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Abstract 
Motivated by a general theory of finite asymptotic expansions in the real domain for 
functions f of one real variable, a theory developed in a previous series of papers, we 
present a detailed survey on the classes of higher-order asymptotically-varying func-
tions where “asymptotically” stands for one of the adverbs “regularly, smoothly, ra-
pidly, exponentially”. For order 1 the theory of regularly-varying functions (with a 
minimum of regularity such as measurability) is well established and well developed 
whereas for higher orders involving differentiable functions we encounter different 
approaches in the literature not linked together, and the cases of rapid or exponential 
variation, even of order 1, are not systrematically treated. In this semi-expository 
paper we systematize much scattered matter concerning the pertinent theory of such 
classes of functions hopefully being of help to those who need these results for vari-
ous applications. The present Part I contains the higher-order theory for regular, 
smooth and rapid variation.  
 

Keywords 
Higher-Order Regularly-Varying Functions, Higher-Order Rapidly-Varying  
Functions, Smoothly-Varying Functions, Exponentially-Varying Functions,  
Asymptotic Functional Equations 

 

1. Introduction 

In a previously-published series of papers ([1] [2] [3] [4] [5]) we established a general 
analytic theory of finite asymptotic expansions in the real domain for functions f  of 
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one real variable sufficiently regular on a deleted neighborhood of a point 0x ∈ . The 
theory is based on the use of a uniquely-determined linear differential operator 

1 , , n
Lφ φ

 
associated to a given asymptotic scale “ ( ) ( ) ( )1 2 0,nx x x x xφ φ φ −→  ”; and the 
conditions characterizing two sets of expansions obtained from  

( ) ( ) ( ) ( )( )1 1 0, ,n n nf x a x a x o x x xφ φ φ −= + + + →
           (1.1) 

by two special procedures of formal differentiation are expressed via improper integrals 
involving both the quantity ( )

1 , , n
L f xφ φ   

 and certain ratios of Wronskians of the 
’siφ . For instance one such condition is  

( ) ( )( )
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and for practical applications it is quite useful to have some information on the asymp-
totic behavior of the ratio of Wronskians. For 0x = +∞  a possible step consists in 
writing  
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 (1.3) 

and then recalling that in various but related contexts the following remarkable asymp-
totic relations linking the ratios ( ) ( ) ( )k x xφ φ  to ( ) ( )x xφ φ′  are found:  

( ) ( )
( )

( )
( )

( ) ( ) ( )1

1 1
1 , , 1 ;

kk

k

x x k
o x k n

x x
φ φ α α
φ φ α −

′  − − + 
= + → +∞ ≤ ≤       



   (1.4) 

or  

( ) ( )
( )

( )
( )

~ , , 1 ;
kk x x

x k n
x x

φ φ
φ φ

′ 
→ +∞ ≤ ≤  

 
               (1.5) 

for different classes of functions. Bourbaki ([6]; Chap. V, appendix, pp. V.36-V.40), in 
the context of Hardy fields, shows their validity for each k ∈  (some exceptional 
cases apart) for the classes of functions therein called “of finite order α [respectively, of 
infinite order] with respect to the function ( ) :g x x= , as x → +∞ ” and defined by the 
property that  

( )lim log log exists in .
x

x xφ
→+∞

                   (1.6) 

Balkema, Geluk and de Haan, ([7]; Lemma 9, p. 410), have shown the equivalence of 
(1.4), written in the form  

( ) ( )
( ) ( ) ( ) ( )1 1 , , 1 ,

k
k kx

k x o x x k n
x

φ
α α α

φ
− −= − − + + → +∞ ≤ ≤      (1.7) 

with the property that the function ( ) ( )( ): log exh x φ=  satisfies  
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( ) ( )
if 1,

lim
0 if 2 .

k

x

k
h x

k n
α

→+∞

=
=  ≤ ≤

                   (1.8) 

C∞ -functions satisfying (1.7)-(1.8) for n∈  are called “smoothly varying at +∞  
with exponent (or index) α ”: see also Bingham, Goldie and Teugels ([8]; p. 44). 
Another author, Lantsman ([9]: pp. 96-98), shows the validity of (1.7) for the class of 
functions such that  

( )
( )

( )
( )

1 if 0d , ,
if 1;d

k

kk

o kx x
x

x o x kx

αφ
φ −

+ =′  = → +∞    ≥  
             (1.9) 

such a φ  being said to have a “power order of growth α  at +∞ ”. 
All these approaches for infinitely-differentiable functions have in common the exis-

tence of the following limit  

( ) ( )
( )

{ } ( )
( )

0 slow variation at ,
lim \ 0 regular variation at ,

rapid variation at ,
x

xf x f x α
→+∞

+∞
′ = ∈ +∞
±∞ +∞

       (1.10) 

wherein the three contingencies are special cases of the more general classes of func-
tions traditionally labelled as “slowly, regularly or rapidly varying at +∞ ”. Motivated 
by the fact that the ( )k

iφ ’s of most asymptotic scales found in applications belong to one 
of these classes and that the before-mentioned relations for the derivatives have impor-
tant applications in several fields, we deemed it convenient to systematize the theory of 
higher-order “types of asymptotic variation” showing the equivalence of various ap-
proaches, putting together a large amount of basic properties and highlighting the pa-
rallel theory of rapid or exponential variation always cursorily treated. Many proofs 
have an elementary character left apart: the equivalence of the various approaches 
based on a remarkable device by Balkema, Geluk and de Haan, and the operations on 
higher-order varying functions which requires a certain amount of patience. Much time 
has been spent in giving an abundance of counterexamples to show the necessity of 
possible restrictive assumptions. A special attention has been paid to listing a variety of 
asymptotic functional equations satisfied by the functions in the studied classes. Only 
the general theory has been treated in this semi-expository paper and the applications 
are restricted to some asymptotic properties of antiderivatives and sums, and to 
asymptotic expansions of an expression of type ( )( )f x r x+ . Applications to general 
asymptotic expansions and differential-functional equations would require a separate 
treatment. The exposition is on a plain level and an effort has been made to look for the 
simplest proofs. 

- §2 contains a detailed and integrated exposition of basic properties (algebraic, dif-
ferential and asymptotic) concerning regular and rapid variation in the strong sense. 
Much, but not all, the material concerning regular variation is standard and the most 
elementary proofs have been reported. Some facts concerning the index of variation of 
the first derivative in §2.3 are essential both to give a correct definition of higher-order 
regular variation and to understand possible restrictions on the indexes. 
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- In §3 we give an integrated exposition of higher-order regular variation (a concept 
indirectly encountered in the context, e.g., of Hardy fields) and smooth variation (a 
concept explicitly present in the literature concerning some applications of regular var-
iation), both traditionally (but not in our approach) referred to C∞ -functions. We 
show the equivalence of different approaches found in the literature reporting a clari-
fied version of a non-trivial characterization by Balkema, Geluk and de Haan trying to 
highlight the computational ideas in the ingenious proof, somehow hidden in the orig-
inal exposition. 

- In §4 an analogous exposition for higher-order rapid variation is given with several 
characterizations. To be useful for applications a restriction must be added to the 
“spontaneous” concept of higher order for this class of functions. 

- In §5 there is a discussion about various useful asymptotic functional equations sa-
tisfied by the functions in the previously-studied classes.  

In part II we exhaustively describe results about algebraic operations on higher-order 
asymptotically-varying functions and treat concepts related to exponential variation 
and some of their basic applications.  

General notations 
- { } { }: 1, 2, ; : 0, 1, 2, ;= = ± ±     
- { }: real line; extended real line : ;= ≡ = ∪ ±∞   
- ( ) ( )0f AC I AC I f∈ ≡ ⇔  is absolutely continuous on each compact subinterval 

of the interval I; 
- ( ) ( ) ( )kkf AC I f AC I∈ ⇔ ∈ ; 
- For ( )kf AC I∈  we write “ ( ) ( )

0

1lim k
x x f x+
→ ” meaning that x runs through the 

points wherein 
( )1kf +

 exists as a finite number; ( ) ( ): limxf f x→+∞+∞ = . 
- If 0f ≥  the usual notation f

∞
< +∞∫  [resp. = +∞ ] means that the improper 

integral 
T

f
+∞

∫  is either convergent or divergent for some T large enough. 
- The logarithmic derivative ( ): logD f f f f ′′= ≡



. 
- Hardy’s notations: 
“ ( ) ( ) 0, ,f x g x x x→ ” or, equivalently “ ( ) ( ) 0, ,g x f x x x→ ” stands for  
( ) ( )( ) 0,f x o g x x x= → ; 
“ ( ) ( ) 0, ,f x g x x x→ ” or, equivalently “ ( ) ( ) 0, ,g x f x x x→ ” stands for  
( ) ( )( ) 0,f x O g x x x= → . 
- The relation “ ( ) ( ) 0, ,f x g x x x→ ” which we label as “asymptotic similarity”, 

means that  

( ) ( ) ( ) ( )1 2 0in a deleted neighborhood of constant 0 .ic g x f x c g x x x c≤ ≤ ∀ = >  (1.11) 

- The relation of asymptotic equivalence: 
( ) ( ) 0~ , ,f x g x x x→  stands for ( ) ( ) ( ) 01 1 ,f x g x o x x= + →   . 

- When describing properties related to exponential variation it is convenient to use 
the following nonstandard notation:  

( ) ( )( ) ( )
( ) ( ) ( )

( )
0

0

0
,

near ,
, , lim ;

def

x x x

f x h x g x x x
f x g x x x x h x

→ ∈

= ∀= +∞ → ∈ ⇔ = +∞ 

   (1.12) 
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and a similar definition for notation ( ) ( )( ) ( )0,f x g x x x x= −∞ → ∈  . In particular:  

( ) ( ) ( ) ( )
0

0 ,
1 , , lim .

def

x x x
f x x x x f x

→ ∈
= ±∞ → ∈ ⇔ = ±∞


          (1.13) 

We shall formally use these notations like the familiar “ ( )( )o g x ” writing, e.g.,  

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

1 2 1 2

1 2 1 2 1 2

;

if , 0.

f x f x f x f x

f x f x f x f x f f

   +∞ ⋅ +∞ = +∞   

   +∞ + +∞ = +∞ + ≥     

- Factorial powers:  

( ) ( )0 1: 1; : ; : 1 1 ; , ;k k kα α α α α α α α= = = − − + ∈ ∈          (1.14) 

where kα  is termed the “k-th falling (≡decreasing) factorial power of α ”. Notice that 
we have defined 00 : 1= , hence a linear combination such as ( )0

1
n

i ii a α
=∑  simply 

means 
1

n
ii a

=∑  whatever the iα ’s.  
Propositions are numbered consecutively in each section irrespective of their label-

ling as lemma, theorem and so on.  
Notations for iterated natural logarithms and exponentials  

( ) ( )( )( ) ( ) ( )0: log log log , 1, defined for large enough ; : ;k

k

x x k x x x= ≥ =   



 (1.15) 

( ) ( )( )( ) ( )0: exp exp exp , 1; : 1.exp expk

k

x x k x= ≥ = 



         (1.16) 

The special definitions for 0  and 0exp  are agreements. Their derivatives are:  

( )( ) ( ) ( )( ) ( )
11

0 1

d d, 1; , 1.exp exp
d d

k k

k i k i
i i

x x k x x k
x x

−−

= =

 = ≥ = ≥ 
 
∏ ∏      (1.17) 

2. The Elementary Concept of “Index of Variation” and Properties  
of Related Functions 

The general theory of finite asymptotic expansions we constructed in the cited papers 
essentially deals with functions of the regularity class [ ),nC T +∞  or, with mathemati-
cal pedantry, of class [ )1 ,nAC T− +∞ ; for consistency we need asymptotic relations for 
the ratios ( ) ( ) ( )k

i ix xφ φ  appearing in the right-hand side of (1.3) for functions with 
such regularity with no additional restrictions either of algebraic character or of C∞

-regularity such as in the theory of Hardy fields, Bourbaki ([6]; Chap. V, Appendix), or 
in other expositions, Lantsman ([9]; Chap. 5). In the modern well-developed-and-or- 
ganized theory of regular or rapid variation, with its many applications to probability 
and statistics, the approach via (1.10) is of secondary importance but for higher-order 
variation the “natural” approach is that of introducing nC -functions whose all deriva-
tives have an index of variation just in the sense of (1.10); and it will be seen that an ad-
ditional condition is required for rapid variation. Both for applications and for further 
theoretical results we need many of the standard properties of regularly- or rapid-
ly-varying functions and so we cannot help giving an almost complete list of them 
though their proofs are usually elementary even not always obvious; not all of those in-
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volving rapid variation are to be found in texts on the subject. A special attention is 
given to linear combinations of asymptotic scales. As concerns higher-order variation 
the essential fact that the classes of higher-order regularly- or rapidly-varying functions 
are closed with respect to the operations of product, composition and inversion re-
quires nontrivial proofs reported in Part II. The results will make the reader feel quite at 
ease with the many examples scattered in our work. The asymptotic relations for the ra-
tios ( ) ( ) ( )k

i ix xφ φ  obviously are those familiar in the context of Hardy fields but our 
context is more general and some useful points about the indexes are highlighted in 
certain exceptional cases. 

Unlike the traditional concept of “order of growth” which involves one specified 
comparison function we use the generic locution of “type of growth”, or better “type of 
asymptotic variation”, to denote one of the classes of functions which are either regu-
larly or smoothly or rapidly or exponentially varying; and these are classes which in our 
exposition are defined via “asymptotic differential equations” whereas for order 1 they 
may be included in larger classes defined through “asymptotic functional equations”. 

2.1. The Elementary Concept of “Index of Variation”  

Definition 2.1. Let [ ) ( ), , 0f AC T f x∈ +∞ >  for each x large enough. 
(I) f  is termed “regularly varying at +∞  (in the strong sense)” if  

( ) ( ) ( )1 1 , ,f x f x x o x xα − −′ = + → +∞                 (2.1) 

for some constant α ∈  which is called the index of regular variation of f at +∞ . 
We denote the family of all such functions for a fixed α  by ( )α +∞ . In the case 

0α =  the function f is also termed “slowly varying at +∞  (in the strong sense)”. 
(II) f  is termed “rapidly varying at +∞  (in the strong sense)” if  

( ) ( )lim .
x

xf x f x
→+∞

′ = ±∞                       (2.2) 

Accordingly, the index of rapid variation at +∞  is defined to be either +∞  or 
−∞  and the corresponding families of functions are denoted by ( )+∞ +∞  and  

( )−∞ +∞ ; we also put ( ) ( ) ( ):∞ +∞ −∞+∞ = +∞ +∞   . 
(III) f is said to have an “index of variation at +∞  in the strong sense” if the follow-

ing limit exists in the extended real line:  

( ) ( )lim , ,
x

xf x f x α α
→+∞

′ ≡ −∞ ≤ ≤ +∞                  (2.3) 

with the tacit agreement that the limit is taken for x such that ( )f x′  exists as a finite 
number. Whenever there is no need to specify the index of variation we denote the class 
of all such functions by the symbol  

( ) ( ) ( ) ( ): .α
α

+∞ −∞
∈

+∞ = +∞ +∞ +∞ 




                 (2.4) 

We sometimes omit the specification “in strong sense” as this is the only meaning we 
are using for this concept. 

Remarks. 1. Condition “f ultimately of one strict sign” is essential both in the general 
and in our restricted definition. The choice 0f >  is merely conventional. Writing 
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( )f R∈ +∞  tacitly implies “ [ ),f AC T∈ +∞  for some T and ( ) 0f x ≠  for x large 
enough”. However in some cases the positivity of f may be essential for a correct result 
as when investigating the possible variation-properties of a linear combination. 

