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Abstract 
We give a neccesary and sufficient condition on a function :f →   such that the 
composition operator (Nemytskij Operator) H defined by Hf f h=   acts in the 

space ( ) [ ]( ),pWBV a b⋅  and satisfies a local Lipschitz condition. And, we prove that 

every locally defined operator mapping the space of continuous and bounded Wiener 
( )p ⋅ -variation with variable exponent functions into itself is a Nemytskij com- 

position operator. 
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1. Introduction 

This paper lies in the field of variable exponent function spaces, exactly we will deal 
with the space ( ) [ ]( ),pWBV a b⋅  of bounded ( )p ⋅ -variation in Wiener’s sense with vari- 
able exponent (see [1], [2]). 

Variable exponent Lebesgue spaces appeared in the literature in 1931 in the paper by 
Orlicz [3]. He was interested in the study of function spaces that contain all measurable 
functions :u Ω→   such that  

( ) ( )( )d ,u u x xρ λ ϕ λ
Ω

= ∫  

for some 0λ >  and ϕ  satisfying some natural assumptions, where Ω  is an open 
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set in n . This space is denotated by Lϕ  and it is now called Orlicz space. However, 
we point out that in [3] the case ( ) ( )p x

u x  corresponding to variable exponents is not 
included. In the 1950’s, these problems were systematically studied by Nakano [4], who 
developed the theory of modular function spaces. Nakano explicitly mentioned variable 
exponent Lebesgue spaces as an example of more general spaces he considered, see 
Nakano [4] p. 284. In 1991, Kováčik and Rákosník [5] established several basic 
properties of spaces ( )p xL  and ( )1, p xW  with variable exponents. Their results were 
extended by Fan and Zhao [6] in the framework of Sobolev spaces ( ),m p xW . 

With the emergence of nonlinear problems in applied sciences, standard Lebesgue 
and Sobolev spaces demostrated their limitations in applications. The class of nonlinear 
problems with variable exponents growth is a new research field and it reflects a new 
kind of physical phenomena. 

It is well known that the class of nonlinear operator equations of various types has 
many useful applications in describing numerous problems of the real world. A number 
of equations which include a given operators have arisen in many branches of science 
such as the theory of optimal control, economics, biological, mathematical physics and 
engineering. Among nonlinear operators, there is a distinguished class called composi- 
tion operators. Next we define such operators. 

Definition 1.1. Given a function :h →  , the composition operator H, associated 
to a function f (autonomous case) maps each function [ ]: ,f a b →   into the composi- 
tion function [ ]: , ,Hf a b →   given by  

( ) ( )( ) [ ]( ): , , .Hf t h f t t a b= ∈                   (1.1) 

More generally, given [ ]: , ,h a b × →   we consider the operator H, defined by  

( ) ( )( ) [ ]( ): , , , .Hf t h t f t t a b= ∈                  (1.2) 

This operator is also called superposition operator or susbtitution operator or 
Nemytskij operator. The operator in the form (1.1) is usually called the (autonomous) 
composition operator and the one defined by (1.2) is called non-autonomos. 

A rich source of related questions are the excellent books by J. Appell and P. P. 
Zabrejko [7] and J. Appell, J. Banas, N. Merentes [8]. 

E. P. Sobolevskij in 1984 [9] proved that the autonomous composition operator 
associate to :h →   is locally Lipschitz in the space [ ],Lip a b  if and only if the 
derivative h′  exists and is locally Lipschitz. In recent articles J. Appell, N. Merentes, J. 
L. Sánchez [10], N. Merentes, S. Rivas, J. L. Sánchez [11] and O. Mejía, N. Merentes, B. 
Rzepka [12], obtained several results of the Sobolevskij type. According to the authors 
mentioned above the importance of these results lies in the fact that in most 
applications to many nonlinear problems it is sufficient to impose a local Lipschitz 
condition, instead of a global Lipschitz condition. In fact, they proved that Sobolevskij’s 
result is valid in the spaces [ ],BV a bϕ , [ ],HBV a b , [ ],RV a bϕ , [ ],BV a bΦ  and  

[ ],BV a bκΦ . 
In this paper, we obtained two main results. The organization of this paper is as 

follows. Section 2, we gather some notions and preliminary facts, and necessary back- 
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ground about the class of functions of bounded ( )p ⋅ -variation in Wiener’s sense with 
variable exponent, also we expose some new properties of this space. In Section 3, we 
establish our first main result of the Sobolevskij type which is also valid in some spaces 
of functions of generalized bounded variations such as ( ) [ ]( ),pWBV a b⋅ . In Section 4, 
we enunciate and prove our second main result related to the composition operator: If 
a locally defined operator K  maps ( ) ( )pCWBV I⋅  into ( )C I  then it is composition 
operator. 

2. Preliminaries 

Throughout this paper, we use the following notation: Let a function [ ] ( ): , 1,p a b → ∞  

and we will denote by ( ) [ ]( ) ( ) ( ) ( ) [ ]{ }, , sup : , ,ts

ts

p x
p x f a b f t f s t s a bω = − ∈  the dia-  

meter of the image [ ]( ),f a b  (or the oscillation of f on [ ],a b ), by tsx  a number be- 
tween [ ],t s  and [ ] ( ),: supx a bp p x+

∈= . 
In 2013 R. Castillo, N. Merentes and H. Rafeiro [1] introduced the notion of bounded 

variation space in the Wiener sense with variable exponent on [ ],a b  and present a 
result of compactness (Helly principle) in this space. 

