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Abstract

Over a century and half has passed when Bernhard Riemann hypothesized that the non-trivial
roots of the Riemann zeta function {(s) all lie on the half-line s =%+ io . In this paper the Zeta

function is iterated as a power tower and its properties are applied as an approach to an indica-
tion that the Riemann hypothesis might be true. It is known that complex valued Power towers
converge under certain conditions to exponential power towers of entire functions. These proper-
ties can be used to resolve the Riemann Hypothesis.
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1. Introduction

The Zeta function seems to be the pyramid that holds the number systems together in a towering edifice of com-
binatorial relations.

Let C denote the complex numbers. They form a two-dimensional real vector space spanned by 1 and i
where i is a fixed square root of —1, and X,y belong are real numbers, i.e. C={x+iy:x,yeR}. The Rie-
mann Zeta function is a complex variable function defined as

;(s):%+2_1s+3is+...:nz::n‘s,se((3 1)

I will use the convention, s=o +ir, where, 7 e R(reals).
Euler proved that the function ¢ (s),s=o+it, o >1 can be represented in terms of primes, p. ¢ (s) is
analytic for o >1 and satisfies in this half-plane the identity:

¢ (S)=§is=lf[[l—isj_l @
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Here, p is a prime. Except for a pole at s=1, ¢ (s) behaves properly and can be easily extended using the
Gamma function. The extension of ¢ (s) to the entire complex plane can be obtained by consideration the en-

tirety and the general definition of the Gamma function:

)= .[e"tz’ldt
0
. I S .
Change variables by the substitution t=n’zx, z= > in (3),

-

Extracting ¢ (s) from (4),
The convergence of the series,

in the interval [0,0] gives the relation:

This can be split into two separate integrals,
S 1 S ) S,
S)F(E] = J'S (x)x2 dx+ fS (x)x2 dx
0 1
Note that the sum (6) is related to the Jacobi Theta function. See Ref. [1]

Q(X) _ iefnznx
25(x) =23 = 3 e _1=0(x)-1
n=1

n=-

The Jacobi theta function obeys the symmetry
1

xie(x):e(x’l)

1

Thus %2 (28 (x)+1)=25(x)+1,

1 1

S(x’l) ;+;x2+x28( )

The integral (8.0) now becomes

P (%} TS( 1)X;1dx+:fs (x)ngldx

1

s 0 737 1 l 1 71
7 2 j 2 + X2 + x2S (x dx+jS X) X2 dx
2

()

®

(4)

®)

(6)

U]

(®)

©)

(10)

(11)

(12)

(13)

(14)
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ﬂ_zg(s)r(gj = s(sl—l) +IS(X)[XZ N % ;de (15)

The right side of the relation (15.0) is invariant to the substitution s —1—s. This gives the reflection for-

mula for ¢ (s):
ﬁ'z,/;(s)r(%J = ﬂ_;é/(l—S)r(l_Tsj (16)

The reflection formula indicates that the roots should obey a reflection and conjugate symmetry if they lie on
the 1/2-line.

One can also study the maxima and minima of infinite products powers by looking at the functions that ap-
proximate the -function.

Proposition 2: The Zeta function is related to power towers.

Let s=o+ir,

¢(o+ir)= in ogirin(n) in"’[cos(rln(n))+isin(rln(n))} (17)

k=1 k=1

The ¢ function can be written as a series in powers of n, where n is an integer, in the form:

C(o+in)=2(r,) €™ (18)

n=1

n

e z
where, r. =n",6 =-In|n" |.

1
Note that in (21),as 7 — 0 the minimum value of the terms for log (n "J

1 1
iswhen n =3, but has repeated values for n=2,at n=4,since 2 2 =4 *. One can also write the Zeta func-

tion as follows:
é’(a+ir)=i[n_zJ (n'lnr] 20)

n=1

I n
From numerical calculations, the minima and maxima of the real and the complex parts of [n "] for

In2 In4 . L .
n>1, occurs when n = 3. This is due to the fact that - :T' One sees that something special is happening
between these three points, n=2,n=3andn=4 for the functions that define ¢ (o +iz). The graphs in Fig-
ure 1, Figure 2, and Figure 3 show the relationship of these points and they are tied together by the fact that

f(2)= 1 (4).

One can see that all three functions are somewhat related by the relation s:

=f =2,y=2,4
f(l ) x=2y= 21)
= f(y) otherwise
This is true for the functions,
1
f(n)=n",g(x)In(x)=x—- (22)

)



M. M. Anthony

0.994
0.98+
0.974
cos (In(n)/n)

0.961

1 2 3 4 5 6 7 & 9 10

. . In(n .
Figure 1. Shows that the minimum values of cos[ ( )] verus n is close to e.
n

sin (In(n)/n)

1 2 3 4 5 6 7 8 9 10
Figure 2. Shows the maximum value of sin(In(n)/n) is again exp (1).

1.0 9
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2|

0.8 1

0.7 1

1 2 3 4 5 6 7 8 9 10

i

Figure 3. Shows the graphs of the real component [n "J of the Zeta function.

Again one sees that the minimum is at exp(1).
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One finds that these functions have their maxima and their minima in the range,

e

o |

<x<e® (23)

This is exactly the range where real power towers converge. | will use this later when I discuss power towers.

2. Relationship of the Riemann Zeta Function to Power Towers

Power towers have been studied extensively. | start by describing power towers following some conventional
methods that have been used by Knuth Ref. [2] and others.

DEFINITION 1

Let neZ . A power tower is defined as a follows:

attn=a (24)

Here, | am using the Knuth notation for the tower of powers raised n times. See Ref. [2].
DEFINITION 2

. z ifn=0,
gn(z):{ =1 (25)

72" ifn>1.

I have used the case n=0 as the argument itself, although in the literature most authors start with the defi-
nition ¢"(z)=z,n=1
It is understood that such a power tower is iterated from some past argument to its present argument. By past
I mean, the values that would have occurred in an iteration of the function that lead the iteration to its present
value.
DEFINITION 3. If the limit of z" exists then define it as follows:
limz" =z* (26)
nN—oo
DEFINITION 4. For zeC\{xeR:x<0}and neN, define the future power tower as the iterates starting
from the present value n=1 as the first value that leads to a future n™ value. Symbolically,

; {g(z) ifn=1

9'(2)= g(g”fl(z)) ifn>1 @7)

It is understood that such a power tower is iterated from its present state to some future value. By future |
mean the argument values that will occur in an iteration of the function from its present value to some future
value.