2. The locution “in strong sense” is a reminder of the fact that our class of functions 
is a proper subset of the class of regularly- or rapidly-varying functions in more general 
senses. The first larger class is that of those real-valued functions f defined on a neigh-
borhood of +∞  and admitting of an “order α”, with respect to the comparison func-
tion ( ) :g x x= , defined by  

( )lim log log , ,
x

f x xα α
→+∞

≡ −∞ ≤ ≤ +∞                (2.5) 

according to Definition 5 in Bourbaki ([6]; p. V.9) where the obviously-misprinted 
quantity ( )log logf g  stands for log logf g . By L’Hospital’s rule (2.3) trivially 
implies (2.5). A second still larger class, namely the Karamata class, contains those pos-
itive measurable functions f such that  

( ) ( ) ( )~ , , for each fixed 0; .f x f x xαλ λ λ α→ +∞ > ∈         (2.6) 

In the monograph [8] our restricted class for α ∈  is called of the “normalized 
regularly-varying functions” and shown to coincide with the “Zygmund class” ([8]; pp. 
15, 24) of those positive, measurable functions f such that, for every 0c > , “ ( )cx f xα− +  
is ultimately increasing” and “ ( )cx f xα− −  is ultimately decreasing”. The Karamata class 
of regularly-varying functions at +∞  coincides with the larger class of functions 

1
locf L∈ , each defined on some neighborhood of +∞  and asymptotically equivalent to 

a function regularly varying in the strong sense and we mention in passing that a con-
vex f satisfying (2.6) automatically satisfies (2.1): ([8]; §1.11, no.13, p. 59) or ([10]; Th. 
2.4, p. 60). As far as a general class of rapidly-varying functions at +∞  is concerned 
there are various options for which we refer to ([8]; § 2.4, pp. 83-86); anyway the smal-
lest of these classes is still larger than the class of functions 1

locf L∈  asymptotically 
equivalent to a function rapidly varying in the strong sense, ([8]; Theorem 2.4.5, p. 86). 
The specification “at +∞ ” is not superfluous; the change of variable 1

0x x x −−
 

allows the definition of the corresponding classes as 0x x→ . The restricted classes we 
have just defined are appropriate to define the concept of “variation of higher order” 
and suffice for many applications in the field of ordinary differential equations and 
asymptotic expansions. To visualize, notice that all infinitely-differentiable functions 
which can be represented as linear combinations, products, ratios and compositions of 
a finite number of powers, exponentials and logarithms as well as their derivatives of 
any order have principal parts at +∞  which, as a rule, can be expressed by products of 
similar functions, hence such functions are strictly one-signed, strictly monotonic and 
strictly concave (or convex) on a neighborhood of +∞  so that the quantity  

( ) ( )xf x f x′  is ultimately monotonic and the limit in (2.3) is granted. 
3. Typical (indeed the most usual and useful) functions in ( ) ,α α+∞ ∈ , are  

( ) ( )( ) ( )( ) ( ), , ,
1

: exp log , , , ; 0 1 .k

k

n

c k k
k

x x x c x c
β γα

α β γφ α β γ
=

 = ⋅ ⋅ ∈ < <  
∏      (2.7) 
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- Typical functions in ( )±∞ +∞  are  

( ) ( )( ) ( )( ) ( )

( )
1 2, , , , , 1 2

1

2 2
1 2

: exp log exp ,

, ; 1; 0; 0 ,

k

k

n

c c k
k

k

x x x c x c x

c c

β γα δ
α β γ δψ

α β γ δ
=

 = ⋅ ⋅ ⋅  

∈ > > + >

∏ 


     (2.8) 

whose index of variation is: “ ( )2sign c ⋅∞ ” if 2 0c ≠  or “ ( )1sign c ⋅∞ ” if 2 0c = . If 

2 0c ≠ , γ  may be any number >0. Also notice that “ ( )f −∞∈ +∞  iff  
( )1 f +∞∈ +∞ ”. 

- Typical monotonic functions in ( )0 +∞ , besides the nonzero constants, are  

( )( ) ( )

( )( ) ( ) ( )( )( ) ( )

, 1, \ 0 ;

exp log , \ 0, 0 1 ;exp , \ 0, 2, 0 ;

k

k

k k

k k

x k

c x c c x c k

β

γγ

β

γ γ

 ≥ ∈


∈ < < ∈ ≥ >







 
 (2.9) 

and their products  

( )( ) ( )( ) ( )1
11

exp , , , 0 1, 0 for 2 .k h
n m

k h h k h h
hk

x c x c h
β γ

β γ γ
==

   ⋅ ∈ < < > ≥     
∑∏     (2.10) 

Separating the cases 0α ≠  and 0α =  we may rewrite (2.1) in the form  

( ) ( ) ( ) ( )( )1 1either ~ or , ;f x x f x f x o x f x xα − −′ ′ = → +∞       (2.11) 

each of these may be viewed as an “asymptotic (ordinary) differential equation of first 
order” and it is easily shown (Proposition 2.1 below) that the solutions of the first one 
of them share the asymptotic properties of the solutions of the ordinary differential eq-
uation ( ) ( )1f x x f xα −′ = . From the identity  

( ) ( ) ( )

( ) ( ) ( )( )
log d ,

or equivalently exp d , 0,

x

T

x

T

f x C f t f t t

f x C f t f t t C

′= +   

′= ⋅ ≠  

∫

∫
       (2.12) 

we get the characterization: An absolutely continuous function f belongs to the class 
( ) ,α α+∞ ∈ , iff there exist two numbers 0, 0c T≠ >  and a locally-integrable 

function ( ) ( )1 , ,x o x= → +∞  such that f admits of the following representation:  

( ) ( )( )exp d , .
x

T
f x cx t t t x Tα= ⋅ ∀ ≥  ∫                (2.13) 

And an analogous statement holds true for a rapidly-varying function with  
( )limx x→+∞ = ±∞ . 

As a first rough asymptotic information:  

( ) ( ) ( ) ( ) ( )( ) ( )1log log log exp 1 log ;of f x x o x f x o x xαα α α +∈ +∞ ⇒ = + ⇒ = + ⋅ ≡   (2.14) 

( ) ( ) ( )( ) ( )exp log , with lim .
x

f f x x x xω ω±∞ →+∞
∈ +∞ ⇒ = ⋅ = ±∞     (2.15) 

Notice that either representation “ ( ) ( )log logf x x xα= +Φ ” or “ ( ) ( )f x x xα= Φ ”, 
with ( ) ( )1x OΦ = , x → +∞ , does not imply ( )f α∈ +∞  as shown by the counte-
rexample of  

( ) ( )( ) [ ): 2 sin , , ,f x x x AC Tα φ φ= + ∈ +∞               (2.16) 
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which is in the class ( )α +∞  iff ( ) ( )1x o xφ −′ = . 
The general classes of regularly- or rapidly-varying functions enjoy many useful al-

gebraic and analytic properties but it is not self-evident that the same is true for our re-
stricted classes, in particular that they are closed with respect to various operations. In 
the next subsection we give a list of the main properties omitting those proofs which 
are quite elementary based on the property of the logarithmic derivative:  

( ) ( )( )
11

.
n n

k k
kk

D f x D f x
==

  = 
 

∑∏
 

                  (2.17) 

2.2. Basic Properties of Regularly- or Rapidly-Varying Functions 

Proposition 2.1. (Algebraic and asymptotic properties of regularly-varying functions). 
The following properties hold true: 

(i) Factorization:  

( ) ( ) ( ), , with slowly varying.f f x x L x Lα
α α∈ +∞ ∈ ⇔ ≡      (2.18) 

(ii) Growth-order estimates:  

( ) ( ), , , 0;f x f x x xα α
α α − +∈ +∞ ∈ ⇒ → +∞ ∀ >           (2.19) 

( )slowly varying , , 0;L x L x x x−⇒ → +∞ ∀ > 

           (2.20) 

( )
0 if 0,

lim
if 0 .x

f x
α

α→+∞

−∞ ≤ <
= +∞ < ≤ +∞

                 (2.21) 

But for 0α =  all the possible contingencies may occur for this limit as shown by 
the following functions of class ] )1,C∞ +∞ : 

( ) ( )( )
( ) ( )( )

1; log , 0; sin log , 1, 0 1;

exp log sin log , 0 1 2.

x x c

x x

δ δ

δ δ

δ δ

δ

≠ + > < <

 ⋅ < <  

           (2.22) 

The third and the fourth of these functions are not ultimately monotonic: The third 
with bounded oscillations and the fourth, call it f, with unbounded oscillations:  

( )liminf 0x f x→+∞ = , ( )limsup .x f x→+∞ = +∞  
(iii) Algebraic operations. If ( ) ( ) ( ), , ,f gα β α β∈ +∞ ∈ +∞ ∈   then the fol-

lowing functions are regularly varying as well with the specified index of variation δ : 

( ) ( )with index ;f x
γ

δ α γ γ= ⋅ ∀ ∈                  (2.23) 

( ) ( ) with index ;f x g x δ α β⋅ = +                 (2.24) 

( ) ( ) with index ;f x g x δ α β= −                 (2.25) 

( ) ( )with index constant 0 ;cf x cδ α= = >             (2.26) 

( ) ( ) ( ) ( )1 2 with index max , constant 0 .ic f x c g x cδ α β+ = = >      (2.27) 

For α β≠  no restriction on the signs of the ic ’s is necessary in (2.27), obviously 
not both zero. 

(iv) Composition. If ,f g  are as in (iii) and if ( )limx g x→+∞ = +∞  then to the 
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above list we may add the composition  

with index .f g δ α β= ⋅                    (2.28) 

In particular, if ( ) ,f α α∈ +∞ ∈ , then ( )0logf ∈ +∞  ; and if  
( ) { }, \ 0f α α∈ +∞ ∈ , or if ( )0f ∈ +∞  and ( )f +∞ = +∞ , then  

( )0log f ∈ +∞ . In the case 0α =  it may happen that log f  has no index of vari-
ation as shown by the third function in (2.22) for some values of the constant c: In fact 
as x → +∞  the function ( )( )log sin log , 0 1,c x δ δ + < <   changes sign infinitely of-
ten for 1 2c< < , has infinitely many zeros for 2c =  and it is slowly varying for 

2c > . 
(v) The particular case 0α β= =  in (iii) and (iv) states that if ,f g  are slowly va-

rying then so are the functions  

( ) ( )
( ) ( )1 2

, ; ; ; , constant 0 ;

, constant 0 ; , provided that .i

f f g f g cf c

c f c g c f g g

γ γ ∈ ⋅ = >


+ = > +∞ = +∞





     (2.29) 

The examples in (2.22) show that a pair ( )0,f g ∈ +∞  may not be comparable at 
+∞  meaning that one or both of the limits “ lim , limf g g f , as ,x → +∞ ” may fail 
to exist in  . By the factorization in (2.18) the same applies to a pair ( ),f g α∈ +∞ . 

(vi) Inversion. If ( ) { }, \ 0f α α∈ +∞ ∈ , then f ′  has ultimately one strict sign 
hence the restriction of f  to a suitable neighborhood of +∞  has an inverse function 

1f − ; for 0α > , 1f −  is defined on a neighborhood of +∞  as well and we have that  

( )1 with 1 .f δ δ α− ∈ +∞ =                    (2.30) 

(vii) Asymptotic comparison. If ( )f α∈ +∞  and ( )g β∈ +∞ , with ,α β ∈ , 
then:  

( ) ( ) ( )
( )( )

~ , 0 ;
, ;

cf x x c
g x

o f x x
α β
β α

→ +∞ > ⇒ =
= → +∞ ⇒ ≤

              (2.31) 

( ) ( ) , ,f x g x xα β> ⇒ → +∞                  (2.32) 

whereas no inference can be drawn if α β=  as shown by the functions in (2.22).  
Proof. (i) is trivial and (ii) follows from (2.13) as  

( )0 : d log .
x

T

xT T x T t t t
Tη ηη η∀ > ∃ ≥ ≥ ⇒ ≤  ∫            (2.33) 

(iii) For the linear combination in (2.27) in the case α β=  we have:  

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )( ) ( )( )
( ) ( )

( ) ( )( ) ( ) ( )( )

1 2 1 2

1 2 1 2

1 2

1 2 1 2

by the positivity of ,

.

xf x xg x
x c f x c g x c f x c g x

f x g x

c f x c g x o c f x o c g x

c f x c g x

c f x c g x o c f x c g x

α

α

′ ′
′ ′+ = +

= + + +

=

= + + +

 

   (2.34) 

In the case α β≠ , say α β> , we have ( ) ( )( )g x o f x=  (see the proof of (2.32) 
below) and:  
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( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )( ) ( )

1 2 1 2 1 2

1 2 1 2

1

1

1 .

x c f x c g x c f x c g x o c f x o c g x
c f x c g x c f x c g x

c f x o f x
o

c f x o f x

α β

α
α

′ ′+ + + +
=

+ +

+
= = +

+

   (2.35) 

To prove (iv) write  

( )( )( ) ( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )
( )

,
f g x g x f g x g x g x

D f g x
g xf g x f g x

′ ′ ′ ′
= = ⋅



       (2.36) 

and notice that  

( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )1 1

lim lim ;

.
x y

f g x g x f g x yf y f y

g x g x x o x

α

β

→+∞ →+∞

− −

 ′ ′= =


′ = +
        (2.37) 

If ( ) , 0f α α∈ +∞ ≠ , then ( )log f x → ±∞  as x → +∞  and  
( )( ) ( ) ( ) ( )( ) ( ) ( )log log log 1 .x f x f x xf x f x f x o′ ′= =  

To prove (vi) evaluate the following limit by the change of variable ( )1x f y−= :  

( )( ) ( )
( ) ( )( )

( )
( )

1 1
1 1

lim lim lim 1 .
y y x

f xyy f y f y
xf xf y f f y

α− −
− −→+∞ →+∞ →+∞

′ ≡ = =
′′⋅

 (2.38) 

Last: (2.32) follows from (2.25) and (2.21); relations in (2.31) follow from (2.32). 
Remarks. 1. The properties in (iii), (iv) and (vi) are the same as those valid for the 

standard powers. The first inference in (2.31) can be interpreted by saying that the class 
( ) ,α α+∞  fixed, is closed under the relation of “asymptotic equivalence” in the spe-

cified sense that any regularly-varying function asymptotically equivalent to a function 
in ( )α +∞  belongs to the same class; but it is false that “any function in [ ),AC T +∞  
and asymptotically equivalent to a function in ( )α +∞  is in the same class” for the 
simple reason that it may not be regularly varying in the strong sense: counterexample 
of ( ) : sin , 0 1f x x xα α= + < ≤ . This shortcoming is overcome by the Karamata con-
cept of regular variation. 

2. In (2.27) it is essential that all the involved quantities (functions and constants) 
have one and the same sign for α β=  otherwise possible cancellation of terms may 
yield any growth-order as shown, e.g., by ( ) ( )1 2L x L x−  where ( )1 : logL x x=  and 

( ) ( )2 : logL x x xφ= +  where φ  is any of the three functions  
, 0; e ; sin , 0a x ax a x x a−< < . The property in (2.27) is generalized in Proposition 2.3. 
3. The “Zygmund property” cited after (2.6) and concerning the ultimate strict mo-

notonicity of ( )cx f xα− ± , 0c > , is trivially checked for regular variation in the 
present strong sense by directly evaluating the derivative of this product and using 
(2.11). 

4. A less direct proof of (2.27) uses the decomposition:  

( ) ( )( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( )

1 2
1 2

1 2

1 1
2 1

1 2
1 2

,

: 1 ; : 1 ,

c f x c g x f x g x
H x H x

c f x c g x f x g x

c g x c f x
H x H x

c f x c g x

− −

 ′+ ′ ′ ≡ ⋅ + +

    

= + = +           

         (2.39) 
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similar to a device which reveals efficient in the case of slow variation in the general 
weaker sense: see Seneta ([10], p. 19). 

