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Abstract 
Mixture regression is a regression problem with mixed data. Specifically, in the observations, 
some data are from one model, while others from other models. Only after assuming the quantity 
of the model is given, EM or other algorithms can be used to solve this problem. We propose an 
information criterion for mixture regression model in this paper. Compared to ordinary informa-
tion citizen by data simulations, results show our citizen has better performance on choosing the 
correct quantity of models. 
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1. Introduction 
Mixture regression is a special situation in regression problem. Rather than getting samples in one distribution, 
the data of mixture regression are from multiple distributions (the information of which distribution every 
observation from is unknown), which will make a bad effect in parameter estimation. The mixture regression 
problem can be described as follows [1]:  

, 1, 2, ,k k kY X k gβ σ′= + =                              (1) 

( )ik i kP xπ = ∈Ω                                   (2) 

n pX ∗  is independent observation matrix with n observations with p variables. , 1, 2, ,ix i n=   means ith 
observation vector from n observations. The length of ix  is p. 1 nY ∗  is response variable from observation data 
with the length of n. kβ  and ( )1, 2, ,k k gσ =   is the unknown parameters (weight) of the variable and scale 
parameter in different models.   is a random error independent from iX . ikπ  is the probability of ith 
observation is from the kth distribution kΩ . (i.e. ( )Pik k jxπ = ∈Ω ). To solve the mixture regression problem, 
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it need two parts. Firstly, confirming which model every sample is from is required. Secondly, parameters in each 
model should be estimated. That is the reason to call mixture regression model as model-based clustering [2] [3].  
For all the mixture regression problem, ikπ  is unknown which has: 

1
1g

ikk
π

=
=∑ . 

Furthermore, n kZ ∗  is defined as classification matrix of mixture regression. Every element of classification 
matrix is the estimator of π : π̂ . And { }0,1ikz ∈  shows the information of ith observation is from kth 
distribution or not ( 1iz k =  means ith observation is from kth distribution). Classification matrix is one of the 
most important results in mixture regression problem. If we know the true Z, we can simply split the data into 
different linear regression and get the parameter estimation.   

Parameter estimation can be obtained by EM algorithm. Fraley et al., [4] [5] state the EM algorithm in 
ordinary mixture regression model which means every model in it is an ordinary linear regression. EM algorithm 
of ordinary mixture regression is as follows: 

Column vector iz  in classification matrix Z can be considered as a multinomial distribution. The probability 
of this multinomial distribution is 1 2, , , gτ τ τ

. When iz  is fixed, probability distribution function(PDF) of  

iy  is ( )1 | ikzg
k i kk f y θ

=∏ . And complete-data likelihood is:  

( ) ( )
1 1

, , | log |
gn

k k ik ik k k i k
i k

z x z f yθ τ τ θ
= =

 =  ∑∑                        (3) 

E-step in mixture regression model can be obtained by:  

( )
( )

1

ˆˆ |
ˆ .

ˆˆ |

k k i k
ik g

j j i j
j

f y
z

f y

τ θ

τ θ
=

←

∑
                                (4) 

When ikz  is fixed, M-step is finished by maximizing kτ  and θ  by Formula (3). For a normal mixture 
regression problem, kf  of E-step can be replaced by PDF of normal distribution function kφ :  

( )
( ) ( )

( )

T 11exp
2| ,

2π

i k k i k

k i k k
k

y y
y

det

µ µ
µ

− − − Σ − 
 Φ − Σ =

Σ
                   (5) 

As every observation is independent, covariance matrix can be defined as k IλΣ = , parameter of E-step can 
be calculated quickly in M-step by:  

1

1

ˆ
ˆ ˆ ˆ; ; .

ik i n
k i

k k k ik
ik

nz y
n n z
n n

τ µ =

=

← ← ≡
∑

∑                          (6) 

Song et al., [6] has finished EM algorithm with robust mixture regression. Q Wu et al., [7] proposed EM 
algorithm in quantile regression. Furthermore D. Lang et al., [8] explained a fast iteration method for mixture 
regression problem which can solve mixture regression when random error in different distributions. 