DEFINITION 5. The complex Lambert W function W (z) solves for z the equation:

W(z)e"? =z zeC, (28)

W (z) is multi-valued and as has many branches with the usual notation for the k™ branch as W (k,z),
with k e Z for the branch chosen. The principal branch of the function is W (0,z)=W (z) and for real ar-
guments, the function is denoted by W (). See Refs. [3]-[5]. The branch points of W (k,z) take on real val-
ues only for k e Z ={0,-1}. The function W (k,z), satisfies, W (0,z)>0 for x>0,W(0,0)=0. The only

other branch point that has real values is W (—1,z) which lies in the range (—oo,—l), Xe {—E,O}. Curves oth-
e

er than the semi-line, (—o,—1), can be described by the parametric curves,

—ncotn+in, ne(27k,(2k+1)7), k0.
- —ncotn +in, 776((2k+1)7r,(2k+2)7r),k<0

)
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These are subsets of the “Quadratrix of Hippias”.
Since lim, (7 cotn +in)=—1, the real values of the function occur at the branch points (0,-1).
Consider the function,

g(z)=1z (29)
Let
z=c’, (30)

W (k,~log(c))

keZ.
—log(c) ©

LEMMA 1: The fixed points of g(z) are h(k,c)=

Proof:
ze M9 =1,
—zlog ye "% = —log c.
Using the Lambert W-function, W (z)ew(z) =z, forthe k™ branch point,

Z_W(k,—log(c)) _
e Kez (31)

Obviously, z is constant over the range of values of ¢ that satisfy the relation (31), thus the fixed points of the
function g(z) are,

W (k,~log(c))

h(k.y)= —log(c)

keZ. (32)

If ceC,ce{0,1}, the sequence {g‘z(z)} converge to fixed points that satisfy (32) and exponential
keN
function of z, as will be seen later. For real values of x, the function g(x) only converges within the range of
validity
1

e e <x<e® ie 0.6922006275< x <15.154.-- (33)

How does this relate to the iterations of the Zeta function?
DEFINITION 6: Define an iterated exponential as the Towering Zeta function:

£(2)=¢(¢(¢(£(2) (34)

Here, ¢ is defined as a future iterated exponential by taking the (-value of (z) and then taking the (-value
of ¢ (g (z)) and repeating this process n-times. The arrow shows the direction of iteration of Towering Zeta
functions and the arrow — means take increasing nests of { values of prior Zeta values to obtain a new future
value.

DEFINITION 7: Define the inverse past iterated exponential of the Towering Zeta function ¢(z),Re(z)>1,
as follows:

F(2)=¢7 ¢ (¢ () (35)

Here the arrow «— means take decreasing past nests of ¢~ where the inverse-zeta function is one of the set
of infinite solutions to the equation, ¢ (x)=z and so

¢*(z)=xeC. (36)
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Since the solutions to (36) are multivalued, we wish to fix particular solutions that will revert the function
values back to original values from its inverse values.
Start with the reflection formula:

I

ﬁ'zg(s)r(gjzzz Zg“(l—s)l"(l—sj (37)

1-s

2
wr(3) s caoar)

K

where,

n=1lQ
Let there be solutions {z,,z,  } € C, such that
s s
C(S)=—K” , > Kz =z, sez,
e) )
2
(38)
s 1s
Kr? 4| Kr?2
£ (1-5) ST - oy | h l1-sez
r ri—
)
Then the infinite number of possible inverse-solutions are paired as follows:
z,+2,,=1 (39)
Then these particular solutions of the function obeys the rules:
£'(¢"(z)) =12, (40)

™ (z,), m>n

gm(gﬁ(zs))zgﬁ(gm(zs))zzs, m=n (41)

¢"(zg), n>m
¢M(2)=¢" (¢ (2) (42)

For example, if only consider ze{z, =o,+iz,}, then there exists a sequence of constants o, +iz, such
that

Moy +itg)=¢ (0 +ity) = 0y +iry
52(60+iro):§(§(60+iro))=§(01+irl)zaz +ir,
53(0'0 +iro):§(§i(0'0+iz’0)):§§(61+ir1):§(§(§(0'0+iro))):§(0'2+i12)zo3+iz'3 (43)

& oy +itg) = (¢ (¢ (+(¢ (o0 i)

One can expand these functions as follows:

)
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£ (2) =1 4 2 g
_ 1—17(2)—27(1)—37(Z)+-~ 42 S 3,1

_17(2) 5 _o(2) 5 _37(2) A1) 4 5H(2)
=142 3T 4

© o

3 _a-Z
&(2)= X I1(a")
ay=2a=1
As another general example,
n=>5 > form
2’
-x® asiz‘a2=laz ot
2334:13 ag=1
E o0
¢ (2)=2a
ag=1
This can be converted to a product form:
n=5, []form
° Layd
=1 Hay1%2

&(2) =3[ "

ag=lag=1
Here, a,,a,---,a,=12,3,---,00 are independent integers. In general,

—Z
R,
el e a0t

o =1

_ ©® I a ’nan73:1an72
¢'(2)=3 [T, ot
a,=la, 4=1
Thus, taking
Zn - a:nl}=:|_an_zr]7l = a'nizanil:lznil
Then,
¢"(2)= X2
a,=1
Thus, ¢" (z) is a power tower that can be put in the general form:
¢"(2)=29"(2)
ap=1

This however is only valid for R(z)>1.

Now consider the same power towers in terms of primes.

In terms of primes, let Po, be the b™ =1, prime with p, =2. Then,

1
z

ORI LB M
=1 by

b= pblz -1) baaco

£ (2)= ﬁi ( pbz—azngloz;lo(pblalz)j

by=1a,=0

)y (0 g 0),. -2)_y(2)_g(0),.

+...

(44)

(4%)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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o ®
“anll t'nfl:12 anfl=0[ Pon—1

™
=1
—_
N
~
Il
—s
DM
=

n

iy
]
AN
1Y)
3
]
o

Thus, taking

P (2)= ﬁi pbn_anpnfl(z) =¢(Pa(2))

b,=1a,=0

The Zeta power tower in terms of primes becomes the simple form:

©

£'(2)=P (1)=T1xp, ="

bp=la,=0

3. Convergence of ¢"(z) for 1>%(z)>0

Consider the extended Zeta function, ER(Z) >0.

C(0)= g 2 ()"

Then,
£(2)= L2 ()" a2
bg=lag=1
Using this,
C;(C:(Z)) _ ii(—l)al 2q(l—zazo(zbo(lfz))zawozo(aon(_l)ao)) aifzgoozo(zbo(lfz))Z%:O(%—Z(il)ao)
a=1b=1
_ ii (~2)® Zbl(l—zazo(zboﬂﬂ’)z;;:l(aoﬂ(fl)ao )) al_zgzo(zhoa—z))z% (st 0)
a =1 =1
0 0 © 0 bo(1-2) , -z
— -1 & 2[:1 2b1 (_(_1)302 3 )
2ol
Further,
- | » 77%M4%ﬂﬂ%wﬂ“5%mﬂﬂﬂ
7 — -1 L) 2b2 2b2a {( 1)*2 ( g
¢(¢(¢(2)) ZZ (-1) [[H( ,)
| (~bo2)
Y P o mfinaf fomst ]
— 1 a 2b2 2b2a (-1)%2 Hbo 11_[3071(2 1)
1y eI
Thus, taking,
z,=(-" 2" [ ] (2%a,) "
bp-1=la, 4=1

The iterated zeta function becomes:

_ o ) —an-2...
a"’lnbn,zzlzan,zzo(pbnfz )]

(83)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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Note that
- w0 © w0 N 0 0 (*an)
M2)=23Z, =2 X" 2 ][] (2"a)
a=1b,=1 a,=1b,=1 by_1=la, ;=1
1 o0 o0

_ “1)* (a (~Zn1)
e el ) ©

1 21-2:1123“ = w ()" (8 ) T i (64)
() =£ (¢ ) = D () (@) (65)
1— 21 <" (2) an=1

This is just the relation for the general zeta function:

1 a -
§(2)= 5 2 (D" (@) (66)
1- 2 ap=1
One sees that this is also a power tower product but this time the sum and the product operators are doubled.
Thus the iterated exponential power tower of the zeta function for %(z)>0 can be separated into the product
of two power towers:

Z,=(-0* 2 [T I1 (2"a,) ™" (67)
bn1=lan =1
_ ezrian 2bn ﬁ ﬁ <2bn a, )(’Zn—1) (68)

byg=lan_ =1

Since the raising power is not over the entire product, this becomes difficult to write in the general Knuth
form. The future iterates of the function ¢~ (z) converges to a constant whenever there exists some root of the
Towering Zeta function,s, that satisfies ¢’ (z):sr,m<oo. Thus, all the arguments that lead to a root are
unigque and no periods of the function can exist in the past iterations. This does not exclude close to periodic re-
gions. This subject has been extensively studied in Julia Sets theory.