Examples. 1. Referring to the third function in (2.22) we mention that it can be 
proved that the function “ ( )( )sin log , 1, 1,c x cδ δ+ > ≥ ” is not slowly varying at +∞  
even in the general weak sense and the same is true for “ ( )sin , 0c xα α+ > ”. The func-
tion “ sinx xα + ” is regularly varying (of index α ) in the general weak sense for each 

0α >  for the simple reason that “ sin ~ ,x x x xα α+ → +∞ ”; but it is regularly varying 
in the strong sense only for 1α > . 

2. If [ ) ( ), ,AC Tφ φ∈ +∞ +∞ = +∞ , then:  

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
0

2 1
0

1

sin , 1, , ;

sin , 0, , ;

sin , 0, , .

c x c x o x x

c x c x o x x

x x x o x xα α
α

φ φ

φ φ

φ α φ

−

−

−

 ′+ > ∈ +∞ ⇔ = → +∞

 ′+ > ∈ +∞ ⇔ = → +∞


′+ > ∈ +∞ ⇔ = → +∞







      (2.40) 

3. The function ( ) ( )( ): exp log , 0 1L x x δ δ− = − < < , is slowly varying and tends to 
zero, as ,x → +∞  faster than any negative power of log x ; and the function  

( ) ( )( ): exp log , 0 1L x x δ δ+ = < < , is slowly varying and diverges to +∞  faster than 
any positive power of log x . 

Proposition 2.2. (Algebraic and asymptotic properties of rapidly-varying functions). 
The following properties hold true: 

(i) Growth-order estimates:  

( ) ( ) ( )
( ) ( ) ( )

, , > 0, hence ;
, , > 0, hence 0.

f f x x x f
f f x x x f

α

α

α
α

+∞
−

−∞

 ∈ +∞ ⇒ → +∞ ∀ +∞ = +∞


∈ +∞ ⇒ → +∞ ∀ +∞ =








 (2.41) 

(ii) Algebraic operations:  

( ) ( )( ) ( )

( )( ) ( )

if 0

if 0.

f f x

f x

γ

γ

γ

γ

+∞ +∞

−∞

∈ +∞ ⇔ ∈ +∞ >

⇔ ∈ +∞ <

 


             (2.42) 

( )
( )

( ) ( )
( ) ( )

, , ; ~ ;
; .

f f g f g f g
g f g g f

α α ±∞

±∞ ∞ ±∞

′ ∈ +∞ ∈  ⋅ ∈ +∞ ⋅ ⋅ ⇒ ∈ +∞ ∈ +∞ ∈ +∞   

 
  

      (2.43) 

( ) ( )
( ) ( )

, ;
, ;

f g f g
f g f g

+∞ +∞

−∞ −∞

 ∈ +∞ ⇒ ⋅ ∈ +∞
 ∈ +∞ ⇒ ⋅ ∈ +∞

 
 

               (2.44) 

with no inference about the quotient f g  in (2.44) as shown by 1 2e ec x c x  in the 
three cases “ 1 2, ,c c< = > ” and by ( )e 3 sin ex xx+ . Together with the result in (2.25) we 
may assert that: For any two functions “ ( ) ( ), ,f gα β∈ +∞ ∈ +∞  ” with “ ,α β ∈ , 

,α β< ” the following limits as x → +∞  hold true:  
lim 0, limf g g f= = +∞ . 

(iii) Compositions:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, > 0, ;
, < 0, ;
, , > 0 ;
, ;

f g f g
f g f g
f g f g
f g f g

α

α

α

α
α

α

+∞ +∞

+∞ −∞

±∞ ±∞

±∞ +∞ ±∞

 ∈ +∞ ∈ +∞ ⇒ ∈ +∞
 ∈ +∞ ∈ +∞ ⇒ ∈ +∞
 ∈ +∞ ∈ +∞ ⇒ ∈ +∞
 ∈ +∞ ∈ +∞ ⇒ ∈ +∞









  
  
  
  

        (2.45) 
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with no inference about f g  in case “ ( ) ( )0,f g±∞∈ +∞ ∈ +∞  ” or viceversa as 
shown by  

( ) ( )( ) ( )( )2 2e log ; log exp ; log e .expx xx x x xα α= = =
         (2.46) 

In particular  

( ) ( )
( ) ( )( )0

exp if 0,
, 0,

exp if 0; exp 1 1 .
f

f
f f oα

α
α

α
+∞∈ +∞ >∈ +∞ ≠  ∈ +∞ < = +





   (2.47) 

(iv) Inversions. Roughly speaking the inverse of a rapidly-varying function is slowly 
varying and viceversa. To be precise, if ( )f +∞∈ +∞  then its inverse 1f −  is defined 
on a suitable neighborhood of +∞  and ( )1

0f − ∈ +∞ . Viceversa, if  

( ) ( )0 , , ultimately strictly increasing,f f f∈ +∞ +∞ = +∞        (2.48) 

then ( )1f −
+∞∈ +∞ .  

Proof. For the first three groups of relations we write down the proof only for 
( ) ~fg fg′ ′  in (2.43):  

( )
( )


( )


1 1

1 1 ~ .

o o

f g xf gfg fg fg fg
fg f xg

α= +

 
 ′ ′ ′ ′ ′ ′ = ⋅ + = ⋅ + ′ ′    
 

           (2.49) 

Both claims in (iv) are proved as in (2.38). 
Examples about rapid variation in weak or strong sense. Comparing with the exam-

ples preceding Proposition 2.2 the function “ ( ) ( ): e sinxf x xφ= + ” is rapidly varying in 
the general weak sense for any measurable φ  because “ ( )e sin ~ e ,x xx xφ+ → +∞ ”. 
Under the additional assumptions “ [ ) ( ) ( ), , e , ,xAC T x o xφ φ′∈ +∞ = → +∞ ” then f is 
rapidly varying in the strong sense with index +∞ . 

Quite differently, if “ [ ) ( ), ,AC Tφ φ∈ +∞ +∞ = +∞ ” then “ ( ) ( )e sinx x αφ− + ∉ +∞ ” 
for any value of α ∈  because it changes sign infintely often; and the function 
( ) ( )( )2

: e sinxg x xφ−= + , though strictly positive, has no limit at +∞ , hence 
“ ( )g α∉ +∞ ” for any value of { }\ 0α ∈ . Moreover, the explicit expression of  

( )
( )

( ) ( ) ( )
( )( )2

e 2 sin cos

e sin

x

x

xg x x x x
x

g x x

φ φ φ

φ

−

−

′ ′−
= −

+
              (2.50) 

also shows that “ ( )0g ∉ +∞ ” because “ ( ) ( ) ( )sin 0 limn n n n nx x g x g xφ →∞ ′= ⇒ = −∞ ” 
whereas “ ( ) ( ) ( )cos 0 lim 0n n n n ny y g y g yφ →∞ ′= ⇒ = ”.  

In the next proposition we collect various results about linear combinations, results 
particularly useful in asymptotic contexts.  

Proposition 2.3. (I) (Positive linear combinations of different types of asymptotic 
variations).  

( ) ( ) if constant 0.f cf c±∞ ±∞∈ +∞ ⇔ ∈ +∞ = >            (2.51) 

If 1 2,c c  are positive constants then:  
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( ) ( )
( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

, ;

, ;

, , ;

f g c f c g

f g c f c g

f g c f c gα α

+∞ +∞

−∞ −∞

+∞ +∞

∈ +∞ ⇒ + ∈ +∞


∈ +∞ ⇒ + ∈ +∞
 ∈ +∞ ∈ ∈ +∞ ⇒ + ∈ +∞ 

 

 

  

      (2.52) 

without any further restriction on ,f g . On the contrary, we can prove the following 
two inferences only under one of the two specified restrictions:  

( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

, , ;

, ;

f g c f c g

f g c f c g
α αα−∞

−∞ +∞ +∞

∈ +∞ ∈ +∞ ∈ ⇒ + ∈ +∞


∈ +∞ ∈ +∞ ⇒ + ∈ +∞

  

  
      (2.53) 

provided that:  

( ) ( )( )either or ultimately monotonic.f x o g x f′ ′ ′=          (2.54) 

These inferences, together with (2.27), are summarized in  

( ) ( ){ } ( ) ( )1 2 max ,, ,f g c f c gα β α β∈ +∞ ∈ +∞ ⇒ + ∈ +∞          (2.55) 

whatever the positive constants 1 2,c c  and the extended real numbers ,α β ∈  ex-
cept for the two cases in (2.53) wherein a restriction is added: See a discussion after the 
proof. 

(II) (Arbitrary linear combinations of asymptotic scales). Let the functions  
[ ), , 1, , ,i AC T i nφ ∈ +∞ =   form the scale  

( ) ( ) ( )1 2 , ,nx x x xφ φ φ → +∞                 (2.56) 

and let one of the following conditions be satisfied, either ( )1 0x xφ ≠ ∀  large enough 
and  

( ) ( )( )
( ) ( ) ( )

1

1 2

, , 2; in particular

, ;
i

n

x o x x i

x x x x

φ φ

φ φ φ

 ′ ′= → +∞ ∀ ≥

′ ′ ′ → +∞  

           (2.57) 

or ( ) 0i x xφ ≠ ∀  large enough and i∀ , and  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 2 2

, , 2; in particular

, ;
i i

n n

x x O x x x i

x x x x x x x

φ φ φ φ

φ φ φ φ φ φ

 ′ ′= → +∞ ∀ ≥

′ ′ ′ → +∞   

     (2.58) 

with ( ) ( )f x g x  meaning ( ) ( )( )g x O f x= . Then  

( ) ( )( ) ( )1 1
1

~ , , 0 ,
n

i i i
i

D c x D x x c cφ φ
=

  → +∞ ∈ ≠ 
 
∑

 

          (2.59) 

so that: if 1φ  has an index of variation at +∞  in the strong sense also the function 
( )1

n
i ii c xφ

=∑  has the same index of variation. Without both additional conditions 
(2.57)-(2.58) there is no general claim about the type of growth of i iicφ∑  as shown by 
simple counterexamples reported after the proof. 

(III) If  

( ) ( ) ( ) ( )1 2, 1 , ; , ,
ii i ni n x x x xαφ α φ φ φ∈ +∞ ≤ ≤ ∈ → +∞     (2.60) 

then ( ) ( )
11

n
i i ii c x cαφ

=
∈ +∞ ∀ ∈∑  . If 1 nα α> >

 then ( )1, , nφ φ  is automati-

cally an asymptotic scale. 
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(IV) Besides (2.56) let  

( ) ( ) ( ) ( )1 2, 1 ; , ,
ii mi m x x x xβψ ψ ψ ψ∈ +∞ ≤ ≤ → +∞       (2.61) 

and put  

( ) ( ) ( )
( ) ( ) ( )1 1

1 1
1 1

: , , ; , 0 .n n
i i

m m

a x a x
R x a b a b

b x b x
φ φ
ψ ψ

+ +
= ∈ ≠

+ +






         (2.62) 

Then ( )
1 1

R α β−∈ +∞ . In particular  

( )( ) ( )( ) ( ) ( )
1 1

, , 0; , , , ,i ii i
n m

i i i i i i i i i i
i i

a x x b x x a b
γ δα β

δ α β γ δ
= =

∈ +∞ > ∈∑ ∑    (2.63) 

with max maxi iδ α β= − .  
Proof. We may include the constants ic  into the functions ,f g . For the first two 

inferences in (2.52) the assumptions imply that 0 MM T T∀ > ∃ ≥ :  

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( )
( ) ( )( )

,M

M f x g xxf x xg x
x f x g x f x g x x T

f x g x M f x g x

≥ +′ ′ ′ ′+ = + ∀ ≥
≤ − +

 (2.64) 

respectively for the first and the second inference and the claims follow. For the third 
inference in (2.52) we have “ ( )f o g= ” and “ ( ) ( )xf O f o g′ = = ”, hence:  

( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( ) ( )1 1 1 , .

1 1
x f x g x o g xg x xg x

o o x
f x g x g xg x o

′ ′+ ′ ′+
= = + + → +∞ → +∞  + +  

 (2.65) 

A different elementary proof is achieved writing:  

( )


( )


( )
1 1

1 ;

o o

f xf g f fo o
g f xg g g

α +

 
 ′ ′  
 = ⋅ ⋅ = = ′ ′    
 

                (2.66) 

hence ( )f o g′ ′= . So we get ( ) ( ) ( )~x f g f g xg g′ ′ ′+ + ; and this is a special case of 
the result in part (II). The two inferences in (2.53) follow from part (II) under condi-
tion ( )f o g′ ′= . Under condition “ f ′  ultimately monotonic” an argument runs as 
follows: the assumptions in both cases imply “ ( ) ( )1f g f g −∞≡ ⋅ ∈ +∞ ”, see Propo-
sition 2.2-(ii), hence “ ( ) ( )( ) 0f x o x g xδ δ−= ∀ > ” so that “ ~f g g+ ”. Moreover it 
will be proved in Proposition 2.5 that the monotonicity of f ′  implies its satisfying the 
same asymptotic estimates as f  in (2.41) i.e. “ ( ) ( ) 0f x o x δ δ−′ = ∀ > ”. Now we have:  

( ) ( )( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

~ ~
x f x g x xf x xg x xf x xg x xg x

f x g x g x g x g x g x

′ ′+ ′ ′ ′ ′ ′+
= +

+
     (2.67) 

because we shall prove in a moment that “ ( ) ( ) ( )1xf x g x o′ = ”:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

by (2.19)

b (2.41)

, 0;

1 1 1 .
y

g g x x xf x g x x

g g x o xf x g x o

α α δ
α δ− − −

+∞

 ′∈ +∞ ⇒ ⇒ ∀ >

 ′∈ +∞ ⇒ = ⇒ =

 

  


   (2.68) 

In part (II) the result involving (2.57) trivially follows from factoring out 1 1c φ  and 
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1 1c φ′  in the left-hand side in (2.59), whereas to prove (2.59) under (2.58) we have first 
to notice that  

( ) ( )1
1 1

2 2 2 1

.
n n n

i
i i i i

i i ii

c c O o o
φ φ

φ φ φ φ
φ φ= = =

′ ′ 
′ ′= = ⋅ = 

 
∑ ∑ ∑              (2.69) 

Claims in parts (III), (IV) are corollaries of the result in part (II) involving (2.58). 
Remarks. 1. Using the decomposition in (2.39) the first two inferences in (2.52) may 

be proved with the restriction “ ( )f O g= ”. The trivial device in (2.66) would work 
well also under the assumptions: ( ) ( ), ;f gα β∈ +∞ ∈ +∞   , ; 0α β β∈ ≠  (which 
grants 0g ′ ≠ ). This last restriction is overcome in the different proof provided for 
(2.27) as well as in an alternative more elaborated proof involving decomposition 
(2.39). 