Moreover, all the algorithms mentioned below is considering the quantity of models g is known. However this 
will not happened in every condition. The number of models g need to be chosen before the algorithm. When X 
is a low dimension matrix, a scatter plot can be drawn for choosing g. To get the true quantity of models, 
watching scatter plot and giving a conclusion is not suitable for a high-dimension situation. It was meaningful 
to discussing how to create a proper method choosing the right quantity of models in a mixture regression 
problem. 

The rest of the paper is organized as follows. Section 2 will discuss the equivalence between mixture regre- 
ssion and ordinary regression when classification matrix is fixed. We extend a method based on information 
criterion in Section 3. Section 4 is the data simulation of different information criterions. Proof of theorem is in 
the Appendix section. 

2. Equivalence of Linear Regression  
Unsupervised learning has its method to choose the quantity of clusters, like GAP statics in K-means [9]. 
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Mixture regression can be regards as a model based clusting including judging which cluster every observation 
should be grouped as well as the parameter estimation. 

To find a proper method for choosing the quantity of models, we need to find the relationships between 
mixture regression and other algorithms. In some conditions, such as classification matrix Z is fixed and random 
error has the same variance, mixture regression can be written as a linear regression. 

Theorem 1 (Equivalence between Mixture Regression and Linear Regression) If the estimater of π , 
classification ˆZ π=  is fixed, mixture regression can be written as  

Y X β= +

                                       (7) 

When random error in every model is independent and identically distributed from a normal distribution 
( 2 2 2 2

0 1 2 gσ σ σ σ= = = = ). Random error in mixture regression is from a normal distribution, either.  

( )2
0~ 0,N σ  

The proof can be found in the Appendix. 
After proofing this theorem, we can use the evaluation methodology from regression to solve the quantity 

choosing in mixture regression.  

3. Information Criterion for Quantity of Clusters Choosing 
3.1. Information Criterion    
For a regression problem, Akaike information criterion (AIC) or Bayesian information criterion (BIC) [10] is 
always used for evaluating a regression model [11]. Information criterion is based on information theory, it 
shows the information lost in a specify model. A trade-off between goodness of fitting and the complexity of the 
model is considered in information criterion:  

( )AIC 2 2 lnk L= −                                     (8) 

( ) ( )BIC ln 2 ln .n k L= ⋅ − ⋅                                   (9) 

The best model is the one with the minimum AIC (BIC). L is the likelihood function which states the 
goodness of fitting (expression (3)). k is the penalty of the information criterion standing for the number of 
unknown parameters in the model. In linear regression, k means the number of dependent variables. As for BIC, 
the penalty is larger, weight of penalty comes to ( )ln n  from 2. 

3.2. Information Criterion in Mixture Regression  
In mixture regression, parameters in classification matrix should be considered as part of the estimator variables. 
Despite these variables, the model will tend to choosing a larger quantity of models which is also an overfitting 
problem. 

For every observation, 0 1−  variable with the number of 1g −  can ensure classification among g models. 
For example, if 2g = , for the ith observation, 1iz  can complete determinate ith observation is from which 
cluster(model). As for the situation of 3g = , 1 2,i iz z  are requested to determinate the ith observation. k value 
(number of unknown parameters in the model) in information criterion of mixture regression should be:  

( )1k g p n g= ∗ + −                                    (10) 

Akaike information criterion for Mixture regression(AICM) and Bayesian information criterion for mixture 
(BICM) regression is: 

( ) ( ) ( ) ( )
1

AICM 2 1 2 ln 2 1
g

g
k

g p n g L n g AIC model
=

= ∗ + − − = − +   ∑                (11) 

( ) ( ) ( ) ( ) ( ) ( )
1

BICM ln 1 2 ln ln 1
g

g
k

n g p n g L n n g AIC model
=

= ⋅ ∗ + − − ⋅ = − +   ∑            (12) 

AICM and BIC can be used for the quantity selecting in mixture regression problem. However, penalty 
weight for g in BICM is ( )ln n n , rather than 2n in AICM which will lead to an underfitting result when g is 
larger. We will see the details of this point in next section.  
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4. Data Simulation  
In order to validating the rationality of the model, we designed numeric simulations and generated sample data 
( ),X Y :   

• Simulation I: 100 samples from 2 distributions. ( 100, 2n g= = ).  
• Simulation II:200 samples from 2 distributions. ( 200, 2n g= = ).  
• Simulation III:150 samples from 3 distributions. ( 150, 3n g= = ).  

