establishment: The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 0, 
μ2 = 0, α = 0 and β = 0.1, xn = 0. We can observe that MDEs degradates the surrounding tissue, and makes 
space into which tumour cells move. Further tumour cells form a small peak and keep going forward inside 
ECM, preserving the shape. 
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Figure 2. Tumour cell proliferation, migration, and interactions between the tumour and the surrounding tissue without ECM 
re-establishment: The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 5, μ2 = 0, α = 0.1 and β = 0.1, xn = 0. It is seen that 
tumour cell density becomes much higher than in Figure 1 inside ECM and maintains the upper bound of the logistic curve constantly. 
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Figure 3. Tumour cell proliferation, migration, without ECM re-establishment, and interactions between the tumour and the surround-
ing tissue: The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 10, μ2 = 0, α = 0.1 and β = 0.1, xn = 0. Increasing μ1 more, it is 
observed that tumour cell density inside ECM become higher than in Figure 2. 
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Figure 4. Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue: 
The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 5, μ2 = 0.001, α = 0.1 and β = 0.1, xn = 0. We take μ2 = 0.001 only and 
other parameters are same as in Figure 2. Then the tumour cell density is almost same as in Figure 2. 
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Figure 5. Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue: 
The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 5, μ2 = 1, α = 0.1 and β = 0.1, xn = 0. When taking μ2 = 0.001, compared 
with Figure 2 and Figure 4, it is clear that the invasive area of tumour cells inside ECM is much more limited.  
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Figure 6. Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue: 
The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 5, μ2 = 5, α = 0.1 and β = 0.1, xn = 0. Compared with Figure 4 and Fig-
ure 5, the reachable range of tumour cells is observed to be more suppressed by taking μ2 = 5. 
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Figure 7. Tumour cell proliferation, chemotaxis, migration, ECM re-establishment, and interactions between the tumour and the sur-
rounding tissue: The parameter values dn = 0.001, dm = 0.001, γ = 0.02, η = 10, μ1 = 5, μ2 = 0, α = 0.1 and β = 0.1, xn = 0.01. By the effect of 
chemotaxis (xn = 0.01), tumour cells are attracted by MDEs, the density is beyond 1 at t = 0.25 ~ 0.5, eventually it converges to 1 and after 
that keeps it constantly. 
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5. Conclusions 

In order to obtain the global existence in time and asymptotic profile of solutions of a 
mathematical model of tumour invasion proposed by Chaplain and Lolas, we investi-
gate nonlinear evolution equations with logistic term related to our mathematical mod-
els as an initial Neumann-boundary value problem. We could show the global existence 
in time of rigorous mathematical solutions to the initial boundary value problem for 
the model in arbitrary space dimension by using the energy inequalities. Applying the 
result to our model we show global existence in time of mathematical solutions of the 
model. 

By Figures 1-7, it is recognized that our rigorous mathematical result of the exis-
tence and asymptotic behaviour of smooth solutions verifies our computer simulations 
and confirms the pattern form of each component of the model in the graphs respec-
tively. Then we can gain the understanding of the process of tumour invasion more in 
details. 
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