£ (z)= 3O —o (69)
n=1

Let &' (Z €z,)=s, be aroot of the Zeta function. Then, the future iterates c (z),k=1,---,00, converge
toconstants over all arguments.

M 2)=¢(¢"(2)) =4 (s,) =0 (70)

Obviously, the function vanishes for 1-s, also.
When the function is continued over values of k for a given root, s, ,

&' (2)=s
¢ (2)=¢(s)=0
3 1

g (2)24(0)2—51

.{m (2)= {(—%j =-0.2078862250- -, (71)

£ (2) = ¢ (-0.2078862250- ) = —0.3448741787 -+,

¢*(2) = £ (~0.2959050806---) = ~0.2959050806 - -.



M. M. Anthony

This can be seen when the function is taken to the limit, and becomes an image of itself.

lim, . g“k_(z):g“(cao):g(cm_l):cao = Constant. (72)
The solutions to the relation ¢ (x) = x, for can be obtained if one takes
iaw’% =C, (73)
a,=1

Thus ¢~ (X) converges for real values when n is large and obviously the power tower product converges to
the constant function,

¢ ()=¢ (47 (%)) > ¢ (c.) = c. ~-0.295905005575214. - (74)

If there appears an argument ¢’ (z)=s,,r <o, then ¢ (c,)=c, isthe fixed point and the real limit of the
function ¢~ (z) when s, is a root of the Zeta function. The convergence becomes real and the complex part
of the arguments vanish. A plot of these values for g“k*l(sr)z 0 is shown in Figure 4 for the converging val-
ues. Thus c_ isa super attractor for all roots of the Zeta function.

Any roots s of the Zeta function that appears in any iteration of the function at the r™ term, r<n, will
converge the function, £" (z) . The functions of the infinite iterative form:

;@(mir):;(g(g-~(;(a+ir)))), (75)

have certain attracting and repelling values, and are sometimes periodic with respect to n. If one takes roots s,
of the function as a starting point one finds that the function generates constants for each value of n, such that:

&o(s.)=¢, =5,

$H(s)=¢(s)=¢,=0

(s)=¢(£(s))=c =_%,

¢ s)=¢ (—%]—ca ~ ~0.2078862250- -, 76
¢*(s,)=¢(-0.2078862250---) = ¢, = ~0.3448741787 -+,

-0.11

-0.21

-0.31

-0.41

-0.5-

Figure 4. Shows the oscillations for convergence of
iterates from a root.
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Then, for all roots s, of the zeta function, there exists a unique sequence of real constants that are invariant
with respect to all the roots and that converge to the same value, c_ . The plots below show examples of how
the function’s values change for the real arguments generated by some complex roots. *R(cjﬁ (s, )) , is the vertic-
al axis as n changes (horizontal axis) for various indicated values of 7 =2,3,4,14.1347251 and 21.0220396.
One can see that the function has alternating maxima and minima at integer values of n with the lowest value
occurring again at n=3. This is again due to that fact that the function converges to a constant for all roots as
n—ow.

One can surmise that any root s, such that ¢(s,) vanishes will generate a convergent sequence of real ar-
guments s, , for the functions ¢* (s, ),k >0, such that

1
R(s)>e.><(0)=—2. (77)
Assuming the Riemann Hypothesis, there is a symmetry between the real parts of the known complex roots s,
of the function about zero:

1 . 1 1 . 1
m(+5i|tjzz—>§(5iltj=0—)C:(O)Z—E

This symmetry is due to the fact that at any point in a large number of iterations where a root s, , one could
replace zero of (s, ) with the equivalence, 0=¢(s,);

£(¢(6(2(@) > £ (¢ (6(0)))n e

4(:{;..;[4@1@])] - ¢(£(¢¢(0)) > c(g(;...(_%mn o

This implies that the convergence of the iterations of functions must be symmetric about a zero of the func-
tion as implied by the mean value theorem mention earlier.

It is worth noting that the complex parts of iterates of the complex arguments result in real arguments if the
products of the components of the iterates is real. Thus the roots are expected to be composed of a spectrum of
complex factors whose iterates are real since they result in a quadratic convergence to the real values due to the
symmetry of the reflection formula.

4. Convergence of the Riemann-Zeta Function for Complex Values

Let Z belong to integers and Z* to the subset of positive integers. Any sequence of arguments can be created by
functional iteration. Let function g(z):C—C , with an initial value z,. The sequence obtained
(25,2, =9(2y) 120, =9(2, ).} can yield periodic m-cycles g (z,)=2z, for some z,eC. A critical
periodic point z, can be classified depending on the value of the derivatives, y, = (gm (zc)) . Such points are
studied in Fractals, Chaos theory, Attracting Periodic Cycles, and in Mandelbrot Sets, using Newton approxima-
tions and this critical point is classified as

Superattracting if |7,|=0

Attracting if || <1

78
Neutral if |,|=1 (78)

Repelling if || >1

Let {z,,7,--,2 1} be an k-cycle of the differentiable function g"(z,), with z, =g*(z,)=9(z.,)-
Then, from definition (7),

(2)=([toge]')TTo" (2) (79)

Then, the function g" (Z) has the following properties.
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o If z=gP(z) is a periodic point of period m, then g"(z)=z, if and only if m divides p. This product is
referred to as the multiplier of a periodic point z of period p. Since the z, lie ona cycle,

() (z)=(g") (z,) foralli.

e If z=gP(z) isaperiodic point of period m, then, ¢®(z)=¢%(z) ifand only if m divides p—g.
LEMMA 2: If s is a root of the Zeta function, then the Towering Zeta function, ¢ ( ) ( ) for finite
values of m>1, unlesseither ze[c,],or z=s when m=1. .
Proof: The case m=1 is trivial for ¢*(z)=¢(s)=0. Suppose there exists some ¢ (z)=c,, whererisa
positive integer. Then there exists some

¢(¢7(2)=c (80)
i.e. there exists a sequence of arguments,
£O(s,) =6 =5,
( ) =¢(s)=c=0
)=¢(6(s) =0 =3,
= g( %) = ¢, = -0.2078862250- (81)
(s, ): £ (~0.2078862250---) = ¢, = —0.3448741787---,