2. Conditions in (2.57) and (2.58) are independent. Any pair f, g where f is any func-
tion of type in (2.7) and g is any function of type in (2.8) with 2 0c < , hence 

( )g −∞∈ +∞ , is such that: ,f g f g′ ′
   but f f g g′ ′

 : and this shows that 
(2.56)-(2.57) do not imply (2.58). And here is a pair satisfying a stronger relation than 
in (2.58) though relations in (2.56)-(2.57) dramatically fail:  

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

: exp sin , : exp cos , 0 1, 0 1 ;

liminf liminf 0;

limsup limsup ;

~ ~ 1 hence , .

x x

x x

f x x x x g x x x x

f x g x f x g x

g x f x g x f x

f x f x g x g x f g

α β α β α β α

→+∞ →+∞

→+∞ →+∞

+∞

    = + = + < < < < −   
 ′ ′= =


′ ′= = +∞


′ ′ ∈ +∞ 

 (2.70) 

Counterexamples concerning suppression of conditions (2.57)-(2.58). In the follow-
ing we use three pairs of functions in ([4]; (9.12), (9.13), (9.14); p. 487):  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1
1 2 2 2 1 1

1 1
1 2 2 2 2 1 2

1 , 0 ; ~ ; ;

~ 1 1 if 1; 0 if 1;

x ax a x x a x x x x

D a a a x a D a

φ φ φ φ φ φ

φ φ φ φ φ φ φ

− − −

− −

 ′ ′ ′ ′+ ≠


′ ′+ + = + ≠ − + ≡ = −  

 

 (2.71) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 1
1 2 2 2 1 1

1
1 2 2 2 2

1 , 0 ; 1 ; ;

~ ;

x ax a x x o x x x x

D ax

φ φ φ φ φ φ

φ φ φ φ φ

− −

−

 ′ ′ ′ ′+ ≠ =


′ ′+ = 

 

 (2.72) 

( )
( ) ( )
( ) ( )

2
1 2

1
1 1 2 2

1
1 2

1 sin cos e ; , not comparable at ;
2

~ 2 1 cos 1;

: ~ 2 1 cos 2 e ;

liminf 0, limsup 4.

x

x

x x

x x x x

x x

x D x x

x x

φ φ

φ φ φ φ

φ φ φ

φ φ

−

−

− −

→+∞ →+∞

 ′ ′+ + +∞

′ ′ + ≡ −


 = ⋅ + + −


= =






        (2.73) 

In the last example the function ( ) ( ) ( )2
1 : 1 2 sin cosx x x x xφ = + + ∉ +∞  though it 

is regularly varying of index 2 in Karamata’e sense. 
3. As concerns an additional restriction in the two inferences in (2.53) we have al-

ready remarked that the assumptions imply “ ~f g g+ ”, hence if f g+  has an index 
of variation at +∞  this must equal the index of g. We do not know whether inferences 
in (2.53) can be proved without any restriction or not. A possible counterexample with 
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“ ( ) ( )0 , ~ 1,g g x∈ +∞ ” and based on the same calculations in (2.67) would be pro-
vided by a function f such that:  

( ) ( ); does not exist as a finite number.f f−∞ ′∈ +∞ +∞  
But for the time being we do not know any such function: see Proposition 2.5-(III). 
For integrals of functions in our classes we report the classical results (with elemen-

tary proofs) to highlight a difference between the two cases.  
Proposition 2.4. (I) (Integrals of regularly-varying functions). Let ( ) ,f α∈ +∞  

α ∈ , and 0f >  on a given interval [ ),T +∞ . Then:  

( ){ }11 and ;
x

T
f f αα

+∞

+> − ⇒ = +∞ ∈ +∞∫ ∫               (2.74) 

( ){ }11 and ;
x

f f αα
+∞ +∞

+< − ⇒ < +∞ ∈ +∞∫ ∫              (2.75) 

{ } ( )01 and ;
x

T
f fα

+∞
= − = +∞ ⇒ ∈ +∞∫ ∫                 (2.76) 

{ } ( )01 and .
x

f fα
+∞ +∞

= − < +∞ ⇒ ∈ +∞∫ ∫                (2.77) 

The inferences in (2.74)-(2.75) are respectively equivalent to the following asymptot-
ic relations expressing the behavior of the integral x

f∫  in terms of f :  

( ) ( )
, 1 ~ ;

1
x

T

xf x
f fα α

α
∈ +∞ − < < +∞⇒

+∫              (2.78) 

( ) ( )
, 1 ~ .

1x

xf x
f fα α

α
+∞

∈ +∞ −∞ < < − ⇒
+∫              (2.79) 

In the two cases (2.76)-(2.77) we may only assert, generally speaking, that  

( )
0

0 0 0lim , with the proper choice of : or .
x

Tx
f xf x T T T T

→+∞
= +∞ = = +∞∫   (2.80) 

(II) (Integrals of rapidly-varying functions). We have the rough estimates:  

( ) ( ) ( )( ). . , ;
x x

T T
f f i e f o xf x x+∞ +∞∈ +∞ ⇒ ∈ +∞ = → +∞∫ ∫        (2.81) 

( ) ( ) ( )( ). . , .
x x

f f i e f o xf x x
+∞ +∞

−∞ −∞∈ +∞ ⇒ ∈ +∞ = → +∞∫ ∫       (2.82) 

But under the stronger assumption [ )1 ,f AC T∈ +∞  and  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0, 0 ; , 1 , ;f x f x x f x f x o x f x f x o x′′ ′ ′> ≠ ∀ = = → +∞  (2.83) 

we have the exact principal parts:  

( ) ( )( ) ( ) ( ) ( )2
~ , ;

x

T
f f f x f x f x D f x x+∞ ′∈ +∞ ⇒ ≡ → +∞∫ 

       (2.84) 

( ) ( )( ) ( ) ( ) ( )2
~ , .

x
f f f x f x f x D f x x

+∞

−∞ ′∈ +∞ ⇒ ≡ − → +∞∫ 

      (2.85) 

Remarks. Notice that the formal rule in (2.84)-(2.85) does not coincide with that in 
(2.78)-(2.79) in accordance with relations in (2.104) below. If ( )f ±∞∈ +∞  and F is 
an antiderivative of its then the ( ) ( )limx F x f x→+∞  may have any value depending 
on the behavior of ( )D f x



, and this gives rise to three concepts of “exponential varia-
tion” studied in Part II, §8, of this paper. 

Proof. The convergence or divergence of the integral in case 1α ≠  trivially follows 
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from the estimates in (2.19). (I) In the first and third cases one applies L’Hospital’s rule 
to  

( )lim
x

x T
xf x f→+∞ ∫ . In the second and fourth cases one applies L’Hospital’s rule to 

( )limx x
xf x f

+∞

→+∞ − ∫ , preliminarly noticing that ( ) ( )1 ,xf x o x= → +∞ . This last re-

lation follows from (2.19) in the second case whereas, in the fourth case, we have that  

( ) ( ) ( )~ 1 0 ultimatelyf x f x x f x′ ′− ⇒ <“ ”  

and this, in turn, together with condition f
+∞

< +∞∫ , implies the relation in question 
by the simple inequality:  

( ) ( )
2

0 1 ;
2

x

x

x f x f o< < =∫
 

see Pólya-Szegö ([11]; Part II, Chap. 3, Problem 113, pp. 77, 261). (II) The inferences in 
(2.81)-(2.82) directly follow from (2.2); for (2.81) we have  

( ) ( ) ( )lim 1 lim ,
x H

Tx x
xf x f xf x f x

→+∞ →+∞
′= + = +∞∫             (2.86) 

and analogously for (2.82). To prove (2.84) just write  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
2

d d d ,
x x x

T T T

f t f x
f t t f t c f t f t f t t

f t f x
′≡ = + − ⋅

′ ′∫ ∫ ∫      (2.87) 

with a suitable constant c. Using the third condition in (2.83) we get  

( ) ( ) ( )
( )

2

1 1 .
x

T

f x
f o c

f x
+ = +   ′∫                    (2.88) 

The divergence of f
+∞

∫  is granted by ( )f +∞ = +∞  and (2.84) follows. Analogous 
proof for (2.85) first noticing that, in this case, the second growth-estimate in (2.41) 
implies the convergence of both the first and the last integral in (2.87) as x → +∞ , 
hence the convergence of ( ) ( )2f x f x′ ; (2.85) then follows by a similar integration by 
parts in 

x
f

+∞

∫ . 
Remarks. 1. There is a difference between the two cases: though the character of reg-

ular or rapid variation of an antiderivative is elementarily checked, a useful result about 
the asymptotic behaviors in the rapid-variation case requires a restrictive assumption. 
Condition ( ) ( ) ( )f x f x o x′ =  in (2.83) directly follows from (2.2) whereas the addi-
tional asssumption means that this asymptotic relation is formally differentiable once. 
The following counterexample shows that it is not easy to get rid of a condition like this 
even if the second condition in (2.83) is replaced by the stronger one  
( ) ( ) 1,f x f x x′ → +∞ , meaning that ( ) ( )1 20 c f x f x c′< ≤ ≤ < +∞  for x large 

enough:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( )

1

2
1

1 1 1 1

10

: 3 cos exp 3 sin ;

9 cos 6cos sin exp 3 sin ;

1, ; 1 , ;

exp 3 sin 1.
x

f x x x x

f x x x x x x

f x f x x f x f x o x

f x x

= + ⋅ +


′ = + + − ⋅ +

 ′′ ′→ +∞ ≠ → +∞

 = + −∫


      (2.89) 
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Here: ( )1f +∞∈ +∞ ; 1 1,f f ′  are strictly positive on [ )1,+∞ ; ( ) 10
:

x
F x f= ∫  is 

strictly positive, increasing and convex on [ )1,+∞  but the thesis in (2.84) does not 
hold true because the oscillating factors appearing in the expressions of F,F’,F” are not 
comparable between each other though they are very small when compared to the ex-
ponential factor 3e x . Neither is the additional asssumption necessary for the inferences 
(2.84)-(2.85): Proposition 8.2 in Part II of this work exhibits a very special subclass of 
rapidly-varying functions for which the asymptotic relations in (2.84)-(2.85) hold true 
without condition ( ) ( )1f f o′′ = . An example similar to that in (2.89) and with 

~ 1f f ′  is reported after the proof of Proposition 4.2 to illustrate a different pheno-
menon. 

2. The proof based on the device in (2.87) could be adapted to the case of a regular-
ly-varying function observing that, for 0α ≠ , (2.1) is equivalently expressed as  

( ) ( ) ( )1 , ,f x f x x o x xα−′ = + → +∞                 (2.90) 

and imposing the extra-assumption of formal differentiation of this last relation, i.e.  

( ) ( )( ) ( )1 1 , .f x f x o xα−′′ = + → +∞                 (2.91) 

 One would re obtain the inferences in (2.74)-(2.75) but under the unnecessary re-
strictions: (2.91) and 0α ≠ . Hence the device in (2.87) is unnatural for a regular-
ly-varying f whereas it is appropriate to the rapidly-varying case. 

2.3. Properties of the First Derivative 

The following properties of the first derivative are essential to develop the theory of 
higher-order variation.  

Proposition 2.5. (Elementary asymptotic properties of the first derivative). The fol-
lowing hold true with all asymptotic properties referring to x → +∞ . 

(I) (Regular variation). The estimates in (2.19) imply that:  

( ) ( ) ( )
( )

( ) ( )
1

1

0 ultimately,
~ , 0 if 1,

~
0 if 0 1;

f x
f x f x x

f x x f x
α α α

α
α

−
−

′ >
′ > ⇒ → +∞ > ′  → < <

 (2.92) 

( ) ( ) ( )
( )
( ) ( ) ( )

1
1 1

0 ultimately,
~ , 0

~ .

f x
f x f x x

f x x f x o x
α α

α
−

− −

′ <′ < ⇒  ′ =
      (2.93) 

For 1α =  any circumstance is possible for ( )limx f x→+∞ ′  as shown by  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2: log , 0, ; : log , 0, 0;f x x x f x f x x x f xδ δδ δ′ ′= > → +∞ = < →  (2.94) 

( ) ( )( ) ( )

( ) ( ) ( )

3

3 3

: 2 sin log , 0 1 ,

2 sin log 1 , bounded but nonconvergent;

f x x x

f x x o f

δ

δ

δ  = + < <  


  ′ ′= + + 

     (2.95) 

( ) ( ) ( )( )
( )

4 1

4

: exp log sin log d , 0 1 2,

unbounded but nondivergent : see 2.22 .

x
f x t t t

f

δ δ δ  = ⋅ < <   
 ′

∫          (2.96) 



A. Granata 
 

795 

Moreover, for each 0α ≠  we can exhibit an “ ( )f α∈ +∞ ” such that f ′  is not 
ultimately monotonic. In both the following examples the reader will check the asymp-
totic formulas for f ′′  showing that f ′′  changes sign infinitely often and that f ′  
has no index of variation:  

( ) ( )
( ) ( ) ( ) ( )

5

2 1 2
5

: sin , 0 2 ,

sin 1 ;

f x x x

f x x x o

α β

β β

α β α

β−

 = + < < <


 ′′ = − +  

               (2.97) 

( ) ( )
( ) ( ) ( )

1
6

2 3 2
6

: sin , 0, 1 2 1,

sin 1 .

f x x x x

f x x x o

α α β

β α β

α β

β

− − −

− −

 = + > < <


 ′′ = − +  

            (2.98) 

(II) (Slow variation).  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 0 1 ,f x f x o x f x x f x x f x o− − − +′ ′ ′= ⇒ ∀ > ⇒ = 

    (2.99) 

and f ′  may be ultimately monotonic, as for the functions in (2.9) or it may even 
change sign infinitely often as for the functions “ ( )2 sin log x δ +    and  

( )( )exp 2 sin log ,0 1x δ δ + < <  ”. 
(III) (Rapid variation).  

( ) ( )
( )
( )

0 ultimately,

, , 0;

f x
xf x f x

f x x xα α

′ >′ → +∞⇒ 
′ → +∞ ∀ > 

        (2.100) 

( ) ( ) ( ){ }0 ultimately, .xf x f x f x f
+∞

′ ′ ′→ −∞⇒ < < +∞∫       (2.101) 

For ( )f −∞∈ +∞  the additional condition “ f ′  monotonic” grants that f ′  satis-
fies the same asymptotic estimates as f :  

( ) , , 0.f x x xα α−′ → +∞ ∀ >                  (2.102) 

We do not know if relations in (2.102), or even the simple relation ( ) 0f ′ +∞ = , are 
satisfied by any ( )f −∞∈ +∞ .  

Proof of part (III). The estimates for f ′  in (2.100) follow from  

( ) ( )
( )

( )
1 ,

xf x f x
x f x

f x x
α

α
−

+

′   
′ = ⋅       

                 (2.103) 

where both factors tend to +∞  by (2.41). This simple argument does not work for 
( )f −∞∈ +∞  because the indeterminate form “ ( ) 0−∞ ⋅ ” appears on the left in 

(2.103). The summability of f ′  in (2.101) simply follows from ( ) 0f +∞ = . The esti-
mates in (2.102) follow from those in (2.41) by a classical result which requires either 
“ f  everywhere differentiable and f ′  monotonic” or “ [ ),f AC T∈ +∞  and f ′  
monotonic on [ ), \T N+∞  with 0mis N = ”: see [12] both for historical references in 
the introduction and for generalizations. 

Notice that it is easy to give an example of a function ~g f  such that  
( )f −∞∈ +∞  and ( )g ′ +∞  does not exist in   with g ′  either bounded or not:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

: e e sin e ~ e , 1, ,

e e sin e e cos e e cos e 1 ;

x ax bx x

b a x b a xx ax bx bx bx

g x a b a

g x a b b o

− − −

− −− −

 = + > ≥


′ = − − + = +
 (2.104) 
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but in this case the limit “ ( ) ( )limx xg x g x→+∞ ′ ” does not exist as well. 
As far as the possible index of variation of the first derivative is concerned notice that 

if ( )f ∈ +∞  then f ′  may have no index of variation at +∞  as shown by the 
following counterexamples where the term “oscillatory” means that the pertinent func-
tion changes sign infinitely often as x → +∞ :  

( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

2

0

sin , 1 2, oscillatory and unbounded ;
sin , 1 2, oscillatory and bounded ;

2 sin log , 0 1, oscillatory and 0 ;

2e sin e , oscillatory and unbounded ;

1
2

x x

x x xf f
x x xf f

x f f

xf f

α
α

α

α

α
α

α

+∞

′′ ′+ ∈ +∞ < <
′′ ′+ ∈ +∞ < ≤

  ′ ′+ ∈ +∞ < < +∞ = 
′′ ′+ ∈ +∞








( ) ( ) ( )2 2e e sin e , oscillatory and unbounded .x x x xf f− −
−∞











′′ ′+ ∈ +∞


 (2.105) 

But if f ′  has an index of variation then there are precise important links between 
the two indexes. The results in the next proposition are essential in the higher-order 
theory and to understand why restrictions on the indexes are sometimes required. 