Definition 2.1 (See [1]). Given a function [ ] ( ): , 1,p a b → ∞ , a partition  

0 1: na t t t bπ = < < < =  of the interval [ ],a b  and a function [ ]: ,f a b →  . The 
nonnegative real number  

( ) ( ) ( ) [ ]( ) ( ) ( ) ( )1

*
1

1
, , : sup j

n p xW W
j jp p

j
V f V f a b f t f t

π

−

−⋅ ⋅
=

= = −∑  

is called Wiener variation with variable exponent (or ( )p ⋅ -variation in Wiener’s sense) 
of f on [ ],a b  where *π  is a tagged partition of the interval [ ],a b , i.e., a partition of 
the interval [ ],a b  together with a finite sequence of numbers 0 1, , nx x −  subject to 
the conditions that for each j, 1j j jt x t +≤ ≤ . 

In case that ( ) [ ]( ), ,W
pV f a b⋅ < ∞ , we say that f has bounded Wiener variation with 

variable exponent (or bounded ( )p ⋅ -variation in Wiener’s sense) on [ ],a b . The 
symbol ( ) [ ]( ),pWBV a b⋅  will denote the space of functions of bounded ( )p ⋅ -variation 
in Wiener’s sense with variable exponent on [ ],a b . 

Definition 2.2. (Norm in ( ) [ ]( ),pWBV a b⋅ ) The functional  

( ) ( ) [ ]( ): ,W
pp WBV a b⋅⋅

⋅ →   defined by  

( ) ( ) ( ) ( ) ( ) [ ]( ): , ,W
p ppf f a f f WBV a bµ ⋅ ⋅⋅

= + ∈             (2.1) 

where ( ) ( ) ( ): inf 0 : 1W
p p

ff Vµ λ
λ⋅ ⋅

  = > ≤  
  

 is a norm on ( ) [ ]( ),pWBV a b⋅ . 

Theorem 2.3 (See [1]). Every sequence in ( ) [ ]( ),pWBV a b⋅  has a subsequence conver- 
gent pointwise to a function ( ) [ ]( ), .px WBV a b⋅∈  

In 2015, O. Mejía, N. Merentes and J. L. Sánchez [2] showed the following properties 
of elements of ( ) [ ]( ),pWBV a b⋅  that allow us to get characterizations of them. 

Lemma 2.4 (General properties of the ( )p ⋅ -variation). Let [ ]: ,f a b →   be an ar- 
bitrary map. We have  
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(P1) minimality: if [ ], ,t s a b∈ , then  

( ) ( ) ( )
( ) [ ]( ) ( ) [ ]( ), , , , .ts

ts

p x W
pp xf t f s f a b V f a bω ⋅− ≤ ≤  

(P2) monotonicity: if [ ], , , ,a t s b a b∈  and a t s b≤ ≤ ≤ , then  

( ) [ ]( ) ( ) [ ]( ), , , ,W W
p pV f a t V f a s⋅ ⋅≤ , ( ) [ ]( ) ( ) [ ]( ), , , ,W W

p pV f s b V f t b⋅ ⋅≤  and  

( ) [ ]( ) ( ) [ ]( ), , , ,W W
p pV f t s V f a b⋅ ⋅≤ . 

(P3) semi-additivity: if [ ],t a b∈ , then  

( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )12 , , , , , , , , .p W W W W
p p p pV f a b V f a t V f t b V f a b

+−
⋅ ⋅ ⋅ ⋅≤ + ≤  

(P4) change of a variable: if [ ],c d ⊂   and [ ] [ ]: , ,c d a bϕ →  is a (not necessarily  
strictly) monotone function, then ( ) [ ]( )( ) ( ) [ ]( ), , , ,W W

p pV f c d V f c dϕ ϕ⋅ ⋅=  . 

(P5) regularity: ( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , ; , , ,W W
p pV f a b V f s t s t a b a b⋅ ⋅= ∈ ≤ . 

The following structural theorem is taken from [2], this gives us a characterization of 
the members of ( ) [ ]( ),pWBV a b⋅ . 

Theorem 2.5 (see [2]). The map [ ]: ,f a b →   is of bounded ( )p ⋅ -variation if 
and only if there exists a bounded nondecreasing function [ ]: ,a bϕ →   a Hölderian 
map [ ]( ): ,g a bϕ →   of exponent ( )1 pγ = ⋅  and ( ) 1H g ≤  such that f g ϕ=   
on [ ],a b . 

Given ( ) [ ]( ),pf WBV a b⋅∈ , consider the ( )p ⋅ -variation function in Wiener’s sense 

( ) [ ], : ,W
p fV a b⋅ →   defined by 

( ) ( ) ( ) [ ]( ), : ; , .W W
p f pV x V f a x⋅ ⋅=                     (2.2) 

Proposition 2.6. Suppose that ( ) [ ]( ),pf WBV a b⋅∈  is continuous at some point  
[ ]0 ,y a b∈ ; then, the function ( ),

W
p fV ⋅  (2.2) is also continuous at 0y . 

Proof. Let 0ε >  and suppose that [ ]: ,f a b →   is continuous function at 0y , 
without loss of generality we can assume that 0y y b< < . Consider the difference  

( ) ( ) ( ) ( )0, ,
W W
p f p fV y V y⋅ ⋅− . Choose partitions { }

0 0 1 0, , ,y sP a t t t y= = =  and  

{ }0 1, , ,y mP a t t t y= = =  such that  

( ) [ ]( ) ( ) [ ]( )00 0; , , ; , .W W
yp pV f y b V f P y b ε⋅ ⋅< +  

Afterwards, we choose δ  such that ( ) ( )0f y f y ε− <  for 00 y y δ< − <  which 
is possible by the continuity of f at 0y . By definition of ( ) [ ]( ), ,W

pV f a b⋅  there exist a 
partition 0 0: na t t t bπ = ≤ ≤ ≤ =  and 0ε >  such that  

( ) [ ]( ) ( ) ( ) ( )1

1
1

, , .j
n p xW

j jp
j

V f a b f t f t ε−

−⋅
=

≤ − +∑  

Then for these y, we have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1

1 1
1 1

1 1 1
1 1 1

j i

j j i

m sp x p x
j j i i

j i

k m sp x p x p x
j j j j i i

j j k i

f t f t f t f t

f t f t f t f t f t f t

− −

− − −

− −
= =

− − −
= = + =

− − −

= − + − − −

∑ ∑

∑ ∑ ∑
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]( ) ( ) [ ]( )