4.1. Simulation I 
Models from simulation I is:  

5 , if 1
5 100 , if 2
X g

Y
X g
+ =

= − + + =




                               (13) 

where ( )~ 0,1N  and ( )~ 10, 4x n . Every distribution has 50 observations. See Figure 1 to see the results 
when 1, 2,3, 4g = . We repeated the simulation for 100 times, use Mixreg package in R [12] to got the answer in 
Table 1. 

 

 
Figure 1. Mixture regression when 50 2n = ×  and 2,3,4g = .                                                    

 
Table 1. Simulation I of selecting quantity of models.                                                           

Lightaqua  Mean Value of Information Criterionn Selected 

Lightaqua Rules Sample Size 1g =  2g =  3g =  4g =  1 2(**) 3 4 

AIC 50*2 883.99 290.1 235.36 193.81 0 0 0 100 

BIC 50*2 891.8 295.31 243.17 204.23 0 0 0 100 

AICM 50*2 883.99 490.1 635.36 793.81 0 98 2 0 
BICM 50*2 891.8 755.82 1164.21 1585.78 2 98 0 0 
Std. - 14.68 67.45 18.04 22.75 - - - - 
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4.2. Simulation II 
The models in simulation II is same as simulation I. While, the samples in simulation II is 100 for each 
distribution.  

5 , if 1
5 100 , if 2
X g

Y
X g
+ =

= − + + =




                               (14) 

Figure 2 can be found in Appendix for simulation 2. Table 2 below is results for repeating 100 simulation. 

4.3. Simulation III  
Simulation III has three distributions with 50 samples in each distribution.  

5 , if 1
5 100 , if 2

0.2 50 , if 3

X g
Y X g

X g

+ =
= − + + =
 + + =





                               (15) 

See Figure 3 for simulation III in Appendix, and result is shown in Table 3. 
 

 
Figure 2. Mixture regression when 100 2n = ×  and 2,3,4g = .                                                    

 
Table 2. Simulation II of selecting quantity of models.                                                           

Lightaqua  Mean Value of Information Criterion Selected 

Lightaqua Rules Sample Size 1g =  2g =  3g =  4g =  1 2(**) 3 4 

AIC 100*2 1766.66 565.28 484.74 413.171 0 0 2 98 

BIC 100*2 1776.55 571.87 494.64 426.36 0 0 2 98 

AICM 100*2 1766.66 965.28 1284.74 1613.17 0 100 0 0 

BICM 100*2 1776.55 1631.54 2613.96 3605.35 0 100 0 0 

Std. - 20.51 18.10 30.88 34.94 - - - - 
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Figure 3. Mixture regression when 50 3n = ×  and 2,3,4g = .                                                    

 
Table 3. Simulation III of selecting quantity of models.                                                         

Lightaqua  Mean Value of Information Criterion Selected 

Lightaqua 
Rules 

Sample  
Size 1g =  2g =  3g =  4g =  5g =  1 2 3(**) 4 5 

AIC 50*3 1264.38 908.35 429.91 368.35 326.90 0 0 0 1 99 

BIC 50*3 1273.41 914.38 438.95 380.40 341.95 0 0 0 3 97 

AICM 50*3 1264.38 1208.35 1029.91 1268.35 1526.9 1 2 97 0 0 

BICM 50*3 1273.41 1665.97 1942.14 2635.18 3348.33 100 0 0 0 0 

Std. - 22.09 64.34 97.55 23.38 24.18 - - - - - 

5. Conclusion  
According to the results in three simulations, we can see AICM and BICM show a good result in small g ( 2g = ) 
which choose the true quantity of models at a rate over 98%. While, ordinary AIC and BIC cannot point out the 
right quantity even once. In large samples, AICM and BICM perform well in simulation II. In small samples, 
simulation I, AICM tends to overfit the quantity and BICM tend to underfit the quantity in low probability of 
2%. Simulation III shows an interesting results when 3g = ; BICM is too underfitting, which means the weight 
of penalty is too large for selecting the quantity. AICM choose correctly for 97 times among 100 times. That 
validates the information we gave in Section 3.  
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Appendix  
Proof of theorem 1  
Proof. Linear regression has the form of:  

( )2~ 0,Y X Nβ σ= +    

To proof this theorem, mixture regression need to be written as the form above. And when every random error 
has the same variance, random error in mixture regression is also a normal distribution. 