Proposition 2.6. (Index of variation of the first derivative). (I) If [ )1 ,f AC T∈ +∞  
and if both f  and f ′  have indexes of variation at +∞ , respectively α  and α′ , 
then:  

{ } ( )1 if \ 0 or if 0 and lim either 0 or ;

if .
x

f xα α α α

α α α
→+∞

′ = − ∈ = = +∞


′ = = ±∞


   (2.106) 

In the case 0α =  and without the stated additional condition on ( )f +∞ , it may 
happen that ( )f Rα ′′ ∈ +∞  with 1α′−∞ ≤ ≤ −  as shown by the simple examples:  

( ) ( ) ( )1 e ; 1 0 ; 1 log 0 ;x x x δδ δ δ−− −+ + > + >            (2.107) 

but it cannot be 1α′ > − . Hence for α ∈ it always is: 1α α′ ≤ − . 
(II) If ( ) ( ),f fα β′∈ +∞ ∈ +∞   for some ,α β ∈ then  

( ) ( ) ( )( )2 2 , .f x x f x o x f x xαβ − −′′ = + → +∞             (2.108) 

If ( )f α∈ +∞  for some { }\ 0α ∈  then ( )1f α −′ ∈ +∞  if and only if 

( ) ( ) ( )( )2 2 , ;f x x f x o x f x xγ − −′′ = + → +∞              (2.109) 

for some γ ∈ and in such a case it is necessarily ( )1γ α α= − . 
(III) If either “ ( ),f f +∞′ ∈ +∞ ” or “ ( ),f f −∞′ ∈ +∞ ” then  

( ) ( )2lim ;
x

x f x f x
→+∞

′′ = +∞                    (2.110) 

and we do not know whether the partial converse holds true i.e. if both conditions 
“ ( )f ±∞∈ +∞  and (2.110)” imply ( )f ±∞′ ∈ +∞ .  

Proof. Proof of part (I) is taken from ([13]; proof of Lemma 2.3, p. 111]). By hypo-
thesis the following two limits exist in  :  

( ) ( ) ( ) ( )lim , lim .
x x

xf x f x xf x f xα α
→+∞ →+∞

′ ′′ ′ ′≡ ≡           (2.111) 

We now evaluate α  by L’Hospital’s rule noticing that: “ 0 α< ≤ +∞ ” implies 
“ ( )f +∞ = +∞ ”, whereas “ 0α−∞ < < ” implies “ ( ) 0f +∞ = ” and the first limit in 
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(2.111) implies “ ( )lim 0x xf x→+∞ ′ = ”. In both cases the rule may be applied and  

( ) ( )
( )

lim 1 .
x

f x xf x
f x

α α
→+∞

′ ′′+
′= = +

′
                 (2.112) 

The same argument is valid for 0α =  and the stated restriction on ( )f +∞ . It re-
mains the case “α = −∞ ” which implies “ ( ) 0f +∞ = ” and this condition leads to ex-
cluding the following contingencies for the indicated reasons: 

(i) α′ = +∞  would imply “ ( )f ′ +∞ = +∞ ” hence “ ( )f +∞ = +∞  (being 0f > )”. 
(ii) 1 α′− < < +∞  would imply “ ( ) ( )1x f x α ′+′ ∈ +∞ ” hence  

“ ( )limx x f x→+∞ ′ = +∞ ”, and by L’Hospital:  

( ) ( ) ( )
( ) ( )

( )
( )

lim lim lim 1 1 1 1 ,
x

Tx x x

f x xf x
f xf x

f xf x xf x
α

→+∞ →+∞ →+∞

′ ′′
′ ′ ′= = + = +

′′ ′′+∫  (2.113) 

which is a positive real number; hence “
T

f
+∞

′ = +∞∫ ” which would imply  
“ ( )f +∞ = +∞ ”. 

(iii) 1α′−∞ < < −  would imply “ ( ) ( )1x f x α ′+′ ∈ +∞ ” hence  
“ ( )lim 0x x f x→+∞ ′ = ”, and this would imply the contradiction:  

( ) ( )
as in (2.112)

lim 1x xf x f x α→+∞ ′ ′−∞ = = + ∈. 
(iv) The case 1α′ = −  must be treated in a different way using the estimates in 

(2.19) and (2.41). In our present proof we have α = −∞  and 1α′ = − , hence  

( ) ( )1 1, , 0; , , 0;f x x x x f x x x− − − − +′→ +∞ ∀ > → +∞ ∀ >  

      (2.114) 

and there are two a-priori contingencies concerning the integral f
+∞

′∫ . Its diver-
gence would imply ( )f +∞ = +∞  which cannot be; in the other case we would have  

( ) 1 d , ,
x x x

xf f x f f t t x
−

+∞ +∞ +∞ +∞ − −′ ′ ′< +∞⇒ = − = = → +∞∫ ∫ ∫ ∫




  

contradicting the first relation in (2.114). Notice that the procedure used to prove this 
last case works for any α′∈ as well. 

The last assertion in the statement, namely “it cannot be 1α′ > − ”, follows from the 
calculations in the case (ii): 1α′ > −  would imply ( )f +∞ = +∞ , and the claim in 
(2.106) concerning 0α =  would imply 1α′ = − : a contradiction. The proof of part (I) 
is complete. 

For part (II) the assumptions for (2.108) are:  

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1, , ,f x x f x o x f x f x x f x o x f x xα β− − − −′ ′′ ′ ′= + = + → +∞  (2.115) 

whence (2.108) follows. Viceversa assume ( )f α∈ +∞  for some { }\ 0α ∈  and re-
lation (2.109). The restriction 0α ≠  implies ( ) ( ) ( )~ 1f x xf xα ′  and (2.109) yields  

( ) ( ) ( ) ( )( )1 1 , ,f x x f x o x f x xγ α − −′′ ′ ′= + → +∞           (2.116) 

which means that ( ) ( )f γ α′ ∈ +∞  and the first claim in (2.106) implies  
( ) 1γ α α= − .  

Last, relation (2.110) follows from the decomposition  
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2

,x f xf xf
f f f
′′ ′′ ′   
= ⋅ → +∞   ′   

                   (2.117) 

as the factors on the right diverge either both to +∞  or both to −∞ . 

3. The Theory of Higher-Order Regular or Smooth Variation 
3.1. The Concept of Higher-Order Regular Variation 

By the foregoing proposition we can define unambiguously some concepts of “high-
er-order asymptotic variation” separating the cases of regular variation (in this section) 
and rapid variation (in the next section). 

Definition 3.1. (Regular variation of higher order). A function  
[ )1 , , 1,nf AC T n−∈ +∞ ≥  is termed “regularly varying at +∞  (in the strong sense) of 

order n” if each of the functions ( )1, , , nf f f −′


 never vanishes on a neighborhood 
of +∞  and is regularly varying at +∞  with its own index of variation according to 
Proposition 2.6. If this is the case we use notation  

( ){ }of order , : the index of .f n fα α∈ +∞ = ∈ “ ”           (3.1) 

Whenever needed we denote the indexes of the derivatives as follows:  

( ) ( ) 0, 0 1; .
k

kf k nα α α∈ +∞ ≤ ≤ − ≡                 (3.2) 

Remarks. 1. It is essential to consider the absolute values in order to not impose 
a-priori restrictions on the signs of the derivatives. Saying that “ f  is regularly varying 
of order 1” means that “ f  is regularly varying in the sense of Definition 2.1”. The 
functions in (2.7) are regularly-varying at +∞  (in the strong sense) of any order n. 
The index 1α  was denoted by α′  in Proposition 2.6. 

2. A nonzero constant belongs to the class ( ){ }0 of order 1+∞  and no more be-
cause its derivative has no index of variation; a polynomial of exact algebraic degree 

1n ≥  belongs to the class ( ){ }of order 1n n+∞ + . Hence if a polynomial satisfies 
(3.1) for some α ∈ then 1nα ≥ − . 

3. If (3.1) holds true then, by Proposition 2.6-(I):  

{ }0,1, , 2 , 2 , 1 1;kn n k k nα α α∈ − ≥ ⇒ = − ≤ ≤ −/             (3.3) 

{ }
( )

0 0

0 10

0 0

, 0 ;
0,1, , 2 , 2 , for some 1;

1 , 1 1.

k

k

k

k k k k
k n n

k k k k n

α
α α β β

α β
+

 = − ≤ ≤
≡ ∈ − ≥ ⇒ = ≤ −


= − − + + ≤ ≤ −

   (3.4) 

By (2.106) the inference in (3.3) may well hold true without the stated restriction 
whenever “ 0pα = ” for some p  and “ ( ) ( )pf +∞  = either 0 or +∞ ”. In any case, 
though not all the indexex kα  may be uniquely determined a priori, there are precise 
and fundamental asymptotic relations linking each ( )kf  to f for 1 k n≤ ≤ , and de-
pending only on α . Notice that, by our agreements, a notation like  
“ ( ){ }0 of order 2f n∈ +∞ ≥ ” implies that the involved derivatives of f  are regu-
larly varying; for instance it is misleading to write “ ( ){ }01 e of order 2x n−+ ∈ +∞ ≥ ”: 
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see examples in (3.40) below. 
Proposition 3.1. (Principal parts of higher derivatives in case of regular variation). 
(I) If ( ){ }of order , 1,f n nα∈ +∞ ≥  then relations  

( ) ( ) ( )
( ) ( ) ( ) ( )1 1 , , 1 ,

k

k k k k k

f x f x

k x o x x o x x k nα α α α− − − −= − − + + ≡ + → +∞ ≤ ≤

  (3.5) 

hold true whichever α ∈ may be. For 0α ≠  they may be written as  

( ) ( ) ( ) ( ) ( )( )
( )( )

( )( )
( )( )1 1 1

1 1
, , 1 .

k k
k

k k k

f x f xk
f x o x k n

f x f x

α α
α − − −

 ′ ′− − +  = + → +∞ ≤ ≤
 
 



  (3.6) 

(II) (Partial converse). If [ )1 , , 2,nf AC T n−∈ +∞ ≥  then ( ){ }of orderf nα∈ +∞  
for some { }0,1, , 2nα ∈ −/   if and only if the following relations hold true  

( ) ( ) ( ) ( ) , , 1 ,k k k
kf x f x x o x x k nγ − −= + → +∞ ≤ ≤            (3.7) 

with suitable constants kγ  such that  

( )1 1, , 0; no restriction on .n nγ γ γ− ≠                  (3.8) 

If this is the case then: , 1k
k k nγ α= ≤ ≤ .  

Proof. (I) Both claims for 2n =  are contained in Proposition 2.6-(I), (II): if 0α ≠  
in (2.108) then 1β α= −  and if 0α =  then obviously ( )1αβ α α= − . For part (I) 
and 3n ≥  we have by assumption the set of relations  

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 1

1 1
1

1 11 1
1

,

,

.k k k
k

f x x f x o x f x

f x x f x o x f x

f x x f x o x f x

α

α

α

− −

− −

− −− −
−

 ′ = +

 ′′ ′ ′= +




= +



             (3.9) 

Replacing the relation for ( ) ( )1kf x−  into the last relation we get  
( ) ( ) ( ) ( ) ( ) ( )( )2 22 2

1 2 ,k k k
k kf x x f x o x f xα α − −− −
− −= +

 
and iterating the procedure yields  

( ) ( ) ( ) ( )1 1 , , 1 ,k k k
kf x f x x o x x k nαα α − −
−= + → +∞ ≤ ≤        (3.10) 

which by (2.106) coincides with (3.5) under the assumptions in (3.3). Under the as-
sumptions in (3.4) we get relations in (3.5) for 01 k k≤ ≤  and, being 

0
0kα = , relations  

( ) ( ) ( ) ( ) 0, , 1 .k kf x f x o x x k k n−= → +∞ + ≤ ≤             (3.11) 

In any case (3.5) hold true for 1 k n≤ ≤ . Relations in (3.6) simply follow from the 
inference  

( ) ( ) ( ) ( )( ) ( )( )11~ ~ .
k kk kf x x f x x f x f x f xα α

−− − −′ ′⇒          (3.12) 

For part (II) we must prove that relations (3.7)-(3.8) imply  
( ) ( ) ( ) ( ) ( )1 1= 1 1 , , 1 .k kf x f x x k o x k nα− − − + + → +∞ ≤ ≤         (3.13) 
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The claim for 2n =  is contained in Proposition 2.6-(II) and we proceed by induc-
tion assuming the claim true for a certain 1k n≤ − . Supposing  

( ) ( ) ( ) ( ) ( ), , 1 1, with satisfying 3.8 ,i i i
i if x f x x o x x i kγ γ− −= + → +∞ ≤ ≤ +   (3.14) 

the inductive hypothesis implies  
( ) ( ) ( ) ( ) ( )1 10 and ~ 1 for 1 ;i ii

i f x f x i x i kγ α α− −= ≠ − + ≤ ≤     (3.15) 

and we must prove the relation in (3.7) with k replaced by 1k + . We express f in terms 
of ( )kf  from the relation in (3.14) for i k=   

( ) ( ) ( ) ( )
1

~ ,kk kf x x f xα
−

                     (3.16) 

and replace this expression into the relation in (3.14) for 1i k= +  so obtaining  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 1

1 1 .k k k k
kf x f x f x x oγ α

−+ −
+

 = +  
          (3.17) 

For 1k n= −  this is the thesis without any restriction on nγ ; for 1k n< −  the 
second relation in (3.15) implies ( ) ( )1

1
k

kf α
−

− +∈ +∞  with 1 0kα − + ≠  by assump-
tion; it follows from (2.106) that ( ) ( )k

kf α −∈ +∞ . Hence in (3.17) it must be  

( ) 1 1
1 1i.e.k k

k kkγ α α γ α
− +

+ += − =
 

and the proof is over. 
As noticed in the proof, (3.5) holds true for any α , hence if the coefficient in the 

right-hand side vanishes for a certain value of k , say k , it vanishes for all k k≥ . The 
restriction { }0,1, , 2nα ∉ − , used in the proof of part (II), cannot be suppressed 
otherwise any circumstance may occur. First counterexample:  

( ) ( ) ] )

( ) ( )( ) ( ) ( )( )1 2

: 2 sin log , 1, , 0 1;

, ;

f x x x

f x o x f x f x o x f x

δ δ

− −

  = + ∈ +∞ < <  


′ ′′ = =

           (3.18) 

wherein ( )0 , 0 2,f nα∈ +∞ = = −  and f ′  cannot be regularly varying as it has al-
ternating signs. 

Second counterexample:  

( ) ( ){ } ( ): e of order 1 and no more ,n x
nf x x n−= + ∈ +∞ +         (3.19) 

though the relations in (3.7) hold true for each 1k ≥ : but 0kγ =  for 1k n≥ + . 
Third example:  

( ) ( ) ( ){ }0
log , 0,: 1 of any order ,

, 0,
xf x n

x

δ

δ

δ
δ−

 ≠= + ∈ +∞ ∈
>

         (3.20) 

and relations in (3.7) hold true with 0kγ =  for each 2k ≥ . 

3.2. The Concept of Higher-Order Smooth Variation 

The second counterexample above shows that the set of relations in (3.5) in themselves 
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do not grant that all the involved derivatives be regularly varying: it may well occur an 
abrupt transition from regular variation to rapid variation at a certain order of deriva-
tion. This is the main motivation for our Definition 3.1. But the asymptotic relations 
for ( )kf f  are most important in applications and in this subsection we report three 
characterizations of these relations encountered in the literature and valid for any α : 
the first deals with the derivatives of the ratio in (2.3), ( ) ( )xf x f x′ , and is used in the 
monograph by Lantsman [9]; the second is a slight variant dealing with the derivatives 
of the logarithmic derivative ( ) ( )f x f x′ ; the third highlights the behavior at +∞  of 
the derivatives of the associated function ( ) ( ): log exx fφ  =   . This last characteriza-
tion is a nontrivial and useful result proved by Balkema, Geluk and de Haan ([7]; 
Lemma 9, p. 410) using an ingenious device.  