( ) ( )

1

1 1

1 1

1 1

1
1

1 1
1 1

1 1
1 1

1 1
1 1

0

0

;

, , , ,

j y yk

j i

j i

j i

k p x p x
j j k

j
m sp x p x

j j i i
j k i

m sp x p xW
y j j i ip

j k i
m n sp x p x

j j i i
k i

W W
p p

p

f t f t f y f t

f t f t f t f t

V f P f t f t f t f t

f t f t f t f t

V f y b V f y b

f y f y

ε

ε

−

− −

− −

− −

−
=

− −
= + =

− −⋅
= + =

+

− −
= =

⋅ ⋅

≤ − + −

+ − − −

≤ + − − −

≤ − + − −

≤ + −

= −

∑

∑ ∑

∑ ∑

∑ ∑

( ) ( ) ( ) ( )
( ) [ ]( )

( ) ( ){ }

1

1
2

1

2 , ,

2 3max , .

jy yo

y y y yo o

n p xx W
j j p

j

p x p x

f t f t V f y bε

ε ε ε ε ε

−

− ⋅
=

+ − + −

< + ≤ =

∑

 

Lemma 2.7. Let ( ) [ ]( ),pf WBV a b⋅∈ . Then  

( )
( )

1.W
p W

p

fV
f⋅

⋅

 
  ≤
 
 

 

Proof. Let *π  is a tagged partition of the interval [ ],a b , take ( )
W
pfλ
⋅

> . Then  

( ) ( ) ( )

( )
1

1
1.

jp x

j j W
p

j

f t f t fV
λ λ

∞ −

⋅
=

−  ≤ ≤ 
 

∑  

Thus  

( )
( ) ( )

( ) ( ) ( )

*

1

1
sup lim 1.

j

W
p

p x
n j jW

p W
fjp

f t f tfV
f λπ λ⋅

−

⋅
→=

⋅

   −   = ≤       

∑  

Proposition 2.8. Let { } ( ) [ ]( ),n pf WBV a b⋅∈  be a sequence such that nf  converges 
to f almost everywhere, with ( ) [ ]( ),pf WBV a b⋅∈ . Then  

( ) ( )lim inf WW
np pn

f f
⋅ ⋅→∞
≤  

that is, the Luxemburg norm is lower semi-continuous on ( ) [ ]( ),pWBV a b⋅ . 

Proof. Let α ∈  such that ( ) [ ], ,W
p

fV a bα
λ⋅

 <  
 

 for 0λ > . By the Definition 2.1, 

for any β ∈  with ( ) [ ], ,W
p

fV a bα β
λ⋅

 < <  
 

 exist a tagged partition { }*
0

n
i i

tπ
=

=  of  

[ ],a b  such that  

( ) ( ) ( )( )
( )1

*
1

1

1, .
ip xm

W
i ip

i

fV f t f tπ β
λ λ

−

−⋅
=

  = − ≥ 
 

∑  

By the pointwise convergence of nf  to f  exist 0n ∈  such that  

( ) ( )
( ) ( )( )

( )

1 1

1

1 1

1:
2

i i

i

p x p x

n p xf t f t
m

λ β α
δ

− −

−

−
− ≤ =  
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for all 0n n≥  and *t π∈ , 1, 0,1, , 1i i it x t i m+≤ ≤ = − . And by the Minkowski’s in- 
equality, we get  

( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )
( ) ( )

( )

1

1

1

1 1

*
1

1

1 1 1
1

1 1 1
1

1

1
1 1

1,

1

1 1 1

1 1

i

i

i

i i

p xm
W

i ip
i

p xm

i n i n i n i n i i
i

p xm

i n i n i n i n i i
i

p x p xm m

i n i n i
i i

fV f t f t

f t f t f t f t f t f t

f t f t f t f t f t f t

f t f t f t

β π
λ λ

λ

λ λ λ

λ λ

−

−

−

− −

−⋅
=

− − −
=

− − −
=

−
= =

 ≤ = − 
 

  = − − − + −   

 
≤ − + − + − 

 

 
≤  −  +

 
 

∑

∑

∑

∑ ∑ ( )( )
( ) ( )

( ) ( )( )
( ) ( )

( )

( ) ( )( )
( )

( ) ( )

( ) ( )( )
( ) ( )

1 1

1

1 1

1 1
1 1 1 1

1

1

1

1

1 1
1

1
1

1 1

11
1 1

1

1

1

1 1
2

1

i i

i

i i

i i
i i i i

i

p x p x

n i

p x

p x p xm

n i i
i

p x p xp x p x p x p xm m

n i n ip x
i i

p
m

i

f t

f t f t

f t f t
m

λ

λ β α

λ λ

λ β

λ

− −

−

− −

− −
− − − −

−

−

− −
=

−
= =

=


 
 −   
 




  

+  −   
  



   −     ≤ +  −             

+

∑

∑ ∑

∑
( ) ( )( )

( )

( ) ( )
( )

( ) ( )
( )

( )
( )

1

1 1
1 1

1

1

1
1 1

1

1

1

11 1
*

0

2

, ,  for all  

i

i i
i i

i

i

i
i i

p x

p x p xx p x

p x

p x

p xp x p x W n
p

m

f
V n N

α

β α π
λ

−

− −
− −

−

−

−
− −

⋅


   −            

 
   ≤ − + ≥       

 

therefore  

( ) ( )
*

0, , ,  for allW Wn n
p p

f fV V I n Nα π
λ λ⋅ ⋅

   ≤ ≤ ≥   
   

 

hence  

( )
0

inf , ,W n
pn N

fV Iα
λ⋅≥

 ≤  
 

 

that is,  

( )lim inf , .W n
pn

fV Iα
λ⋅→∞

 ≤  
 

 