( )2; ~ 0,Y X Nβ σ= +

    

In mixture regression problem, ith observation ( ){ }T
1 2, , , ,i i i ip ix x x x y=   can be written as:  

11 1 21 2 1 1 1 1

12 1 22 2 2 2 2 2

1 1 2 2

, if 1
, if 1

, if 1

i i p i i

i i p i i
i

g i g i pg ip g ig

x x x z
x x x z

y

x x x z

β β β
β β β

β β β

+ + + + =
 + + + + == 

 + + + + =














 

We have:  

11 1 1 21 2 1 1 1 1 1 12 1 2 22 2 2

2 2 2 2 1 1 2 2

3 1 1 2 2

11 1 1 12 1 2 1 1...

i i i i i p ip i i i i i i i

p ip i i i k i ik k i ik pk ip ik

i ik g i ig g i ig pg ip ig ig ig

i i i i i k i ik

y x z x z x z z x z x z

x z z x z x z x z

z x z x z x z z

y x z x z x z

β β β β β

β β β β

β β β

β β β

= + + + + + +

+ + + + + + + +

+ + + + + + +

= + + + +



  

 







 

1 1 21 2 1

22 2 2 2 2 2 2 1 1 2 2

1 1 2 2

g i ig i i

i i k i ik g i ig p ip i p ip i

pk ip ik pg ip ig i i i i ik ik ig ig

i i i

x z x z

x z x z x z x z x z

x z x z z z z z

y X

β β

β β β β β

β β

β

+ + +

+ + + + + + + +

+ + + + + + + + + +

= +



  

   





   



 

Because ith observation can be written as a product of vectors, population of observation can be written as 
Y X β= +

 . Where X  has:  

( )

11 12 1

1 2

2
1 1

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

1 1 0 0 0 0
0 0 1 1 0 0

0 0 0 0 1 1

p

i i ip n gp

p p
n n np n p

p p

p p

i i i i ip ip

x x x

x x xX Z Z Z

x x x

x x x x x x
x x x x x x

x x x x x x

x

∗

∗
∗

 
  
  
 = ⋅ × 
        

 

=



   

  

   






     

  

   



   

   

     

   

     

11 1 11 1 11 1

21 2 21 2 21 2

1 1 1

1 1 2 2 1 1 12 2

11 11 11 1 12 11 12 1 1 11

g g g

g g g

i ig i ig i ig

n n n n np np n ng n ng n ngn p n p

g g p

z z z z z z
z z z z z z

z z z z z z

x x x x x z z z z z z

x z x z x z x z x z
∗ ∗

   
   
   
   

×   
   
   
   
   

=

   

   

     

   

     

       

   1 1

21 21 21 2 22 21 22 2 2 21 2 2

1 1 1 2 1 2 1

1 1 1 2 1 2 1

;
...

p g

g g p p g

i i i ig i i i ig ip i ip ig

n n n ng n n n ng np n np ng

x z
x z x z x z x z x z x z

x z x z x z x z x z x z

x z x z x z x z x z x z
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( ) ( )T
1 2 11 21 1 1, , , , , , , , , ,g p g pgβ β β β β β β β β= =     

For the observation { },i ix y  is samed as ith single observation above. In this way, a mixture regression can 

be written as Y X β= +

 . As for the distribution of random error 1 1 2 2i i k ik g igz z z z= + + + + +
       has:  

( )2 2 2 2 2
0 1 2~ 0, ;i i gN σ σ σ σ σ= = = =                           (16) 

{ }0,1ikz ∈  is from a multivariate distribution, probablity of 1ikz =  is kp :  

1 1
1; 1

g g

ik k
k k

z p
= =

= =∑ ∑                                   (17) 

In the distribution of variable  , for any k has:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

1 1 2 2

1 1 2 1

0 0 0
1 1

(

i i k ik g ig

g g

g g

g g

g g
k k

F k P k P z z z z k

p P k p P k p P k

p k p k p k

p k k p k

σ σ σ

σ σ σ
= =

= < = + + + + + <

= < + < + + <

= Φ + Φ + + Φ

= Φ = Φ = Φ∑ ∑




 





     

  
 

so ( )2
0~ 0,N σ   
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