Proposition 3.2. (Several characterizations). For an [ )1 , , 1,nf AC T n−∈ +∞ ≥  
( ) 0f x x> ∀  large enough, the following four sets of asymptotic relations, for a fixed 

α ∈, are equivalent to each other:  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 , , 1 ;kkx f x f x k o x k nα α α= − − + + → +∞ ≤ ≤     (3.21) 

( ) ( ) ( )

( ) ( )( )( ) ( )
1 , ;

, , 1 ;
k k

xf x f x o x

xf x f x o x x k n

α
−

′ = + → +∞


′ = → +∞ ≤ ≤
            (3.22) 

( ) ( ) ( )
( ) ( )( )( ) ( )

1 1

1 1

, ;

, , 1 ;
k k k

f x f x x o x x

f x f x D x o x x k n

α

α

− −

− − −

 ′ = + → +∞


′ = ⋅ + → +∞ ≤ ≤

       (3.23) 

( ) ( ) ( ) ( )
( ) ( )

: log e ; 1 , ;

(1), , 2 .

x

k

x f x o x

x o x k n

φ φ α

φ

   ′= = + → +∞  
 = → +∞ ≤ ≤

           (3.24) 

The reader will notice in the proof that the differential expressions “ ( ) ( ) ( )kkx f x f x ” 
stem out from successive differentiations of ( )exp log xφ   .  

Proof. We use notation : d dk k kD x= . To prove “(3.22) ⇔ (3.23)” we use the iden-
tity  

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )1 1
1 ,

k k k
xf x f x x f x f x k f x f x

+ +′ ′ ′= + +     (3.25) 

from which, putting 0k = , the equivalence easily follows for 1n = . By induction 
suppose the equivalence true for a certain 2n ≥ ; (3.22) true for 1n +  imply the rela-
tions in (3.23) true for 1 k n≤ ≤  whereas (3.25), for k n= , yields  

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )
( )

1 1

1 1 1

1 1 1

1

1

,

n n n

n n n

n n

x f x f x xf x f x n f x f x

o x n D x o x

x D x o x

α

α

+ +

− − − − −

+ − − −

′ ′ ′= − +

= − + ⋅ +

= ⋅ +

     (3.26) 

which implies the relation in (3.23) for 1k n= + . Viceversa, if (3.23) are true for 1n +  
then the relations in (3.23) are true for 1 k n≤ ≤  whereas, for 1k n= + , we get from 
(3.25):  
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( ) ( )( )( ) ( ) ( ) ( )1 1 1 1 1 11 ,
n n n n nxf x f x x D x n D x o x o xα
+ + − − − − − − ′ = ⋅ + + ⋅ + =    (3.27) 

the sum in square brackets being 0≡ . Let us now consider the obvious relations con-
cerning the function φ  defined in (3.24) and valid for all T 0x ≥ > :  

( ) ( ) ( ) ( ) ( ) ( ) ( )log e exp log log .xx f f x x xf x f x xφ φ φ  ′ ′= ⇔ = ⇒ =     (3.28) 

The equivalence (3.22) ⇔ (3.24) is contained in the following:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

1 1

1 1

log ,1 ,

1 , 2 , log , 2 .k k k k

D x x o xx o

x o k n D x D x o x k n

φ αφ α

φ φ α

− −

− − −

 = +′ = + ⇔ 
= ≤ ≤ = ⋅ + ≤ ≤  

 (3.29) 

First, it is elementary to prove by induction the formula  

( ) ( ) ( ) ( ) ( ) ( )1

2
log 1 1 ! log log , 1,

kk ik k k
i

i
D x k x x x c x kφ φ φ− − −

=

′= − − ⋅ + ⋅ ≥∑   (3.30) 

wherein ( ) ( ) ( )
log

log : d di i i
t x

x t tφ φ
=

= , and the explicit expressions of the coefficients 

ic  are not needed except for 1kc = . If the set of relations on the left in (3.29) holds 
true then (3.30) at once implies the validity of the set on the right whereas we proceed 
by induction to prove the converse inference. Let the set of relations on the right in 
(3.29) holds true with k replaced by 1k + , then the inductive assumption grants all re-
lations on the left in (3.29). Now we consider (3.30) with k replaced by 1k + , and solve 
it with respect to ( )1kφ +  so getting  

( ) ( ) ( ) ( ) ( ) ( ) ( )11 1 1 1 1log log 1 ! 1 ,kkk k k k kx x D x k x o o x o xφ φ α+− − + − − − − − −= − − + + =    (3.31) 

having used the relation in (3.29) for ( )1 logkD xφ+  and ( )lim logx xφ α→+∞ ′ = . The 
last and most difficult equivalence is “(3.21)⇔ (3.24)” a direct proof of which via Faà di 
Bruno’s formula would involve cumbersome calculations. We report the original proof 
in a somewhat simplified form explicitly writing the arguments of the involved func-
tions, avoiding the use of a change of variable, and with some additional passages to 
motivate the technical ideas of the proof. From representation ( ) ( )exp logf x xφ=    , 
by direct routine differentiation and factoring out common factors, we get  

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )( ) ( ){

( ) ( )( ) ( )( ) ( ) }

1

2

3

log ,

log log 1 log ,

log log 1 log 2 log

log log 1 log 2 log ,

f x x f x x

f x x f x x x x

f x x f x x x x x

x x x x

φ

φ φ φ

φ φ φ φ

φ φ φ φ

−

−

−

 ′ ′=


 ′′ ′ ′ ′′= − +  
 ′′′ ′ ′ ′ ′′′= − − +


 ′′ ′ ′ ′+ − − +  

   (3.32) 

wherein we have used the expression of f ′  to get the final expression of f ′′  and the 
expression of f ′′  to get the final expression of f ′′′ . It is clear that further differentia-
tions yield expressions for the operators  

( ) ( ) ( ) ( ): , 1,kk
kF x x f x f x k= ≥                   (3.33) 

and we shall prove the following representation:  

( )
( ) ( )( ) ( )( ) ( ) ( ) ( )log log 1 log 1 log log , 1 ,

k

k
k

F x

x x x k x N x k nφ φ φ φ′ ′ ′= − − + + + ≤ ≤

 (3.34) 
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where ( )kN x  is a polynomial in ( ) ( ) ( )1, , kx xφ φ −′


 each term of which contains a 
factor ( )iφ  with 2i ≥ . This is true for 1,2,3k =  and a simple proof by induction, 
provided by the authors of [7], is based on an equation linking 1, ,k k kF F F +′  simply ob-
tained by differentiation of (3.33):  

( )
( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )( )

( )( ) ( ) ( )

1
1

2

1
1 1 .

k k k
k k k

k

k k

f x f x f x f x
F x kx x x

f x f x f x

x k F x F x F x

+
−

−
+

′
′ = + −

 = − + 

         (3.35) 

If now (3.34) is assumed true for a certain k then, differentiating both sides and using 
(3.35) in the left-hand side, we get  

( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1
1 1

11
11 1 1

00
log log log log ,

k k

kk
k

k
ij
i j

x k F x F x F x

x x x i x x x N xφ φ φ

−
+

−−
+− − −

==
≠

 − + 
  
  ′′ ′ ′= − + +      
∑ ∏

  (3.36) 

whence  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

1
1 1

11

00

b (3.34) 1
1

=0

log

log log log

log log log ,

k
k k

kk

k
ij
i j

ky k
k

i

F x F x k F x x

x x i N x

x i x N x

φ

φ φ

φ φ

+
+

−−

==
≠

+
+

= − +

  
  ′′ ′ ′+ − +      

′= − + +

∑ ∏

∏

       (3.37) 

where we have put  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1

11

00

log : log log

log log log ,

k
k k

kk

k
ij
i j

N x F x k x N x

x x i N x

φ

φ φ

+

−−

==
≠

 = − + 
  
  ′′ ′ ′+ − +      
∑ ∏

      (3.38) 

the right-hand side being a polynomial in ( ) ( ), , kx xφ φ′
  each term of which con-

tains a factor ( )iφ  with 2i ≥ , and this proves (3.34) for 1k + . Starting from (3.34) the 
proof by induction of the equivalence “(3.21) ⇔ (3.24)” is quite trivial. 

Balkema, Geluk and de Haan ([7]; p. 412) call “smoothly varying of exponent (≡ in-
dex) α ” a positive C∞ -function f defined on a neighborhood of +∞  such that the 
associated function φ  satisfies the relations in (3.24) for all k ∈ . In our context we 
give 

Definition 3.2. (Smooth variation of higher order). A function  
[ )1 , , 1,nf AC T n−∈ +∞ ≥  ( ) 0f x x≠ ∀  large enough, is termed “smoothly varying at 

+∞  of order n and index α ” if the four equivalent properties in Proposition 3.2, re-
ferred to f , are satisfied. We denote this class by: { ( )S α +∞  of order n}.  

Notice that in our definition f  is allowed to be either >0 or <0, the essential point 
being that it ultimately assumes only one strict sign. From Proposition 3.1-(II) and the 
examples (3.18)-(3.20) we get the following inclusions:  
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( ){ } ( ){ } { }
( ){ } ( ){ }

of order of order if 1 or 2, 0,1, , 2 ;

of order of order otherwise;

n S n n n n

n S n
α α

α α

α +∞ = +∞ = ≥ ≠ −


+∞ +∞

 

 
 (3.39) 

the reason of the strict inclusion being that some derivatives of a smoothly-varying 
function may vanish or change sign infinitely often. Examples:  

( ) ( ){ } ( ){ }
( ) ( ){ }
( ) ( ){ } ( ){ }

( ) ( ) ( ){ } ( ){ }

0 0

0

0 0

0 0

: constant 0 of order \ of order for each 2;

: 1 , 0, of any order 2 ;

: 1 e of order \ of order for each 2;

2 sin log
: of order \ of order for each

with 0 1

x

f x S n n n

f x x n

f x S n n n

x
f x S n n n

δ

δ

δ

δ

−

−

= ≠ ∈ +∞ +∞ ≥

= + > ∈ +∞ ≥

= + ∈ +∞ +∞ ≥

  +  = ∈ +∞ +∞ ≥
 < <

 



 

  2.











 (3.40) 

In the third example all derivatives ( ) , 2,kf k ≥  are rapidly varying whereas in the 
fourth example they have no index of variation at +∞ . Let us consider the further 
example of a function already exibited in (2.22):  

( ) ( ) ( )( )
( )

: exp log sin log , 0;

liminf ( ) 0, limsup .
x x

f x x x

f x f x

δ δ
δ

δ δ

δ

→+∞ →+∞

  = ⋅ >   


= = +∞


            (3.41) 

If as in (3.24) we associate to fδ  the function ( ) ( ): sinx x xδ δ
δφ =  it is easy to 

check the following:  

( ){ } ( ) ( )
( ) ( ){ }

0

0

0 1 2 of order 1 ; oscillatory; 1 , ;

0 1 of order .

f f f x o x

n n f n
δ δ δ

δ

δ

δ

 ′ ′< < ⇒ ∈ +∞ = → +∞


< < + ⇒ ∈ +∞




 (3.42) 

In fact we have ( ) ( ) ( )1 2 1sin cosx x x x xδ δ δ δ
δφ δ δ− −′ = +  from whence an elementary 

induction proves the representation  

( ) ( ) ( )

( ) ( ) ( ) ( )

,
, ,

, ,

,

max 1 ; standing for one of the functions sin , cos ;

i kk
i k i k

i

i k i ki

x c x x

k k x x x

δ
δ

δ δ

φ ω

δ δ ω

 =


 = + −


∑
 (3.43) 

implying ( ) ( ) ( )1k x oδφ =  for each ,1 ,k k n≤ ≤  if ( )1n nδ < + . 
The anomalies in these examples make the definition of smooth variation a bit unsa-

tisfying from a theoretical viewpoint unlike the definition of higher-order regular varia-
tion; they also show that the possible more complete locution “smooth regular varia-
tion” would not be appropriate; however it turns out that relations in (3.21)-(3.24), re-
gardless of α , are the right ones required in various applications. In the next proposi-
tion it is asserted that the derivative of a smoothly-varying function may not be 
smoothly-varying only if the index is zero whereas antiderivatives are always smoothly 
varying with suitable indexes. 

Proposition 3.3. (Derivatives and integrals of smoothly varying functions). (I)  

( ){ } ( ){ }1of order 2 , 0, of order 1 .f n f nα αα −′∈ +∞ ≥ ≠ ∈ +∞ −    (3.44) 

(II) If ( ){ }of order 1f nα∈ +∞ ≥  then  
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( ) ( ){ }
( ) ( ){ }

1

1

convergent d of order 1 ;

divergent d , with large enough, of order 1 .

x
x

T

f f t t n

f f t t T n

α

α

+∞ +∞

+

+∞

+

 ⇒ ∈ +∞ +

 ⇒ ∈ +∞ +

∫ ∫

∫ ∫




 (3.45) 

The very same inferences in the case of regular variation, i.e. with   replaced by 
 , are included in Propositions 2.4-(I), 2.6-(I) and Definition 3.1.  

Proof. We report the more elementary arguments used in ([8]; Prop. 1.8.1, p. 44) in 
preference to those in ([7]; Lemmas 10-11, p. 412). For (3.44) put :F f ′=  and notice 
that f ′  is ultimately of one strict sign as ( ) ( )1~f x x f xα −′ ; hence for each 

{ }1, , 1k n∈ −  we may write by (3.21):  
( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

11

1

1 1 1 1 1 .

k kk k

k
k

x F x x f x f x
F x f x xf x

o k o oα α α α
α

++

+

≡ ⋅
′

= + = − − + = − +

   (3.46) 

To prove the first inference in (3.45) put ( ) ( ): d
x

F x f t t
+∞

= ∫ . Recalling that f  has 
ultimately one strict sign and that “ ( )f α∈ +∞ ” Proposition 2.4-(I) implies 

( ) ( ) ( )1 1xF x F x oα′ = + +  and by (3.21) we have for each { }1, , 1k n∈ + :  
( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

11

1 1 2 1

1 , if 1,
1 2 1 , if 1.

k kk kx F x xF x x f x
F x F x f x

k o

o
k o

α α α α

α
α α α α

−−′
= ⋅

−

= − + − − + +

 = −=  + − + + < −





        (3.47) 

A similar proof in case of divergence. 
Notice that, with φ  defined in (3.24), f  is recovered by the formula  
( ) ( )exp logf x xφ=     and that regular variation of φ  may have ambiguous effects on 

f . The reader may check that:  

( ) ( )
( )0

if 1,
if 1,

f
fα

α
φ

α
+∞ ∈ +∞ >∈ +∞ ⇒  ∈ +∞ <





              (3.48) 

using “ ( ) ( ) ( ) ( ) ( )1log ~ log logxf x f x x x xφ α φ−′ ′= ” and the estimates in (2.19) re-
ferred to φ . The case 1α =  remains undecided as shown by:  

( ) ( ) ( ) ( )( )
( )

2

1

: log , ; ~ ;

hence : , ;

x x x xf x f x x

f

δ
φ δ δ

φ

 ′= + ∈


∈ +∞






              (3.49) 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2

1 0

: log , 0; ~ ;

hence : , if 0, if 0.

x x x xf x f x x

f f

δδφ δ

φ δ δ+∞

 ′= ≠


∈ +∞ ∈ +∞ > ∈ +∞ <



  
    (3.50) 

To end this section let us ask ourselves what can be said about relations in (3.21) 
holding true with some unknown coefficients kγ  on the right and we give a result— 
needed in the sequel—concerning the circumstance 1 0γ α= ≠ .  