Passing the limit as α  tends ( ) ,W n
p

fV I
λ⋅

 
 
 

, we get that ( )
W
pV ⋅  is sequentially lower  

semicontinuous, i.e.,  

( ) ( )lim inf ,W W n
p pn

ffV V
λ λ⋅ ⋅→∞

   ≤      
 



J. A. Guerrero et al. 
 

733 

if , I
nf n∈ ∈   and ( ) ( )limn nf x f x→+∞ =  for all x I∈ . By the Definition 2.1 it fol- 

lows that  

( ) ( )lim inf WW
np pn

f f
⋅ ⋅→∞
≤  

Lemma 2.9 (Invariance Principle). Let :h →   be a function. Then, the com- 
position operator (1.1) maps the space ( ) [ ]( ),pWBV a b⋅  into itself if and only if it maps, 
for any other choice of c d< , the space ( ) [ ]( ),pWBV a b⋅  into itself. 

Proof. The function [ ] [ ]: , ,v c d a b→  defined by  

( ) ( )b av t t c a
d c
−

= − +
−

 

is an affine homeomorphism with inverse the function [ ] [ ]1 : , ,v a b c d− →  defined by  

( ) ( )1 ,d cv s s a c
b a

− −
= − +

−
 

such that: ( )v c a=  and ( )v d b= . Thus, [ ]( ) [ ]( ): , ,v c d a b→   defined by  

( ) { }( ) ( ) ( ) ( ){ }
( ){ } [ ]( )

0 1 0 1

1

, , , , , ,

, ,

m m

m
i i

v v t t t v t v t v t

v t a b

π

=

= =

= ∈

 


 

defines a 1-1 correspondence between all partitions [ ]( ),c d  of [ ],c d  and all par- 
titions [ ]( ),a b  of [ ],a b  since v is strictly increasing. Consequently, for  

( ) [ ]( ),pu WBV a b⋅∈ , we obtain  

( ) [ ]( )
[ ]( )

( )( ) ( )( ) ( )

[ ]( )
( ) ( ) ( ) ( ) ( )

( ) [ ]( )

1

1

1
, 1

1
, 1

, , sup

sup

, , .

i

i

m p xW
i ip

a b i

m p x
i i

c d i

W
p

v u a b u v t u v t

u v t u v t

v u v c d

−

−

−⋅
=

−
=

⋅

= −

= −

=

∑

∑  






 

3. Locally Lipschitz Composition Operators 

In this section, we expose one of the main results of this paper. We demonstrate that a 
result of the Sobolevskij type is also valid in the space ( ) [ ]( ),pWBV a b⋅  of bounded 
( )p ⋅ -variation in the Wiener’s sense with variable exponent. 
Theorem 3.1. Let :h →   be a function. If the composition operator H gene- 

rated by h maps the space ( ) [ ]( ),pWBV a b⋅  into itself then H is locally Lipschitz if and 
only if h′  exist and is locally Lipschitz in  . 

Proof. First let us assume that h′  is locally Lipschitz in  . For 0r >  we denote 
by ( )1K r  the minimal Lipschitz constant of h′  and by ( )2K r  the supremum of h′  
on the bounded set  

( ) ( ){ }: : .W
r p

a t b
B f t f r

⋅
≤ ≤

= ≤ ⊂ 


 

The finiteness of ( )2K r  implies that H satisfies a local Lipschitz condition in the 
norm 

∞
⋅  (norm of supremum), so we only have to prove a local Lipschitz condition 

for H with respect to the ( )p ⋅ -norm (2.1). We do this by applying twice the mean 
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value theorem. 
Fix ( ) [ ]( ), ,pf g WBV a b⋅∈  with ( ) ( ),W W

p pf g r
⋅ ⋅

≤ . Given a partition  

{ }0 1, , , mt t tπ =   of [ ],a b , we split the index set {1, …, m} into a union I J∪  of 
disjoint sets I and J by defining the following: 

j I∈  if  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 ,j j j j j j j jf t g t f t g t f t f t g t g t− − − −− + − ≤ − + −  

j J∈  if  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 .j j j j j j j jf t g t f t g t f t f t g t g t− − − −− + − > − + −  

By the classical mean value theorem we find jα  between ( )jg t  and ( )jf t  such 
that  

( ) ( ) ( ) ( ) ( ) ( ), 1, , .j j j j jHf t Hg t h f t g t j mα  ′− = − =    

Now, by definition of I we have  

( ) ( ) ( ) ( ) ( )1 1 12 2 , .j j j j j jf t f t g t g t j Iα α − − −− ≤ − + − ∈  

Making a simple calculation  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1 1

1 1 1 1

1 1 2 1 1

1 2 1 1

3

2

j j j j

j j j j j j

j j j j j j j j j

j j j j j j

j j j j

j j

Hf t Hg t Hf t Hg t

h f t g t h f t g t

h h f t g t h f t g t f t g t

K r f g K r f t g t f t g t

K r f g K r f t g t f t g t

K r f t g t

α α

α α α

α α

− −

− − −

− − − −

− − −∞

− −∞

− − +

   ′ ′= − − −   

   ′ ′ ′= − − + − − +   

≤ − − + − − +

 ≤ − + − − + 

= − − ( ) ( )1 1 .j jf t g t− −+

 

Since [ ] ( ): , 1,p a b → ∞  and adding on j I∈  we get that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

1

11

1

1 1

3 1 1

4 1

4

4 .

j

jj

j

p x

j j j j
j I

p xp x
j j j j

j I

p x

j j
j I

W
p

W
p

Hf t Hg t Hf t Hg t

K r f t g t f t g t

K r f g t f g t

K r V f g

K r f g

−

−−

−

− −
∈

− −
∈

−
∈

⋅

⋅

− − +

≤ − − +

≤ − − −

≤ −

≤ −

∑

∑

∑  

Again by the mean value theorem we find jβ  between ( )jf t  and ( )1jf t −  and jγ  
between ( )jg t  and ( )1jg t −  such that  