& (s, ) = ¢, = -0.2959050806- -

£(6(67 ) =¢ (¢ (6 (67 ) = (¢ ¢ ¢ (¢ (e0))) ) = (®2)
| =¢(¢(ee(¢" @) elen (83)

The iterated exponential that generates a root el (co) =0, must satisfy all roots independently, since if for
somer, z, isarootof " (z) then z, must generate a particular sequence of real arguments in a future se-
quence of arguments that must converge to ¢, ,as k —>w,ie, ¢°(z)=2,¢"(2,) =12,

i =5 = P P 1
£ (2) =2 € (2) = 20,6 (3) =7, €' (8) =0, (z) ==+ >C... Such a sequence of real
arguments cannot generate another complex root in the future direction. As an aside, Little wood showed that if
the sequence z,,k =1,---,r, contains all the imaginary parts of all zeros in the upper half-plane in ascending
order, then,

limz,, -z, =0 (84)
k—o0
There cannot exist such a sequence of roots in the past or future arguments of ¢ (zo) since when a root is
encountered the sequence of arguments converge and never goes to zero but once. However, considering the fact
that the Zeta function is multivalued at the roots, any root could be used in the future of a Zero, and as such a
product of all roots following the Hadamard product for the Zeta function can be used in the future of a Zero of
the function.

S(s)=e*""s- ]‘[( J e’ ]‘[(1+ ] e”" (¢ (p)=0with0<Re(p)<1)

n>1

The Towering Zeta function ¢" (s) can in fact have an infinite number of convergence points in all its roots.
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All roots converge the function to the real line from the complex plane (Figure 5).

Starting from a given root, the future iterations of the Towering Zeta function function over successive argu-
ments that start from a root will lead to a convergence for every root. Table 1 shows the iterations from a root s
in an upward future trend toward convergence to c_ . However starting from some past iteration, there exist an
infinite number of roots that could be generated by a past iteration through zero.

‘Table 1 shows successive past values of arguments for the roots, that solve the iterated relation,
¢"(z,)=¢"(z,), where n runs up the tables in a future direction, i.e. arguments of ¢"*(z ) lead to

- (zk ) . As can be seen from Table 1, the function can become almost oscillatory for some values of negative
roots. Values down the table are arguments that can generate roots as starting arguments of successive values of

(i)

1

/ 5 line Roots

\, a

-6 -4 -2 0

Figure 5. Shows the convergence from positive complex roots of
the function to the real line.

Table 1. Iterations of the roots of the Towering Zeta Function over real arguments.

¢M(s)=¢(¢"(9))

o c,
17 —0.29595806723778959429546880727279905000000000000000
16 —0.29580152831200018096290646344253482702467849073213
15 —0.29610685544242180860201784355977774292750241992426
14 —0.29551147448528153468605540107430168095507096662307
13 —0.29667304591820569539524370288435971088621053886270
12 —0.29440910387263694790663240676204680320270972628433
11 —0.29883017491388564173005702091107050051340373827686
10 —0.29022915571595152652543096855529715421054509417251
9 —0.30708636451194022129234803037380574262347512272602
8 —0.27451684815677210287939135693311577140783360600261
7 —0.33925706658308498350126705482505739973880105347080
6 0.21728231379886310314230045114591184991388919709022
5 —0.47450768974007172623842641724875639785397472932299
4 —0.02860979985485943088252867867522696522057632451858
3 —1.4603545088095868128894991525148973697655036386338
2 -1/2

1 0

o
N

S
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1 A
LEMMA 3: LetO<r <7 H=00+ ir,, and let f(s,)=¢"(s,), be a non-vanishing function on the disc

3
é’(Zj_Cn
Use Voronin’s theorem and let f (s,)=¢"(s,). Then, s, =¢"(s,)

g(%+§ﬁ(so)+itoj—g’ﬁ(so)

|so| <, which is analytic in the interior. Then,

max

[sol<r

< —T.

max

< &. (85)
[sol<r

. 3 . ,
Further, since Z+ it,#0if t, € Z, theconstant &, cannotbe zero. However, we can choose z, and make

(%+§ﬁ(so)+itoj=§ﬁ(zo)

a{ﬂ(zo)—gﬁ(so):gﬂto

So that max
[sol<r

M (zo)-¢" (so)| < &,. Obviously as n — oo, the convergence demands that &, —» 0.

As n—w,g, — 0. Now choose gﬁ(so):o,

max §[§+it0j—cn <& (86)
Isol<r 4
Then there exists a negative constant such that
—0.5000000000 n=1
—0.2078862250 n=2
¢"(0)=c, ~4-0.3448741787 n=3 (87)
—0.2954619778 n=o
Then,
max§[§+it)—c <eg (88)
\O\Sr 4 n n n*

The constants t, must vanish at infinity since ¢"(0) is self similar and ¢*(c,)=c,, and any approxi-
mations of a constant function must be a constant-function, then, one suspiciously finds that:

—0.5000000000 n=1 —2.941285387---, n=1
—0.2078862250 n=2 —-3.233399162---, n=2
ax §(—j —4—-0.3448741787 n=3 =4 —-3.096411208---, n=3 |<¢&,. (89)

—0.2954619778 n=co |-3.145380381:--, n — oo,

This value deviates from = by 0.003787727780215700---. i
I will now discuss the relationship between the Towering Zeta function ¢ (z) and its derivatives. Differen-

tiating ¢" (),
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prd

"(2)=¢ (1M (2))¢ (16 (2))¢ (Le (@) ¢ 1 2) =TT

k=1

S @)

dz

n_l[dévl?(z)

(90)

(91)

Thus the derivative of the function ¢" (Z) is just products of the derivatives of the iterate functions taken
over n—1 values. Note that the derivatives of (gﬁ),

(") (2)=(ogel ) [o" =)

(92)

have been shown by D.L. Shell [6], to be periodic. Obviously, the power towers are intimately related to the
Towering Zeta function and the almost periodic relationship is exactly the sort of behavior one sees with the

Zeta function:

LEMMA 4:

For R

Proof:

(

Q

—30.000000006354409385604136689519632230386337754576
—41.999999999999999867430211201873569223963122161146
0.97651231492066129474435027600741771913283805368063
—22.000360302508129001125278890966636148140124168019
—21985521871353759756816256045263338254747062798673
—21.985532002522436978683430118473228296431588342576

-21.985532002522436978673430118473228296400065068011 |
0.95567179697780404255436748814883558583102891315578
—30.000000006354409385604136689521105193219591530893
—41.999999999999999857430211201873569223963122331657
0.97651231492066129474435027600741771913283810174678
—22.000630302508129001125278890966636148140124543817

[0.95567279697780404255437895947517132067057510101417 |

| —21.985521871353759756816256045263338254747062795690 |

(@)1 o) -m| |

dz w0yt
Hu:évv ’

e )l )

¢t (@) :(;j_zg(‘;ﬁ(z)) :%((;ﬁ (2)--% i)

v=2\/

Differentiating ¢"(z), one gets:

dz a dz

Mwnﬁvﬁ@q

Which is the same as the power tower derivatives when c=e.