Proposition 3.4. Let a function [ ) ( )1 , , 2, 0nf AC T n f x x−∈ +∞ ≥ > ∀  large  
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enough, satisfy the following asymptotic relations:  

( ) ( ) ( )~ , , 0 ;xf x f x xα α′ → +∞ ≠                 (3.51) 

( ) ( ) ( ) ( )1 , 2 , ,kk
kx f x f x o k n xγ= + ≤ ≤ → +∞            (3.52) 

for some unspecified constants kγ . Then ( ){ }of orderf S nα∈ +∞   
Proof. The claim amounts to state that the kγ ’s coincide with the coefficients in 

(3.21). Now, if “ 2 1, , 0nγ γ − ≠ ” then Proposition 3.1-(II) states the stronger assertion 
“ ( ){ }of orderf nα∈ +∞ ” and, moreover, for 2n =  there is nothing further to be 
proved. On the contrary if for 3n ≥  some coefficient kγ  is zero then our claim will 
be proved once we show that all the successive coefficients are zero as well. In fact if 
“ 2 , , 0hγ γ ≠ ” and “ 1 0hγ + = ” for some 2h n≤ − , then:  

( ) ( ) ( ) ( ) ( ) ( ) ( )11~ , ; 1 , ;h hh h
hx f x f x x x f x f x o xγ ++→ +∞ = → +∞    (3.53) 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

1 1 21 1
H. 1

0 lim lim
h h hh h h

x x

x f x h x f x x f x
f x f x

+ + ++ +

→+∞ →+∞

+ +
= = =

′


    (3.54) 

using (3.51) and then the secod relation in (3.53)  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 2 21

2

1
lim lim ;

h h hh

hx x

h x f x x f x
f x f x

γ α
α α

+ + ++

+→+∞ →+∞

+
= + =

      (3.55) 

hence 2 0hγ + =  and the proof is over. Note in passing that the second circumstance 
implies “ ( ) ( )0

hf ∈ +∞ ” as the two relations in (3.53) imply:  
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 1 .h h h hf x f x f x f x f x f x o x+ + −≡ ⋅ =      (3.56) 

  

4. The Theory of Higher-Order Rapid Variation 

Before giving the proper definition of higher-order rapid variation it is good to add 
some remarks about the additional condition  

( ) ( )( ) ( )1 , ,f x f x o x′ = → +∞                    (4.1) 

appearing in Proposition 2.4-(II). The counterexample in (2.89) shows that this sup-
plementary condition is almost necessary to obtain a meaningful general result about 
the asymptotic behavior of the antiderivatives of a rapidly-varying function. Now if in 
(2.84)-(2.85) we put ( )

0
:

x

T
F x f= ∫ , with the proper choice of 0T ≤ +∞ , then the 

asymptotic behavior of F can be reread as  

( ) ( )( ) ( )2
~ , ;F x F x F x x′ ′′ → +∞                   (4.2) 

and, changing again notation, we have one of the following two equivalent relations:  

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )( )( )

2
~ ;

~ , i.e. ~ , .

f x f x f x

f x f x f x f x D f x D f x x

′′ ′

′′ ′ ′ ′ → +∞
 

    (4.3) 

For some applications conditions like those in (4.3) are necessary for meaningful 
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general results as, e.g., in determining asymptotic expansions of antiderivatives and in 
another class of expansions studied in Part II, §11, of this work: this justifies the fol-
lowing restricted concept of rapid variation. 

Definition 4.1. (Rapid variation of higher order). 
(I) (First order). A function [ )1 , ,f AC T∈ +∞  is called “rapidly varying at +∞  (of 

order 1) in the strong restricted sense” if  

( ) ( )
( ) ( ) ( )

( ) ( )( ) ( )

, 0 large enough;
, ;

1 , .

f x f x x
f x f x o x x

f x f x o x

 ′ ≠ ∀
 ′ = → +∞
 ′′ = → +∞

              (4.4) 

(II) (Higher order). A function [ ), ,nf AC T∈ +∞  is called “rapidly varying at +∞  
of order 2n ≥  in the strong restricted sense” if all the functions ( )1, , , nf f f −′

  are 
rapidly varying at +∞  in the strong restricted sense and this amounts to say that the 
following conditions hold true as x → +∞ :  

( ) ( ) 0 large enough and 0 ;kf x x k n≠ ∀ ≤ ≤               (4.5) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1; ; ; ;n nf x f x o x f x f x o x f x f x o x−′ ′ ′′= = =
  (4.6) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )11 ; 1 ; ; 1 .n nf x f x o f x f x o f x f x o− ′′ ′′ ′ ′′= = =  (4.7) 

If f  is rapidly varying at +∞  of order 2n ≥  in the previous strong restricted 
sense then, by (2.106), all the functions ( )1, , , nf f f −′

  belong to the same class, either 
( )−∞ +∞  or ( )+∞ +∞ , hence we shall use notation ( ){ }of orderf n±∞∈ +∞  to 

denote that f  enjoys the properties in (4.5)-(4.6)-(4.7) plus the corresponding value 
of the limit in (2.2). In most cases we shall not be interested in functions satisfying 
(4.5)-(4.6) but not (4.7), and so we use no additional notation to highlight the “strong 
restricted sense”. 

Remarks. 1. According to our definitions when we speak of a function f  rapidly 
varying (without specifying the order) we are using Definition 2.1 meaning that: 

[ ), , 0f AC T f∈ +∞ >  for x large enough and (2.2) holds true. But when we speak of a 
function f  rapidly varying of order 1 (usually omitting the additional locution “in the 
strong restricted sense”) we are using the stronger Definition 4.1. 

2. Conditions in (4.7) obviously imply those in (4.6) whereas, viceversa, complicated 
calculations in the attempt of proving (4.7) in addition to (4.6) may be usually saved 
using the classical result (already mentioned in the proof of Proposition 2.5) that: 
“ ( ) ( ){ } ( ) ( ), ; monotonic 1 ,g x o x x g g x o x′= → +∞ ⇒ = → +∞ ”. For instance (4.5)- 
(4.7) are trivially satisfied for the functions listed in (2.8) which are the most common 
functions rapidly varying at +∞  of any order n∈  in our strong restricted sense. 

 As concerns the analogue of Proposition 3.1 it happens that relations in (3.5) have 
no analogues for rapidly-varying functions of higher order whereas those in (3.6) have 
so yielding a useful characterization of this class of functions.  

Proposition 4.1. (Principal parts of higher derivatives in case of rapid variation). Let 
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[ ),nf AC T∈ +∞  and conditions in (4.5) be satisfied; then  
( ){ } ( ){ }of order of orderf n n+∞ −∞∈ +∞ ∪ +∞  , i.e. conditions in (4.7) hold true, if 

and only if the following four equivalent sets of conditions are satisfied:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

1 1~ ~ ~ ~ ,

i.e. ~ , , 1 ;

n n n n

k

f x f x f x f x f x f x f x f x

D f x D f x x k n

− + ′ ′′ ′


→ +∞ ≤ ≤  



 (4.8) 

( ) ( ) ( ) ( )( ) ( ) ( )
22 1~ , , 0 1;k k kf x f x f x x k n+ + → +∞ ≤ ≤ −          (4.9) 

( ) ( ) ( ) ( ) ( )( ) ( )( )( ) 222 ~ , , 0 1;
kkkf x f x f x f x D f x x k n
+++ ′ ≡ → +∞ ≤ ≤ −



 (4.10) 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

2

11

~

~ ~ , .
nn

f x f x D f x f x D f x

f x D f x x
++

′ ′′≡

→ +∞

 





          (4.11) 

It follows that even ( ) ( )1 0nf x+ ≠  for almost all x large enough. Relations in (4.10) 
are formally obtained from those in (3.6) as the index α  tends to +∞ . Relations in 
(4.10) imply the following asymptotic scale:  

( ) ( ) ( ) ( ) ( ) ( )1 , ,n nf x f x f x f x x+ ′ → +∞  
         (4.12) 

whereas a different way of writing relations in (4.6) would give the weaker scale:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 11 2 , .n n n n nf x x f x x f x x f x x f x x− − − −− − −′ → +∞   

 (4.13) 

Proof. Relations in (4.9) and in (4.11) simply are different ways of rewriting relations 
respectively in (4.8) and in (4.10). Now inspecting (4.7) we have for 1n = :  

( ) ( ) ( ) ( )2 21 1 ~ 1,f f ff f o f f− −′′ ′′ ′ ′′ ′≡ − = ⇐             (4.14) 

which is (4.9) and (4.10) for 0k = . Moreover, for any { }0,1, , 1k n∈ −  we have  

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

21 2 1

2 22 1 2 1

1 1

~ 1 ~ ;

k k k k k

k k k k k k

f f f f f o

f f f f f f

−+ + +

−+ + + +

′ ≡ − =

⇔ ⇔
          (4.15) 

hence (4.7) are equivalent to (4.9). It remains to prove the equivalence between (4.9) 
and (4.10) for 2n ≥  and 1k ≥ . Supposing relations in (4.9) true we start from the 
asymptotic relation involving ( )2kf +  and replace ( )1kf +  in the right-hand side with 
the analogous relation while leaving unaltered ( )kf ; so we get  

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
22 2 3 22 1 1 1~ ~ ~k k k k k k k kf f f f f f f f+ + − −  = 

 
  (4.16) 

If 1k =  this gives ( ) ( )33 2~f f f′  which is (4.10) for 1k = . If 2k ≥  we reapply 
the procedure to the last expression in (4.16) so getting  

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )
32 2 4 32 1 2 1 1 2~ ~k k k k k kf f f f f f+ − − − − −  = 

 
      (4.17) 

If 2k =  this gives ( ) ( )44 3~f f f′  which is (4.10) for 2k = ; and if 3k ≥  we 
repeat the procedure and get all relations in (4.10). Viceversa suppose (4.10) true and 
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assume, by induction, that they imply (4.9), i.e. (4.8), for k ranging in { }0,1, , h  for 
some 1h ≥ , as this is trivially true for 0h = . Let us write down the relations in (4.10) 
for , 1k h h= + :  

( ) ( ) ( )2 12 ~ ;h hhf f f+ ++ ′                      (4.18) 

( ) ( ) ( ) ( ) ( )( ) ( )3 2 2 13 ~ .h h h hhf f f f f f f+ + + ++ ′ ′ ′= ⋅           (4.19) 

Using (4.18) and the relation in (4.8) involving the ratio ( ) ( )2 1h hf f+ + , which is true 
by the inductive hypothesis, we get  

( ) ( ) ( ) ( )( ) ( )( ) ( )23 2 2 1 2 1~ ,h h h h h hf f f f f f+ + + + + +⋅ =            (4.20) 

which is the relation in (4.9) for 1k h= +  and the proof is over. 
An instructive counterexample concerning Definition 4.1 and the associated func-

tion. Let us consider the following function  

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

2

2 2

2

: e sin e e 1 , ; 0;

1e e cos e ~ e ;
2

e if 1 4,1e 1 sin e 1
e if 1 4,4

x x x
c

x x x x
c

x
x x

c x

f x c c O x c

f x c c

c b x c
f x c o

c x cc ω


 = + = + → +∞ ≠
 ′ = +

  ⋅ > ′′ = − + ≡   ⋅ ≤  

     (4.21) 

wherein ultimately “ ( )1 20 M b x M< ≤ ≤ < +∞ ”, whereas ( )xω  changes sign infinite-
ly often though being bounded. The relations hold true:  

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2
~ ~ ;

~ if 1 4; ~ if 1 4;
c c c c

c c c c

f x f x f x f x

f x f x b x c f x f x x cω

 ′ ′


′′ ′ ′′ ′> ≤
    (4.22) 

whence we infer that  

( ) ( ) ( ) ( ) ( )
( )

1 4 , ; ~ ;

0 1 4 ( ), ;
c c c c c c

c c

c f f f x f x f x f x

c f f
+∞

+∞ +∞

′ ′′ ′ ′ > ⇒ ∈ +∞ /
 ′< ≤ ⇒ ∈ +∞ ∉ +∞



 
      (4.23) 

and condition (4.1) is not satisfied as  

( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

2 2 21 1 e e e 1 1

1 1 if 1 4,

1 1 if 0 1 4,

x x x
c c c c c

b x
f f f f f c c c o

x

b x o c

x o c

ω

ω

− − −  ′′ ′′ ′≡ − = − ⋅ ⋅ ⋅ ⋅ + 
  

 − + >= 
− + < ≤

     (4.24) 

and ( ) ( )( )limx c cf x f x→+∞
′′  does not exist. So for any 0c ≠  we have an example of 

a function f such that:  

( ) ( ) ( ) ( )( )~ 1; lim does not exist;
x

f x f x f x f x
→+∞

′′ ′           (4.25) 

though for 1 4c >  the additional property “ ( )f f ′′  bounded” is satisfied. 
For 1 4c >  we also have an example of a function f such that:  
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( ) ( ) ( ) ( ) ( )

( ){ }
( ) ( )

, . . lim lim ,

of order 1 in the strong restricted sense,

bounded but not convergent at .

x x
f f i e xf x f x xf x f x

f

f f

+∞ →+∞ →+∞

+∞

 ′ ′ ′′ ′∈ +∞ = = +∞

 ∈ +∞/


′ ′ + ∞



    (4.26) 

As concerns the associated function in (3.24), ( ) ( ): log ex
c cx fφ  =   , the second 

formula in (3.32) yields  

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

2
2 1

log 1 , .
1

c c c
c

c c c

b xx f x xf x xf x
x x x o x x

xf x f x f x
φ

ω
′′ ′ ′   −  ′′ = − − = ⋅ + + → +∞     −   

 (4.27) 

Hence for any 0c ≠  we have an example of a function ( )f +∞∈ +∞  satisfying 
the special additional relation ( ) ( )~f x f x′ , and also ( )f +∞′∈ +∞  for 1 4c > , 
such that the associated function φ  has a second derivative oscillatory and un-
bounded. This shows that the properties of the associated function have little meaning, 
if any, in the context of rapid variation. 

A remark about the ratios ( ) ( )h kf f . In Definition 4.1-(II) relations in (4.6) imply 
the following chain:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 22 ,
, 0 .

k k k k hhf x xf x x f x x f x
x k k h n

+ + +

→ +∞ ≤ < + ≤

           (4.28) 

A remark about ( )limx f f→+∞
′′ . If a function [ )1 ,f AC T∈ +∞  with ( ) ( ),f x f x′  

ultimately 0≠ , satisfies condition  

( ) ( )( ) ( )1 , , with 0,f x f x a o x a′′ = + → +∞ ≠             (4.29) 

an integration yields  

( ) ( ) ( ) ( ) ( )1~ i.e. ~ 1 i.e. .af x f x ax xf x f x a f′ ′ ∈ +∞        (4.30) 

Moreover the identity in (4.14) gives  

( ) ( )
( )( )

( ) ( )

( )
( )

( )
( ) ( ) ( ) ( ) ( )

2

1

1 1

1
whence 1 1 1 ,

f x f x
a o

f x

f x f x a
a o x o

f x f x a
−

′′
= − +

′

′′ ′ − 
= − + = +    ′  

      (4.31) 

i.e. ( )bf ′∈ +∞  with ( )1 1b a= −  according to Proposition 2.6. In conclusion 
(4.29) implies “ ( ){ }1 of order 2af ∈ +∞ ”. Thus, if the asymptotic relation in (4.29) 
holds true for some real number a  and if it is known that ( )f ±∞∈ +∞ , then it 
must be 0a = . Analogously, using the identity in (4.15) and under the regularity as-
sumptions in Proposition 4.1, we prove that if  

( ) ( ) ( ) ( ) ( ) ( ) ( ) { }2 1 1 for some 0,1, , 1 ,k k k
kf x f x f x c o k n+ + = + ∈ −

   (4.32) 

then  

( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 ,k k
kf x f x c o+ ′ = − +                (4.33) 

and  
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( ) ( ) ( ) ( ) ( ) ( )1 1 ,k k
kf x f x c x o x+ = − +                 (4.34) 

i.e. ( ) ( )k
bf ∈ +∞  with ( )( )1 1 kb c= − +∞ . Hence if it is known a priori that 

( ) ( )hf ±∞∈ +∞  for some h k≤  then 1kc = . This fact will be needed in the sequel.  
Corollary 4.2. (Summing up the behaviors of the higher derivatives). Let 

( ){ }of any orderf nα∈ +∞ , α ∈ . Then, as x → +∞ :  

( ) ( ) ( ) ( )( )~ ( ), 2;
nnf x f x f x f x nα ′= ±∞⇒ ⋅ ≥            (4.35) 

( ) ( ) ( ) ( ) ( ) ( )1 1
10 and ~ 1 1 ! , 2;nn nf f x n x f x nα − −
−′ ′= ∈ +∞ ⇒ − − ≥    (4.36) 

( ) ( ) ( )( ) , 1;n nf x O x f x nα −∈ ⇒ = ≥                (4.37) 

( ) ( ) ( )\ ~ , 1.n n nf x x f x nα α −∈ ⇒ ≥ 
              (4.38) 

Examples.  