( ) ( ) ( ) ( ) ( ) ( )1, 2, ,j j j j jHf t Hf t h f t f t j mβ  ′− = − =    

and  
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( ) ( ) ( ) ( ) ( ) ( )1, 2, , .j j j j jHg t Hg t h g t g t j mγ  ′− = − =    

By definition of J we have  

( ) ( ) ( ) ( )1 12 2 .j j j j j jf t g t f t g tβ γ − −− ≤ − + −  

Again a simple calculation shows that  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1 1

5 1 6 1 1

5 6 1 1

7 1

4

j j j j

j j j j j j

j j j j j j j j j

j j j j j j j j

j j j j

j j j

Hf t Hg t Hf t Hg t

h f t f t h g t g t

h h f t f t h f t f t g t g t

K r f t f t K r f t g t f t g t

K r f K r f t g t f t g t

K r f t g t f t

β γ

β γ α

β γ

− −

− − − −

− − −

− −∞

−

− − +

   ′ ′= − − −   

   ′ ′ ′= − − − − − +   

≤ − − + − − +

 ≤ + − − + 

= − − ( )1 .jg t −+

 

Since [ ] ( ): , 1,p a b → ∞  and adding on j J∈  we get that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

11

1

7 1 1

8 1 1

8

8 .

j

jj

j

p x

j j j j
j I

p xp x
j j j j

j I

p x

j j j j
j I

W
p

W
p

Hf t Hg t Hf t Hg t

K r f t g t f t g t

K r f t g t f t g t

K r V f g

K r f g

−

−−

−

∈

− −
∈

− −
∈

⋅

⋅

− − +

= − − +

= − − +

= −

= −

∑

∑

∑  

Summing up both partial sums and observing that ( )4K r  and ( )8K r  do not de- 
pend on the partition π  we conclude that  

( ) ( ) ( )( ) ( )4 8

1W
p W

p

Hu HvV
K r K r u v⋅

⋅

 −  ≤
 + − 

 

which proves the assertion. 
Conversely, suppose that H satisfies a Lipschitz condition. By assumption, the constant  

( ) ( )

( )
( ) [ ]( ) ( ) ( ): sup : , , , , ,

W
W Wp

pW p p
p

Hu Hv
K r u v WBV a b u v r u v

u v
⋅

⋅ ⋅ ⋅

⋅

 − = ∈ ≤ ≠ 
−  

  (3.1) 

is finite for each 0r > . Considering, in particular, both functions u and v in (3.1) 
constant, we see that  

( ) ( ) ( ) ( ), , , .h u h v K r u v u v u v r− ≤ − ∈ ≤  

This shows that h is locally Lipschitz, and so the derivative h′  exists almost every- 
where in  . It remains to prove that h′  exists everywhere in   and is locally 
Lipschitz. For the proof of the first claim we show that h′  exists in any closed interval 
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[ ],I a b= . 

Given 0r > , consider ( ) [ ]( ),pz WBV a b⋅∈  with ( ) 2
W
p

rz
⋅
≤ . Let { } 1n n

α ∞

=
 be a de-  

creasing sequence of positive real numbers converging to 0; without loss of generality,  

we may assume that 
2n
rα ≤  for all n∈ . Define a sequence of functions  

[ ], : ,
n zh a bα →   by  

( ) ( )( ) ( )( ) [ ]( ), , .
n

n
z

n

h z t h z t
h t t a bα

α
α

+ −
= ∈             (3.2) 

Since the composition operator H associate to h acts in the space ( ) [ ]( ),pWBV a b⋅ , by 
assumption, the functions ,n zhα  given by (3.2) belong to ( ) [ ]( ),pWBV a b⋅ . 

Now, we show that the sequences { }, 1n z n
hα

∞

=
 have uniformly bounded ( )p ⋅ -variation  

in Wiener’s sense for all ( ) [ ]( ),pz WBV a b⋅∈  with ( ) 2
W
p

rz
⋅
≤ . In fact, let  

{ }0 1, , , mt t tπ =   be a partition of the interval of [ ],a b . For each n∈  define fun- 
ctions nu  and v by  

( ) ( ) ( ) ( ) [ ]( ), , .n nu t z t v t z t t a bα= + = ∈              (3.3) 

Then, ( )
W

n pu r
⋅
≤  and ( )

W
pv r
⋅
≤ . Furthermore, from Lemma 2.7, (3.2) and (3.3), we  

obtain the estimates  

( ) ( ) ( )

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )

( )

( )

( )

( )

[ ]

, , 1

1

1 1

1

1 1

1

1
; , 1.

j

n n

n

j

n

j

n

n n

p x
m n z j z j

W
j

u v p

p x
m j n j j n j

W
j

u v p

p x
m n j j n j j

W
j

u v p

m
n W n

pW W
j

u v u vp p

h t h t

H H

h z t h z t h z t h z t

H H

h u t h v t h u t h v t

H H

Hu Hv Hu Hv
V a b

H H H H

α αα

α α

−

=
⋅

− −

=
⋅

− −

=
⋅

⋅
=

⋅ ⋅

 − 

−

+ − − + +
=

−

− − +
=

−

 
− − 

= ≤ ≤ 
− − 

 

∑

∑

∑

∑

 

Since the partition { }0 1, , , mt t tπ =   was arbitrary, the inequality  

( )

( )

[ ], ; , 1n

n

n zW
p W

u v p

h
V a b

H H
αα

⋅

⋅

 
  ≤ 

− 
 

 

holds for every n∈  and each ( ) [ ]( ),pz WBV a b⋅∈  with ( ) 2
W
p

rz
⋅
≤ . From Lemma  

2.7, the definition of the function ,n zhα  in (3.2), and the definition of the functions nu  
and v in (3.3), we further get  
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( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

,n

W W W
n z n np pp

W
n np

h h z h z h u h v

K r u v K r

αα α

α

⋅ ⋅⋅

⋅

= + − = −

≤ − =
 

hence 
( )

( ),n

W

z p
h K rα ⋅

≤ . By Lemma 2.7, we conclude that  

( ) ( ) ( ), ,
n

W
zpV h K rα⋅ ≤                         (3.4) 

which shows that the sequence { }, 1n z n
hα

∞

=
 satisfies the hypotheses of Theorem 2.3. 