(6 (2)=(toac]) 1o (2

(93)

(94)

(95)

(96)
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Hence,

Noting that

The derivative becomes,

Put a,, —u,and use

n = =
dg" (2) iln S Inﬁv*”n )
dz v=2 v=2
—Z
[ a0
Y ,...,ngllzlaz ag=1
- o o e a 1*nan73=1an72
fi _p=18n-
¢"(2)=2 I1a ™
ap=la,_1=1
—Z
© a0
2%
1% g2
- NE g et '
_y “an- .
——2=1In | IV
dz v_2
—Z
™ -4
L
eI ap=1
Tl g=1%1-3 o1
—* n—-4=
e an1 Moy =12
© I v ap_p=1""—
=In| v ™
v=2
—Z
o —ag
- L]
s T
NE g e
S O TRLC T
© ~2ap=1lla, 1=12n
V n -
I1 o
v=2 e az'n:():lal %
T =1
* an_2 M _4=12n-3
N2 _jan1 an-3=1
~Xan-Lan=vIlan_4-13n 2=t
\Y n=%Lan n-1=
—Z
M2 _a %0
Y ...,ngllzlaz ap=1
- o o o a 1*|_|an73=1an72
fi _p=18n-"
¢"(2)=2 I1a ™
ap=la,_4=1
i -z
d¢"(z) il - v
—-— =TI =
dz -

=, © —u
)
u=1,uzv

(97)

(98)

(99)

(100)

(101)

(102)

LEMMAS: Define Z :{s eC|{(s)=0,and 0< iR(s)>1} andlet seC and, s=o+ir . Define

Zoz{soe(C|§(§“—*1(so))=0and OsiR(so)>1} andlet s,eC,neN, and s,=o0,+ir,, then,

Zoc{soe(Cl{gﬂ(so)zs},nzl}.

Proof:
First we verify (102).
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dz :In H = (103)

v=l H u:l,u#vv_u
=In (ﬁ(ﬁv‘“s)ws D (104)

o TT W0
:m[HHHVVs J (105)

—In (ﬁv j (106)

Consider the product formula:

d¢" (2) :ﬁ[d:k‘(n} 107)

dz i) dz

Let the root s occur at the m™ iteration of the product formula, at k =m . Then,

m-:

=H['” ﬁv-V‘E(*)jln {ﬁ L J 1l (In ﬁv-vgi‘%)j (108)

1
© —u~s
=0 v=1 I I \' k=m+1
u#v

This separates the products into three terms, the first term, P, being the iterates before the root s is encoun-
tered, Pek=0,---,m-1, and the second term N, being the iterate that produces a root at N ek =m, and
third term being the iterations after the rootat Fek=m+1,---,n-1.

2o

¢M(2)=s

m-1 © {k'(so) o 1 n-1 © v,gm(so)
P = (InHVV j, N = In Hao—_u-s , F = H InH— (109)
v=1

K
k=0 v=l k=m-+1 v=1 H"C V—u{ (s0)
uzv

One has to determine if the factors P, N, F, can vanish in a given range of values of the arguments, s. Before
determining these products, the following Lemmas are necessary.

]_El;/IMA 6: If ¢(s)=0, and if p,gmneZ, and if 0<p<g<m<n, and ¢°(z)=¢%(z), then,
" (z)=s.

P(roof: Suppose there exists Q(z) =1 (Z) Then, iterations from p to q will be periodic and will only gen-
erate cyclic arguments when ¢ " (z)=¢%(z)=¢"(z), where, k=q- p. Thus the past iterations for i<q,
will be stuck in an eternal loop and never generate future roots, s. This is true for both real and complex argu-
ments, z and for real and complex roots s.

LEMMAT: Let ¢"(z)=s, then,if ¢(s)=0,andif {p,q,mk}ez,and O<p<g<m,and zeC,and
if foranyp, g, ¢"(z)=¢%(z), then, P and F are infinite power towers.

Proof:

If p,gmneZ,and O<p<g<m<n,and if for any p or g, ;ﬁ(z);t é’q(z) then the sequence of itera-
tions of the zeta function ¢™ (Z) =S has no past purely periodic arguments and as such there can be no other
repelling, neutral or super-attracting points until the root itself is reached.

Then by induction, there are no past periodic arguments in the factor P prior to encountering this root. There
must exists an infinite past for the iterations leading to root s. Then, the only critical point is the root itself and the
sum of all such points will be the root. The root could be written as an infinite power tower of s, = Zgw (z)

u#v
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The same argument leads F to an infinite power tower.

Noting that
cjrlso) =s
¢ +1(50):§(§m(50))201 =0
()¢ (0) =6, =5,
™ (sy) = g(—%j = ¢, =-0.2078862250- -, (110)
¢™"(85) = ¢ (-0.2078862250) = ¢, = ~0.3448741787
¢ (so) _:s =-0.2959050806

0 0 V_gm(sﬂ)
F=T]|InN[][——— (111)

- > o _y¢ (%)
k=m+1 v=l Huwv u

N ,&]
o v ( 2 © V—(—0.2078862250) @ V—(—O.344B74l787) w v S
= Z In ” V-Uio Z In 7(7% Z In w _-(-02078862250) Z In Ty g G
vt Hu;zv vt 1_[30 v 2 vt Hu#vv v Hu#vv
u=v

0 0 V’(Ck) 2

:ﬁiln (VZuw:vui(Ckil)i(ck)) (113)

”:l

IS 8
VR
<
L0gs
VR
N
c

w

i) -6 ) a0

Thus F =0. (115)
The factor N is given by
N =In [HH—VJ zln [H(v )J (116)
2( i[ln (u)j Inv(v)J W
=(¢(Ls)-¢(Ls))=0. (118)

Both the above factors are zero, hence the proof. It is obvious that if a root occurs in any of the arguments of
the function iterates of ¢ (z), then, the derivatives of ¢”(z) must vanish since it converges to a constant.
Now the conditions that allow a root to be encountered depend on P.

It is worth noting that the function ¢"(z), and the arguments ¢ (z), are discontinuous functions over the
complex plane. In other words they jump in values over each iteration and may never hit a root for some values
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of z.
Let z, be a starting value that does not hit a root.

The relationship given by the Hadamard factorization thus represents the relationship between the iterated
functions ¢"(z,),and roots p of the zeta function.

¢"z) n-1
,[zH:(l_é“ (Zo)J

P
2(;ﬁ(z0)—1)r{§n_12(z°)+1]

Obviously, the argument gr’l(zo) =1, is a pole of the function and so we assume gﬁ(zo) <1. From the
reflection formula,

¢"z)=

aio [l X=X
= — d
g (ZO)'([{Xgnl(ZO)Jrl] X

M) i 1M () . ni
x 2 /;"(zo)r(gT(z‘))J:;z 2 g(l—g"l(zo))r[é—%(z")] (119)

Since ¢™ (z,) never hits a root, we can divide across by the reflection function,

Mz n-1 ¢z n-i
T 2 Hj[l—g (Z°)J T 2 Cﬁ(zo)r(g (ZO)J

P 2

n-i z 1"z, ni =§ﬁ(zo)
2(§m(zo)_1)r[§ 2( °)+1J —_— )C(l—éﬂ(zo))r@—g 2(Z°)J
1= e ) & _