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1

1
1 2 1 2 2 1 2

1 1

11
1

1

e ~ e , ; 1; , 0;

exp exp ~ exp exp exp ; 1; , 0;

log ~ 1 1 ! log , ; 1; 0,1;

~ 1 1 ! , ; 1; 2;

n nn cx cx

n nn
i

nn n

k
nn n

k i
i

n

D c x x n c

D c c x c c x nc x c c x n c

D x n x x x n

D x n x x x n k

D x

γ γγ

γγ γ γ

δ δ

γ γ

γ γ

δ δ

−

−

− −−

−−
− −

=

→ +∞ ≥ ≠

   ⋅ ⋅ ≥ ≠   

− − → +∞ ≥ ≠

 − − → +∞ ≥ ≥ 
 
∏ 

( )( ) ( )log ~ log , ; 1; \ ; 0.n nx x x x nδ δα αα α δ− → +∞ ≥ ∈ ≠ 

 (4.39) 

5. Asymptotic Functional Equations for Regular  
or Rapid Variation 

Using representations in (2.12) it is easy to prove certain useful asymptotic relations sa-
tisfied by regularly-varying functions and in particular (2.6) which has been assumed by 
Karamata as the definition of a general concept of regular variation. The standpoint in 
this section is that of highlighting how a given function acts upon various asymptotic 
relations and we give these properties the collective name of “asymptotic functional 
equations”.  

Proposition 5.1. (Slow and regular variation). (I) A function ( )0f ∈ +∞  enjoys 
the following asymptotic property:  

( ) ( )
( ) ( ) ( )( ) ( )( )1 2

1 2

, ,
~ , ;

, , 1, 2i

g x g x x
f g x f g x x

g x x i
 → +∞ ⇒ → +∞ → +∞ → +∞ =


   (5.1) 

which states that a slowly-varying function transforms the relation of “asymptotic si-
milarity between functions diverging to +∞ ”, see (1.11), into the stronger relation of 
“asymptotic equivalence”: A property elementarily checked for the iterated logarithms 
and their powers. In particular f  satisfies the asymptotic functional equation:  

( ) ( )( )( ) ( )( ) ( )
for each fixed 0 and

~ , ,
for each g such that ,

f g x o g x f g x x
g

λ
λ

>+ → +∞  +∞ = +∞
 (5.2) 
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which, by the presence of the parameter λ , says a bit more than “preserving asymp-
totic equivalence”. 

(II) A function ( ) , ,f α α∈ +∞ ∈   enjoys the following asymptotic properties:  

( ) ( )
( ) ( ) ( )( ) ( )( )1 2

1 2

, ,
, ;

, , 1, 2i

g x g x x
f g x f g x x

g x x i
 → +∞ ⇒ → +∞ → +∞ → +∞ =


     (5.3) 

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )1 2

1 2

~ , , 0
~ , .

, , 1, 2i

g x g x x
f g x f g x x

g x x i
αλ λ

λ
 → +∞ > ⇒ → +∞ → +∞ → +∞ =

  (5.4) 

They mean that a regularly-varying function preserves the relations of “asymptotic 
similarity” and “asymptotic equivalence” between functions diverging to +∞  with an 
addditional property concerning the multiplication of the argument by a constant fac-
tor λ . The last inference may be symbolically written as the asymptotic functional eq-
uation:  

( ) ( )( )( ) ( )( ) ( )
for each fixed 0 and

~ , ,
for each g such that ;

f g x o g x f g x x
g

α λ
λ λ

>
+ → +∞  +∞ = +∞

 (5.5) 

in particular:  

( )( ) ( )~ , , for each fixed 0.f x o x f x xαλ λ λ+ → +∞ >          (5.6) 

The asymptotic functional equation (2.6) is a special case of (5.6) and it expresses the 
“power-like” type of growth of f . For 1λ =  we have the more precise result:  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )1, , 1 , ;r x o x x f x r x f x x r x f x o xα−= → +∞ ⇒ + = + + → +∞     (5.7) 

referring to §11 in Part II for expansions with more terms. Two special cases of (5.7) 
are:  

( )( ) ( ) ( )( )11 , ;f x O f x O x f x x−+ = + → +∞               (5.8) 

( )( ) ( ) ( ) ( )11 1 , , for each fixed 0.f x o f x x f x o xλ λ α λ−+ + = + + → +∞ ≠     (5.9) 

Another useful consequence of (5.6) is:  
( ) ( ) ( ) ( ) ( ) ( )d ~ , , for ;

x r x

x
f t t r x f x x r x o x

+
→ +∞ =∫           (5.10) 

and in particular:  
( ) ( ) ( )1

d ~ , , for each fixed 0.
x o

x
f t t f x x

λ
λ λ

+ +
→ +∞ ≠∫          (5.11) 

Proof. Rewrite (2.12) as  

( ) ( )
( )

( ) ( ) ( )1 1

exp d with 0

and , .

x

T

f t
f x c t c

f t

f x f x x o x xα − −

′ 
= ⋅ >  

 
′ = + → +∞

∫          (5.12) 

To prove (5.1) and (5.3) let ,I g  be two functions defined on a neighborhood of 
+∞  such that:  

( ) ( )1 20 ; ;c I x c g< ≤ ≤ < +∞ +∞ = +∞                (5.13) 
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then  

( ) ( )( )
( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )1exp d exp log d .
I x g x I x g x

g x g x

f I x g x f t
t I x o t t

f tf g x
α −′ 

= = +  
 
∫ ∫  (5.14) 

By (5.13):  

( )1 20 log ,c I x c< ≤ ≤ < +∞                    (5.15) 

and  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )1 1
20 : d d log ,

I x g x I x g x

g x g x
T x T o t t t t I x c− −∀ > ∃ > ⇒ < = <∫ ∫        (5.16) 

so that  

( )
( ) ( ) ( ) ( )1 d 1 , .

I x g x

g x
o t t o x− = → +∞∫                   (5.17) 

For 0α ≠  we use these facts in the right-hand side of (5.14) so getting the inequali-
ties  

( ) ( )( )
( )( )1 20 large enough,

f I x g x
d d x

f g x
< ≤ ≤ < +∞ ∀      (5.18) 

which are the precise meaning of the thesis in (5.3). And for 0α =  the more precise 
relation in (5.1) is obtained. Analogously we have  

( ) ( )( )( )
( )( ) ( )

( ) ( )( ) ( )
( )

( )( ) ( )
( ) ( )( ) ( )( )

( )( ) ( )

1

by (5.17)

exp d

exp log 1 d

exp log 1 1 ,

g x o g x

g x

g x o g x

g x

f g x o g x f t
t

f tf g x

o o t t

o o

λ

λ

α

λ

α λ

α λ λ

+

+ −

+ ′ 
=   

 

= + +

= + = +

∫

∫  (5.19) 

which is (5.4), equivalent to (5.5). The asymptotic expansion in (5.7) is similarly 
proved:  

( )( )
( )

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

exp d exp log 1 log 1

exp 1 .

x r x

x

f x r x f t r x r x
t o

f x f t x x

r x r x r x r x
o o

x x x x

α

α α

+  +  ′     
= = + + +                  

    
= + = + +    

     

∫
 (5.20) 

Last, (5.10) follows from the mean-value theorem of integral calculus:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
by (5.5)

d ~ ,
x r x

x
f t t r x f x x r x r x f xθ

+
= +∫       (5.21) 

as “ ( ) ( ) ( )x r x o xθ = ”. An alternative proof, only valid for 1α ≠ − , follows from (5.7) 
applied to an antiderivative of f , say F , which satisfies ( )1F α +∈ +∞ , by writing  

( ) ( )( ) ( ) ( ) ( ) ( )1~ 1 ,
x r x

x
f F x r x F x x F x r xα

+ −= + − +∫      (5.22) 

and then using (2.78) or (2.79). 
A comment on uniform convergence. Refining the calculations in (5.19) the last ex-



A. Granata  
 

814 

pression in (5.19) may be replaced by  

( ) ( ) ( ) ( )
( ) ( )( ) ( )11

exp log log 1 , : d ,
g x o g x

g x

o
I x I x o t t

λ
α λ α

λ
+ −  

+ + + =     
∫  (5.23) 

where the symbols “ ( )o ⋅ ” stand for suitable functions not dependent on λ . Hence:  

( ) ( )( )( )
( )( )

( ) ( )
1

1 1 exp 1,
f g x o g x o

I x
f g x

α

α

λ

λλ

+  
− = + ⋅ − 

 
          (5.24) 

and it is easily seen that the quantity on the right tends to zero, as x → +∞ , uniformly 
with respect to λ  varying on any compact interval of type [ ]1 2 1 2, , 0c c c c< < < +∞ . 
This fact, elementary for regular variation in the strong sense, is a nontrivial result for 
regular variation in Karamata’s sense, basic for the whole theory: Uniform Convergence 
Theorem ([8]; pp. 6-10 and pp. 22-23). A minor result in the general theory states that 
the asymptotic functional equation (2.6) is equivalent to the (seemingly more general) 
(5.6). 

In the next proposition special cases of the asymptotic relation in (5.7) are com-
mented upon.  

Proposition 5.2. (I) (Asymptotic sublinearity). If ( ) , 1,f α α∈ +∞ <  then (2.19) 
implies that ( ) ( )1 1x f x o− =  and (5.8) becomes:  

( )( ) ( ) ( )1 1 , ,f x O f x o x+ = + → +∞                 (5.25) 

a property enjoyed by all functions [ ),f AC T∈ +∞  such that ( ) ( )1 ,f x o x′ = → +∞ , 
as follows at once from representation  

( )( ) ( ) ( ) ( )d .
x r x

x
f x r x f x f t t

+
′+ − = ∫                 (5.26) 

Such a property may be interpreted as a kind of “asymptotic sublinearity”. 
(II) (Asymptotic linearity). For a function ( )1f ∈ +∞  and  
( ) ~ , , 0,f x Ax x A→ +∞ ≠  the asymptotic functional equation in (5.9) becomes:  

( )( ) ( ) ( )1 1 , , for each fixed 0,f x o f x A o xλ λ λ+ + = + + → +∞ ≠      (5.27) 

a property enjoyed by all functions [ ),f AC T∈ +∞  such that  
( ) ( )1 ,f x A o x′ = + → +∞ , as again follows from representation (5.26). An instance is 

provided by the function φ  defined in (3.24) and associated to f  in defining the 
concept of smooth variation. (As we know, the sole condition ( ) ~ , 0,f x Ax A ≠  im-
plies “ f  regularly varying at +∞  of index 1 in the general sense of Karamata”.)  

The property in (5.27) may be interpreted as a kind of “asymptotic linearity”. For 
0λ =  (5.27) takes the form:  

( )( ) ( ) ( )1 1 , ,f x o f x o x+ = + → +∞                 (5.28) 

an equation satisfied by all functions [ ),f AC T∈ +∞  such that  
( ) ( )1 ,f x O x′ = → +∞ , a meaningful subclass being that of the functions ultimately 

“positive and concave”. A proper label for the property in (5.28) is “asymptotic uniform 
continuity at +∞ ” as it can be proved that: 
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“A function [ ): ,f T +∞ →   is uniformly continuous on [ ),T +∞  iff it is conti-
nuous on [ ),T +∞  and asymptotically uniformly continuous at +∞ ”. 

(III) (A subclass of slowly-varying functions). The strong asymptotic functional equ-
ation  

( )( ) ( ) ( )1 , ,f x o x f x o x+ = + → +∞                 (5.29) 

states that f  transforms the relation of “asymptotic equivalence between functions 
diverging to +∞ ” into the stronger relation of “asymptotic equivalence with an infini-
tesimal remainder”. Representation in (5.26) easily implies that (5.29) is satisfied by any 

[ ),f AC T∈ +∞  such that ( ) ( )1f x O x−′ = , for instance by all functions “ ( )0f ∈ +∞  
and bounded” and by:  

( ) ( )( )
( )( ) { } { }1 11

log , 1; , 2, ;

, where either 1, or 1, 0 ;k

k

k k kk n

x x k

x

δδ

δ

δ δ

δ δ δ δ
≤ ≤

 ≤ ≥ ∈

 < ∈ = ≤∏








     (5.30) 

but neither by ( )log , 1,x δ δ >  nor by ( )exp log , 0x δ δ  >  .  
For rapid variation, which formally refers to the limit cases α = ±∞  of regular vari-

ation, only a formal analogue of (5.5) holds true.  
Proposition 5.3. (Rapid variation). (I) If ( )f +∞∈ +∞  and if ( )limx g x→+∞ = +∞  

then:  

( ) ( )( )( )
( )( )

0 if 0 1,
lim

if 1 .x

f g x o g x

f g x

λ λ
λ→+∞

+ < <
= +∞ < < +∞

           (5.31) 

In particular  

( ) ( )
0 if 0 1,

lim
if 1 .x

f x f x
λ

λ
λ→+∞

< <
= +∞ < < +∞

              (5.32) 

(II) If ( )f −∞∈ +∞  and if ( )limx g x→+∞ = +∞  then:  

( ) ( )( )( )
( )( )

if 0 1,
lim

0 if 1 .x

f g x o g x

f g x

λ λ
λ→+∞

+ +∞ < <
=  < < +∞

           (5.33) 

In particular  

( ) ( )
if 0 1,

lim
0 if 1 .x

f x f x
λ

λ
λ→+∞

+∞ < <
=  < < +∞

              (5.34) 

The asymptotic functional relations (5.32) and (5.34) where assumed by de Haan as 
definitions of the general classes of (measurable) rapidly-varying functions of index 
±∞ , respectively: ([8]; p. 83). 

Proof. (I) From relation (2.2) we get that > 0 MM T∀ ∃  such that Mx T>  implies 
“ ( ) ( )f x f x M′ ≥ ”, and for all x large enough we also have: 

( )
( ) ( )( ) ( )

( ) ( )
( ) ( )( ) ( )( )1d d log 1 , if 1,

g x o g x g x o g x

g x g x

f t
t M t t M o

f t
λ λ

λ λ
+ + −′

≥ = + >∫ ∫     (5.35) 

( ) ( )( )
( ) ( )

( )
( )

( ) ( )( ) ( )( )d log log 1 , if 0 1,
g x

g x o g x

f t g x
t M M o

f t g x o g xλ
λ λ

λ+

 ′
− ≤ − = + < <  + 
∫  (5.36) 
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whence  

( )
( ) ( )( ) ( )

( )
if 0 1

lim d
if 1 .

g x o g x

g xx

f t
t

f t
λ λ

λ
+

→+∞

′ −∞ < <
= +∞ < < +∞

∫             (5.37) 

The limits in (5.31) follow by applying the exponential as in (5.19) and those in 
(5.33) follow by applying the just-proved result to the function 1 f . 
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