Theorem 2.3 ensures the existence of a pointwise convergent subsequence of  

{ }, 1n z n
hα

∞

=
; without loss of generality we assume that the whole sequence { }, 1n z n

hα
∞

=
 con-  

verges pointwise on [ ],a b  to some function ( ) [ ]( ),pf WBV a b⋅∈ . 

Now setting ( ) :z t tλ= , where 0λ >  small enough such that ( ) 2
W
p

rz
⋅
≤ . By (3.3)  

we note that  

( ) ( )( ) ( )( )

( ) ( ) ( )

lim

lim

n

n
n

n

n
n

h z t h z t
f t

h t h t
h t

α
α

λ α λ
λ λ

α

→∞

→∞

+ −
=

+ −
′= =

              (3.5) 

for almost all [ ],t a b∈ . Since the primitive of f and the function ( )t h tλ  are both 
absolutely continuous and have the same derivative on [ ],a b , we conclude that they 
differ only by some constant on [ ],a b , and so h′  exists everywhere on [ ],a b . From 
the invariance principle (Lemma 2.9), we deduce that the derivative h′  of h exists on 
any interval, and so everywhere in  . 

It remains to prove that h′  satisfies a local Lipschitz condition. Denoting by F the 
composition operator associate to the function f  from (3.5), we claim that, for  

( ) [ ]( ),pz WBV a b⋅∈  with ( ) 2
W
p

rz
⋅
≤ , we have  

( ) ( ) ,W
pFz K r
⋅
≤                           (3.6) 

where ( )K r  is the Lipschitz constant from (3.1). In fact, by Theorem 2.3 we conclude 
that  

( ) ( )lim inf ,WW
np pn

f h
⋅ ⋅→∞
≤  

whenever the sequence { } 1n n
h ∞

=
 of functions ( ) [ ]( ),n ph WBV a b⋅∈  converges pointwise 

on [ ],a b  to some function f. Combining this with (3.4) and the observation that  
( ) ( ),n zh a g aα →  as n →∞  we obtain (3.6). We conclude that the composition opera- 

tor F maps the space ( ) [ ]( ),pWBV a b⋅  into itself, and so the corresponding function f  
is locally Lipschitz on  . By (3.5), the same is true for the function h′ . 

4. Locally Defined Operators 

In this section, we present our second main result, which is related to the notion of 
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locally defined operator. We prove that every locally defined operator mapping the 
space of continuous and bounded ( )p ⋅ -variation in Wiener’s sense functions into 
itself is a composition operator (Nemytskij operator). 

Definition 4.1. Let [ ],I a b=  be a closed interval of the real line  , , ,a b a b∈ <  
and let ( )I=  , ( )I=   be function spaces : Iϕ →  . An operator :K →   
is called a locally defined, or ( ),  -local operator, briefly, a local operator, if for every 
open interval J ⊂   and for all functions ,f g ∈ , the implication  

( ) ( )J I J I J I J I
f g K f K g

∩ ∩ ∩ ∩
= ⇒ =  

holds true. 
Remark 4.1. For some pairs ( ),   of function spaces the forms of local operators 
:K →   (or their representation theorems) have been established. For instance in 

[13] it was done is the case when ( )nC I=  and ( )C I=  or ( )1C I= , in [14]- 
[16] in the case when   and   are the spaces of n-times (k-times, respectively) 
Whitney differentiable functions, in [17], [18] in the case when   is the space of 
Hölder functions and ( )C I= , in [19] for continuous and monotone functions, in 
[20] in the case when ( )CW Iϕ=  for functions of bounded ϕ -variation in the sense 
of Wiener and ( )C I=  and in [21] in the case when ( )pRV I=  for functions of 
bounded Riesz-variation and ( )C I= . 

Definition 4.2. (See [13]) An operator :K →   is said to be  
1) left-hand defined, if and only if for every 0s I∈  and for every two functions 
, f g ∈ ,  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0, , , ,
.s I s I s I s I

f g K f K g
−∞ ∩ −∞ ∩ −∞ ∩ −∞ ∩

= ⇒ =  

2) right-hand defined, if and only if for every 0s I∈  and for every two functions 
, f g ∈ ,  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0, , , ,
.I s I s I s I s

f g K f K g
∩ −∞ ∩ −∞ ∩ −∞ ∩ −∞

= ⇒ =  

From now on, let ( ) ( ) ( ) ( ) ( )p pCWBV I WBV I C I⋅ ⋅= ∩ , where ( )C I  stands for the 
space of continuous functions defined on I. We begin this section with some definitions. 

Theorem 4.3. (See [13]) The operator :K →   is locally defined if and only if it 
is left and right defined operator. 

The locally defined operators have been the subject of intensive research and many 
applications of then can be found in the literature (See, for instance [22], [23] and the 
references therein). 