. () s gﬁ(zo) 1 gﬂ(zo) o)
T iR
Since ¢"(z,)= 0, one can divide across by ¢"(z,),
o, Hz)) (£ (=)
H{l pM(])r[ 2 J _ Jz _ .
2(§ﬁ(20)—1)ﬂ 2 4(1—4”71(20)) F{g 2(Z°)+1 F[; d Z(ZO)J
Using
= -T2 g"-l(z)J{“gﬂ(z)J
F[c‘;(Z)ﬂ]r(;_C”‘;(Z)J H[ 21 %
oy €M(@) | [
Hp[l_ p()]r 2( )j FZ(Zo) Jr
2(¢ (2)-1)¢ (1= () |
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,fi“”nz[l_; 1(zO>J m[aﬂz(zo]

2((“(zo)—1)r[§ﬁz(z)+1}r[;—§ﬁz(z)J

From the reflection formula,

g(l—gﬁ(zo))r[%——gmz(zo)] = ﬁ;_gﬂ(ZO)F{—gﬁz(ZO)Jgﬁ (Zo)

From the power of =, the condition for no roots to be obtained during iterations is that

&H(2)=0.8" () =5,

O | I

2 2(-r() 2
The condition g“”q(zo) =0 implies that a root ¢™? (zy)=p is a hit for arguments before (n —1)th itera-
tion. Thus the condition demonstrates that any prior argument that is a root " (zo)=p will never have itera-
tions that give another root again.

¢ (2)=0.¢"(2) =5

Further, for m(s) >1, the iterates that lead to a root give

m-1 o *§k+1(2)
P=]]> | ——— (120)

k=0 v=1 Zu:\F

(121)

[i[u‘““” In(v)}—(fﬂ(n)m(v)]] (122

AEER o] e
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- m'l(i(_gm(z)m (;m(z)ln(v))) (124)

k=0 \\v=2

From, (124), one sees that the derivative vanishes at the root of given by some iterate g“m (z) =0. The condi-
tion that the derivative does not vanish when 0<% (s)= %(gﬁ (z)) <%, leads to a solution of the Riemann

Hypothesis. However, for the case m(s) >1, when ¢" (z) is aroot, none of the iterates vanish, since the ite-
rates lead to the final root.

5. Connection of the Towering Zeta Function to Exponential Power Towers

To illustrate the convergence of the Towering Zeta function for 1> i)%(s) >0, we start with:

z,=(-0" 22 [T [ (2%a,) """ (125)

Then,
&(2)-332, (126)
Now use ﬂzg(s)r(gj = nlzsg(l—s)l“(l_Tsj (127)
C(l— ¢ (Z)) o) e cos{—”gnz1 (Z)Jf(gﬂ (Z))§ﬁ (2) (128)

To see that the reflection formula obeys the power tower representation, take,

closmo)- 55 1 ) ‘”9)

a,=1b,=1

-3y (anl —(-1)" 2 (22, )(gﬁ'i(”)j (130

a,=1b,=1
0 0 1 an 0 0 by (zn—l)

=zz[a—(—1> I111(2"a,) j (132)
ap=1b,=1 n b,_g=la, 4=1

Then, since Z, =(-1)™ 2" H:A:ll_[:n?l:l(z”" a, )(_Z"’l) , the two zeta functions can be written in the form:

1D TT” » b g (Zn1)
(@)= 55 Tl ()

ap=1b,=1 a,

(132)
. & . T T (-Zn1)
¢"(2)= ZZ(Z"" (-0 TT IT (2%a) ™ ]
a,=1b,=1 by_1=1an_1=1
LEMMA 8: The fixed points of the Towering Zeta function are rational functions of its roots.
Proof:
Putting
b & T T b ~2tag o
@, (n)=2" (-0 [] [] (2*a,)
. b:::la:::l i (133)
v.(n)=—(-0" T 1 (2»a,) ™
n bn_1=lay 4=1

()
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Thus,
(1-¢" @)= ZX (w ()
. a,=1b,=1 (134)
£'(2)= X 3.(2.(n)
And so,

1
G [Qz (n)JZb“an_lu/z(nl)

(anl//z (n)) 2:n1) = 2bn

obn-1 a"*l"’Z(”’l)/anl//z (n) _ ®z(n—1), Qéb(nn) (135)

The fixed points are obtained by the solutions to the relation:
@Z(n) @ n
anu’z(”) an‘//z (n) = 2 —;b(n ) (136)

This can be simplified by putting %»(nn) =¢,(n),ay, (n)=4¢,(n).

‘/’z(“\)/wz (n)= ¢z(n\)/¢z (n) (137)

Power towers of the form (145) represent rational functions.
Remark 1. The only real algebraic solutions to (137) are 1, 2, and 4, since as shown in (23), functions of the
power form (137) have an equivalence for the values 2, and 4:

ol &

N O

It is easy to see that if ¢, (n)=¢,(n) then the unique divisors of ¢,(n) and ¢,(n) are the same. It has
been shown that values for ¢, (n)# ¢, (n) are transcendental number.

For real power towers, the prime divisors z® of ¢,(n) and the prime divisors z* of ¢, (n) are the
same. Thus for the complex values, if there is an infinite number of unique divisors, then,

g, (n) = [z
- (138)
¢, (n)= [[Zf -

¢, must be divisible by ¢, leaving a factors that are the roots of unity. To see that the remaining factors are
the roots of unity take ¢, (n)= f (z)¢,(n), and so,

(f(2)¢, ()" =(g, ()" (139)
and from this
1 f(z)
¢Z(n): f (Z)f(z)—l,(oz(n): f (Z)f(z)—l (140)
Write the rational function 1 as a rational function L =-seC.
f (Z)—l zZ)—

)
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Then, f (z):ST_l , and,

o, (n)= (ij .4, (n) = (%)l (141)

Thus the reflection formula applies to the power tower representation:
1 s—1)"° 1 s—1)°
s—>1-5s,¢,(n —>—=(—J , @, (n =——>(—j (142)
N O R T R

The reflection formula then tells us that ¢,(n) and ¢, (n) obey reciprocal relations. In Ref. [5] Shkliarski
D., N. Chentzov, and I. Yaglom, show that for real integer values of s, the forms of equation (142) represent
Power Towers that converge to real rational values.

DEFINITION 8. Define the set

Wn=¢Z(n)ﬁ(1):¢o¢o...o¢(1),n:1’2,... (143)

where ¢" denotesthe n" iterate of the map ¢ and converges.
w, converges with limit 1< C,then ¢(1)=¢" = 4. Thus,
2in@

¢, (n)=e" (144)

and so on with each such relation representing an entire function of ¢, (n).

X

LEMMA 9: (Shell: Ref. [7]). Let f(X)Ie:X,XE(C, then {fﬁ(x)}n . converges to e*, in some neigh-

borhood of e*, if |x|<1 and cando soonly if |x|<1.
Proof: Take the principal branch k =0.

W{—Iog(eexx}]

_ W (—xe™ _

£7(x) = - SX:GX )—_X;X =e", (145)
—Iog[eex]

An even stronger condition can be placed on the convergence of the sequence (143) by Thron in Ref. [8].
LEMMA 10: (Thron; Ref. [8]):

X Y .
If a=—, |x| <1, or if x is a root of unity, then the sequence (143) converges to e*. For almost all x such
e

that |x|=1, the sequence diverges.