Theorem 4.4. Let [ ] ( ): , 1,p a b → ∞ . If a locally defined operator K maps  

( ) ( )pCWBV I⋅  into ( )C I  then there exist a unique function :h I × →   such that, 
for all ( ) ( )pf CWBV I⋅∈ ,  

( ) ( ) ( )( ), , .K f t h t f t t I= ∈  

Proof. We begin by showing that for every ( ) ( ), pf g CWBV I⋅∈  and for every  
( )0 ints I∈  the condition  

( ) ( )0 0f s g s=                           (4.1) 



J. A. Guerrero et al. 
 

739 

implies that  

( ) ( ) ( ) ( )0 0 .K f s K g s=  

To this end choose arbitrary ( )0 ints I∈  and take an arbitrary pair of functions  

( ) ( ), pf g CWBV I⋅∈  which fulfil (4.1). The function : Iγ →   defined by  

( )
( ) [ ]
( ) ( ]

0

0

for , ;

for ,

f t t a x
t

g t t x b
γ

 ∈= 
∈

 

belongs to ( ) ( )pCWBV I⋅ . Indeed, define the functions 1 1, :f g I →   by  

( )
( ) ( ) [ ]

( ]
0 0

1
0

for , ;

0 for ,

f t f x t a x
f t

t x b

 − ∈= 
∈

 

and  

( )
[ ]

( ) ( ) ( ]
0

1
0 0

0 for , ;

for ,

t a x
g t

g t g x t x b

 ∈= 
− ∈

 

Since ( ) ( ), pf g CWBV I⋅∈ , ,f g  are continuous in ( ) ( ), W
pI V f⋅ < ∞  and  

( ) ( )W
pV g⋅ < ∞ . Let { } 0

m
i i

tπ
=

=  be a partition of I such that 1 0t s t− ≤ <
 

 for some  
1 m≤ ≤ . Then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )1 1

1

1 1 1 1 0 1
1 1

.i i k
m p x p x p x W

i i i i p
i i

f t f t f t f t f s f t V f− −
−

− − − ⋅
= =

− = − + − ≤∑ ∑




 

Hence ( ) ( )1
W
pV f⋅ < ∞ . By a similar reasoning, we have ( ) ( )1

W
pV g⋅ < ∞ . Finally  

( ) ( )1 1 pf g CWBV I⋅+ ∈ , as ( ) ( )pCWBV I⋅  is a linear space. Thus  

( )1 1 .R
pV f g+ < ∞                          (4.2) 

Since, for all ,t t I′∈   

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 ,f g t f g t t tγ γ′ ′+ − + = −  

the condition (4.2) implies that ( ) ( )pCWBV Iγ ⋅∈ . As  

( ) ( ) ( ) ( )0 0 0 0, , , ,  and   s I s I s I s If gγ γ
−∞ ∩ −∞ ∩ ∞ ∩ ∞ ∩

= =  

according to Definition 4.2, we get  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0, , , ,
and .

s I s I s I s I
K f K K g Kγ γ

−∞ ∩ −∞ ∩ ∞ ∩ ∞ ∩
= =  

Therefore, by the continuity of ( ) ( ), K f K g  and ( )K γ  en 0s , we obtain  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 .K f s K s K g sγ= =  

Suppose now that 0s  is the left endpoint of the interval I (i.e., 0s a= ). By the con- 
tinuity of f and g at 0s , there exist a sequence ( )n n

t
∈  such that:  

( )0 1 0 0, , n n ns t t t s b s n n+< < − < − ∈  and  

( ) ( ) ( ) ( )0 02 2
1 1, ,  .n nf t f s g t g s n
n n

− < − < ∈            (4.3) 

The sequence of functions : , n I nγ → ∈  , defined by 
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( )

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ] { }

( ) ( ) ( ) ( ) ( ] { }

( ) ( ]

2 0
0 0 0 2

2 0

2 1 2
2 2 2 2 1

2 1 22

2 2 1
2 1 2 1 2 1 2

2 2 1

1 1

for , ;

for , , 1, , ;

for , , 1, , 1 ;

for ,

k
k

k

i i
i i i i

i ik

i i
i i i i

i i

f s f s
t s f s t s s

s s
g s f s

t s f s t s s i k
s st

f s g s
t s g s t s s i k

s s
g s t s b

γ
−

−
−

+
+ + +

+

 −
− + ∈ −

 −
 − + ∈ ∈ −= 
 − − + ∈ ∈ −
 −


∈





 

( )

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ] { }

( ) ( ) ( ) ( ) ( ] { }

( ) ( ]

2 1 0
0 0 0 2 1

2 1 0

2 2 2 1
2 1 2 1 2 1 2 2

2 2 2 12 1

2 3 2 2
2 2 2 2 2 2 2 3

2 3 2 2

1 1

for , ;

for , , 2, , ;

for , , 2, , 1 ;

for ,

k
k

k

i i
i i i i

i ik

i i
i i i i

i i

g s g s
t s g s t s s

s s
f s g s

t s g s t s s i k
s st

g s f s
t s f s t s s i k

s s
g s t s b

γ

−
−

−

− −
− − − −

− −−

− −
− − − −

− −

 −
− + ∈ −

 −
 − + ∈ ∈ −= 
 − − + ∈ ∈ −
 −

∈








 

for all k ∈ , belong to the space ( ) ( )pWBV I⋅ . Indeed, by the definition of 2 , k kγ ∈ , 
the triangle inequality, (4.1) and (4.3), we have  

( ) ( ) ( )
( )1

1
2 2 0 2

2 i
i

p x
p x

k i kt s
i

γ γ
−

−  − ≤  
 

 

and  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )1
1 11

2 2 2 2 0 2 2 0 2
2 i

i ii
p x

p x p xp x
k i k j k i k k j kt t t s t s

i
γ γ γ γ γ γ

−
− −−  − ≤ − + − <  

 
 

for all { }, 1, , 2 , , i j k i j k∈ < ∈  . Therefore  

( ) ( )
( )

( )

( )
( )( )

1

1
1

1

2

2 2 0
1

2 2

2 2
1 1

2 1 , 1 2 ,

i

i
i

i

k p x

k j k
i

p xk k
p x

p x
i i

t s

M M
i i

γ γ −

−
−

−

=

= =

−

 ≤ ≤ < = < +∞ 
 

∑

∑ ∑
 

so  

( ) ( ) ( )1

2

2 2
1

1, ,  .
i

k
W

kp p x
i

V I M k
i

γ
−⋅

=

≤ ∈∑                    (4.4) 

Similar reasoning shows, that  

( ) ( ) ( )1

2 1

2 1 2
1

1, ,  .
i

k
W

kp p x
i

V I M k
i

γ
−

−

−⋅
=

≤ ∈∑                   (4.5) 

From (4.4) and (4.5), we obtain that ( ) ( )n pWBV Iγ ⋅∈  and  

( ) ( ) ( )12
1

1, ,  .
i

n
W

np p x
i

V I M k
i

γ
−⋅

=

≤ ∈∑                    (4.6) 

Let us observe that  

( ) ( ) ( ) ( )2 1 0 2 0 0 0 ,  ,k ks s f s g s kγ γ− = = = ∈              (4.7) 
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and for all ,k i∈ ,  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 1 2 1 2 1 2 1 2 1, ,k k k k i k k k k k i kt f t t t g t tγ γ γ γ+ − − − − + −= = = =    (4.8) 

and for every { }\  : kt I t k∈ ∈  there exist 0n ∈  such that  

( ) ( )
0 0, ,  .n nt t n n nγ γ= ≥ ∈                   (4.9) 

Put  

( ) ( ): lim ,   .nn
t t t Iγ γ

→+∞
= ∈  

From (4.7), (4.8) and (4.9) the function γ  is well defined and  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ )

2 2 1 2

2 1 0 2 0 2 1 2, for all ,
k k k

k k k k

t t g t f t

g t g s f t f s t t t

γ γ +

+ +

− ≤ −

≤ − + − ∈
       (4.10) 

and  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ )

2 2 1 2

2 1 0 2 0 2 2 1, for all , .
k k k

k k k k

t t g t f t

g t g s f t f s t t t

γ γ −

− −

− ≤ −

≤ − + − ∈
       (4.11) 

To show that γ  is continuous at γ , fix an 0> . By the continuity of f and g at 

0s , there exist 0n ∈  such that  

( ) ( ) ( ) ( )0 0 03, 3, ,  .n ng t g s f t f s n n n− < − < ∈ ≥        (4.12) 

Take an arbitrary ( )00 , nt s s∈ . There exist k ∈  such that 02 1k n− >  and either 
[ )2 1 2,k kt t t+∈  or [ )2 2 1,k kt t t −∈ . Since, by triangle inequality and (4.7)  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 2 2 0

2 2 0 ,
k k

k k

t s t t t s

t t f t f s

γ γ γ γ γ γ

γ γ

− ≤ − + −

≤ − + −
 

therefore, by (4.10) and (4.12)  

( ) ( ) ( ) ( ) ( ) ( )0 2 1 0 2 02k kt s g t g s f t f sγ γ +− ≤ − + − <   

in the case when [ )2 1 2,k kt t t+∈ , and by (4.11) and (4.12)  

( ) ( ) ( ) ( ) ( ) ( )0 2 1 0 2 02k kt s g t g s f t f sγ γ −− ≤ − + − <   

in the case when [ )2 2 1,k kt t t −∈ . As the continuity of γ  at the remaining points is 
obvious, γ  is continuous. 

By the lower semicontinuity of ( )
W
pV ⋅  (Proposition 2.8) and (4.6)  

( ) ( ) ( )12
=1

1, lim inf ,
i

n
W
p p xn i

V I M
i

γ
−⋅ →+∞

≤ ∑  

and the convergence of series ( )11 2

1
ii p xi −

∞

=∑  implies that ( ) ( )pWBV Iγ ⋅∈ . 

Thus there exist a function ( ) ( )pCWBV Iγ ⋅∈  and sequence ( )k k
t

∈  such that  

( ) ( ) ( ) ( )2 1 2 1 2 2, ,  ,  .k k k k kt g t t f t t I kγ γ− −= = ∈ ∈  

According to the first part of the proof, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 2 and  ,  .k k k kK t K g t K t K f t kγ γ− −= = ∈  



J. A. Guerrero et al. 
 

742 

Hence, by continuity of ( ) ( ), K K fγ  and ( )K g  at 0s , letting k →∞ , we get  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 .K f s K s K g sγ= =  

When 0s  is the right endpoint of I, the argument is similar. 
To define the function :h I × →  , fix arbitrarily an 0y ∈ , let us define a fun- 

ction 
0

:yP I →   by  

( )
0 0: , .yP t y t I= ∈                        (4.13) 

Of course 
0yP , as a constant function, belongs to ( ) ( )pCWBV I⋅ . For 0 0, s I y∈ ∈ , 

put  

( ) ( ) ( )
00 0 0, : .yh s y K P s=  

Since, by (4.13), for all functions f,  

( ) ( ) ( )
00 0 ,f sf s P s=  

according to what has already been proved, we have  

( ) ( ) ( )( ) ( ) ( )( )
00 0 0 0, .f sK f s K P s h s f s= =               (4.14) 

To prove the uniqueness of h, assume that :h I × →   is such that  

( ) ( ) ( )( ),K f t h t f t=  

for all ( ) ( )pf CWBV I⋅∈  and t I∈ . To show that h h=  let us fix arbitrarily  
, t I y∈ ∈  and take ( ) ( )pf CWBV I⋅∈  with ( )f t y= . From (4.14), we have  

( ) ( )( ) ( ) ( ) ( )( ) ( ), , , , ,h t y h t f t K f t h t f t h t y= = = =  

which proves the uniqueness of h. 

5. Conclusion 

In this paper, we get two important results. In Theorem 3.1, we show that the result of 
the Sobolevkij type is valid for the space of functions of bounded ( )p ⋅ -variation in 
Wiener’s sense ( ( ) [ ]( ),pWBV a b⋅ ) on [ ],a b . And the Theorem 4.4, we show that if a 
locally defined operator K maps ( ) ( )pCWBV I⋅  into ( )C I  then it is composition 
operator. 
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