Galidakis Ref. [9] noted that the fixed points h(c) of the functions ¢, (n)ﬁ are rationally indifferent or pa-
rabolic and that their multiplier is exactly z =e*? . I.N. Baker and P.J. Rippon Ref. [10] showed that if ¢ isa
centrum number, in particular if ¢ is non-Liouville number, then (143) diverges. The n™ order power tower

only converges to n fixed-points on the circle when ¢"(x)e s, aroot of the function and when

27zn.
xeek =e , with @ being a rational function.
Following Titshmarch, Ref. [11],
Let #(x) be any function with a continuous derivative in the interval {a,b}. Then, if | x| denotes the
greatest integer not exceeding X,

3 6(0) = oo [{[x)x-3 Jo (0tc=(o-[0 -3 Jo(o) (a-la)-3Jo(@)  we0

a<n<h

2n6i

Following Titshmarch Ref. [11] page 14, taking ¢(x)=x"°,s#1,a=1b — oo, one arrives at the well known
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Zeta relation:

1
S X=X+
£(s)=s| L 2 |dx+ 1 +%, R(s)>1 (147)

1 X s-1

Since | x |-x +% is bounded, (148) is convergent for 9R(s)>0.
For the region 0 <R (s)<1,

and so

g(s):sf[“x{;x]dﬂsfl, 0<m(s)<1 (148)

Assuming the Riemann Hypothesis, the Towering Zeta Function follows this relation before convergence, i.e.
when the real part of the arguments of the Zeta function is in the range 0 <R (s)<1.

Let s be a root of the Zeta function. Assuming the Riemann hypothesis, when the Towering Zeta function
converges, the next argument is of the form

g(g(s)):—%, {-1<R(s)<0} (149)

Thus, for some finite iterations of a starting argument, z, let ¢" (z) =s be aroot of the Zeta function. Then,
the inverse gives, z=¢"(s) The Zeta function now follows the relation,

1
0)=c Of|

o dx, {—1<£R(s)<0}
0

However the iterates are associative, thus,
™ (2)=¢(s)=0 (150)
Of course, this is only true if the backward iterations are uniquely selected from the initial argument set

0<% (z)<1. The range of the function changes since, ™2 (z)=¢(0)= —%. Thus,

0<R(s)<L k=0, §(S)ZSI(LXXJ_XJdX+ Sl

- |_xJ—x+1 (151)
~1<R(2)<0,k>0, {(2)=Z] Tz dx

k-iteration of the function for arguments in the range -1< ER(Q“E (z)) < 0, give the functional relation.

| o= )| e e
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In other words, after convergence, the relation obeys the functional,
f(2)9(f(2))=1(2(a(2)) (152)

Then, for —1<£R(/;”*2( ))<O,
£(¢7(s))=¢"(5)=

o xJ x+1 " \_xj—x+1
I x—>f — 2 lgx =1
0 0 X

The relation gives the invariant integral over an infinite iteration of the roots:

= | x]- X+ 1

2
2 |dx=1. (153)

I now introduce the function (p( ) defined by the following theorem due to Ramanujan. Chakravarthi Pad-
manabhan Ramanujan was born in India on the 9™ of January 1838. He died on the 27" of October 1874. He has
been referred to as the greatest mathematician ever. His work on number theory and algebraic geometry has
produced some of the most outstanding revelations in mathematics and is considered to be one of the pillars of
modern day research. This paper is about Ramanujan’s so called Master Theorem that relates integrals of certain
types of functions to a wide range of application including Power towers and the Zeta function.

The function f (x)= ex(ei ) is intimately related to the Ramanujan Master Theorem and to the convergence

of the Power Tower Zeta function.
LEMMA 11: [Ramanujan’s Master theorem Ref. [12]].

Define v, (k)=3" (nzr)]:)ym - ‘/’yk(!k)

then, if f(x)= (—x)k in some neighborhood of x =0, then,

_[ f(x) X’“’l)dx =I'(-a)y,(a),
0
DEFINITION 9: For any real or complex numbers, x,y let

S(x,y)= )

Then using the Master Theorem, the following apply:

LEMMA 12: There exists exponential power towers such that if y, (k) = Z ~

s(uy) =38 Ly (154

Proof: S(x,y)= ), Then,

(155)

B L) .
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S(xy) =iM (157)

0 k!
The following Theorem by Thron, [8], applies to such power towers.

f
LEMMA 13 {Thron}: If a:%, |x|<1, or if f(x) is a root of unity, then the sequence (143) con-
e

vergesto e'™ . For almostall f (x) such that |f (x)| =1, the sequence diverges.

LEMMA 14: For any complex numbers, x, y , if y=1In(x)—In (In (x)) ,then S(x,y)=x.
Proof:

S(x,y)= ex(w)

e(7In(><)+ln(ln(><)))

=e" (158)
{m('?i:’)}
—e (159)
o () .
( )[ () ] In[(( ))%]
_e M e ~x (160)

LEMMA 15: For any complex numbers, x, if f (x) =In(x+1), then, the self-root function is given by:

1

(10,1 00) = oee s = 3 S (1

o k!
where,

c Tkl (-m)
S k = —l . N
)= 3

Proof: In [12], and in [13], Jovovic calculated the self-root sum:
S0 K] ()
(x+1) )_kz:[‘; " % i %U_m)!(m)! (161)

k
where { } is the Sterling number of the first kind. Thus, for the self-root,
J

e[k (=m) ™
k)=(-1 -~ 7 - 162
0= 8 e
Note that in general, one can write:
(et = (XY [k Em)
In which case the function l//s(k) becomes dependent on %
CETKTL (-m) ™
0-(-2) 5[] L
v~ -3) 2} 2T e

()
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LEMMA 16: If f(x)=In(x+1), then, S(f(x),f(x)) is a Power Tower and, S°‘°(f (x), f(x)) con-
vergesto e’

Proof: Use Lemma 14.

LEMMA 17: For the self-root if f (x)=1In(x+1) then,

Ws(k):(—l)k%(s(f (). f(x)) kezk=o0.

x=0

Proof:

1

S(f(x), f(x))=(x+1)oen)

Differentiating (x +1)ﬁ , k times, a simple calculation shows that:
k 1

(?7(()( +1)(X+l)j

where the symbol Sk(0,0) is the value of the k™ derivative at x=0. This is the same expression as
w, (k) for the self-root

0 = J |m=0

(g @ o5 k] & _(=m) g
=0 {0 )| - S as5)
AL k K
LEMMA 18: If F(x)= k_o‘”k(! ) (=x)*, then, {F(x)dx:O.
Proof: Using the Master theorem,
e[k (=m)™
k)=(-1 166
0= S 9
Now,
® Kk v
F(=3 20
k=0 -
From the Zeta function, since (k) is independent of n,
- o~ k K — k k
SF =35 e = e e )
_x (_1)k Bk+1l//5(k)
_é Gl (168)
Now from Euler-Mac Laurin summation formula:
i b 1 - BZn 2n-1 2n-1
HEHF(n):;[f (x)dx+-[F(a)- F(b)]+n§(2n)!{F (b)-F*"*(a)} (169)
Putting a=0,b=00,
[F(x)dx= SF (n)=2[F (0)]+ L F'(0)— 2 F"(0) + o F™"(0) 4 - (170)
! s 2 12 720 30240
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JF()d=3 ) B ) > Bk”fk ) (171)

Noting from the Bernoulli relation that only odd values of k survive, the integral (171) is zero when
w, (k) =(-1) F*(0),k>0.

e 1 o SiN(27zmx » we (K K
LEMMA 19: Define F(X):LXJ—XJFEZZM%' then, F(x)=>"", Fk(! )(—x) , where
¢ (k)
k)= —
‘//F( ) F(l—k)
Proof:
Consider the Fourieh series expansion,
1 &sin(2zmx)
F(x)=|x|—x+t=s2Nermx) 172
() =[xf=x+g=2— " (172)
F(X)S%,XEZ
The derivatives F*(0) of F(x) at x=0 aregiven by:
F¥(0)= 3~ (~1) 2 (z)"*sin (%kj n** (173)
n=1
Put:
we (k) =(-1) F*(0)= 2" (ﬂ)k_lsin(%k)g(l— k), (174)
k)
K) = (-1) F* (0) = -4 , 175
ve (=0 PO =515 (175)
then,
a4 . k
(1) 2 (n) 1S|n(”jm“ |
= e (k) K&l 2 K & sin(2zmx)
F = — = = _—
(=2 (¥ =22 k! ) =2—
Thus, the fractional functions . (k), F(x) satisfy Ramanujan’s Master Theorem, when
e (k)=(-1) F¥(0) for ~1<M(a)<0,andso
k
F (=3 e (179)
ko0 k!
Then,
0 mkfl
ve (0=-3" ar)
m=0 -
“Note that putting j—m=k -1 in
k k k+rTH(—m)k’l(k—1+ m)!
k)= , 178
vs () m;k[mm—l}n% (k—1)im! (178)
k ekt (m) ™ (k=1+m)!
k)=- -1 , 179
vs (k) M( V2 m (79)
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Then,as m — o0,y¢ (k) =y (k).

LEMMA 20: If y/y(k)=2§o(nzr)]:){m, [“v, (a)edy =¢ (~a)
Proof:
5 & (m) "
v, (@)= Z%(m o
ey (a)=3 (v)"e” = (y)"e”
l//y( ) "%(m_l)!( ) mz:;) (m)| ( )
el ey
!()d)’Z () ()—mZ:(J(m)!()
[, (a)edy = ¢ (-a) (180)

k
LEMMA 21: For complex values of z, if p(z)= Z::o‘/’y (k) (_kzl) , then

_[e p(z)dz=Y" (m)™".

Proof:

k
LEMMA 22: For complex values of z, if S(f(z),f(z))=>w, (k)(_ ) and y, is not a function of z,
k=0

then the Ramanujan function

{S(f (2). f (z))=§wsk(!k)<—z)k (181)

is related to the Riesz function.
Proof: Integrating (181), and since (k) is independent of z,

Ts(f (2). f (z))dx:img(_rl)(i;(%()l()zk*l (182)
1

Note that (182) is exactly the Riesz function for (k)=

C(k+2)
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© L » ( ) Zk+1 ( 1)k+lzk
.([S(f(z),f(z))dz—!mér( D2 ?) kaZ; 102 (2K (183)
LEMMA 23: For {-1< %R (a) )=af F(x)x“")dx=T(1-a)y; ().
Proof:
If F(x)= Z:_O%(x)k then,
I(F () x )k =T (-}, () (184)
Using the Zeta functional relation,
¢(a)=(2)" (z)" sm( 2) (1-a)¢(1-a) (185)
Relation (185) becomes:
. ¢(a)
ve (@) =—(2) (x) sm( j o) (186)

For 1<% (a)<0, the function  («) isrelated to the Zeta function in an intimate way and so

©

¢ (a)=a[F(x)x“"dx=—y; (a)T (1-a) (187)

0

Corollary: If F(x)= Zf_OW(x)k , then

é’(a):a_[F(X)X"HdX:—y/F ()T (1-a) (188)
Proof:
¢(a)= anzo(_l)ka@ Xty (189)

Thus y. (k)= ()= constant, then,
aj*
0k=0

It is worth noting that relation (190) is one form of the Weyl fractional derivative. See Ref. [12]. The Rie-
mann-Louiville fractional integral gives the same result.

"’F “) X*dx = aje XUy, () = - (@) T (1-a) (190)

Ve (a)z_ (191)

e (a)=—(2)" (ﬁ)a_lsin(%jg’(l—a):— £(a) (192)

6. Relationship of the Function y. (a) to the Density of Squarefree and
Squarefull (Non-Squarefree) Numbers

DEFINITION 10: A positive integer m is squarefree if it is either a product of different primes or 1 otherwise it
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is squarefull.

Let x(1),8(1) be the densities of number of squarefree numbers and squarefull numbers in an infinite set of
integers.

Note: RIEMANN’S HYPTOTHESIS: Fix ¢ > 0. Then we can find N such that for all n> N the number of
square free numbers in [1,n] does not differ from the number of non-square numbers in [1,n] by more than

1
nz'" .

2
LEMMA 24: The density of squarefree numbers is l(l):%, and the density of squarefull numbers is

9(1)=1-4(1).
Proof:
Taken over square-free numbers m, and squarefull numbers n, then:

ve (a)=(-1)"F*(0)=- i 2“1(ﬂ)asin(%J(m)H_

m=squarefree

5 2al(ﬂ)“sin[%j(n)“ (193)

n=squarefull

Since
() sm[gjr<1_a)m_5§eﬂeena _ % o4
(@)= S raea) 3 2oy an| 5o
1"?1(? (1) [1‘ ; éa)J = nsq%ul,zal ()" sin (%)(”)H (195)
Thus,
Ve (k)(%] = nsq%gfuf“l (7)"sin [%)(n)al (196)
Let
9(a) = —n_sqgem“za-i ()" sin (%)(n)ﬂ
z2(a)= —msq%eﬂeez“ (7)"sin (%)(m)“‘l
Then,
Ve (“)[%J =9(a) (197)

The number of both the squarefree and the square-full numbers is given by (1) for k=1, since this is
the one by one count of each infinite set. Thus, the density of the squarefree numbers and the squarefull numbers

is given by:
ve (U)= 7(0)+8(1) =2 (x) sin(gjg(l_l)zl
thus,
¢(2)-1)_
EEEI o
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S =1 x() =5

It follows that the density of square-free numbers is and the density of squarefull numbers is

?l
6
19(1)21—?
LEMMA 25: L g = Yo (k)
‘Let g,(x)=e then.[ g, (x)dx=0 and g,(x)=3" o (—x)".
Proof:
Taking the derivatives, g (0)=(-1) 7*n* =(-1)"y, (k);
< n —Nn"zX
gn(x):z”kl (—x) =e"™ =g, (x) (199)
k=0

One sees that the paired functions g, (x), 1//9( ) satisfy the Master Theorem. Thus, from LEMMA 25
jo g, (x)dx=0.
Further, to see that this is true, define:

S(x)=3e"™ =g, (x) (200)

©

Ign (x)x*Hdx = Ie‘”z”xx‘“‘ldx = 70T (—a) =y, (a)T(-a)

;zz(;(s)r@ _ Is (X)% dx (201)

PUt S= -2,
7°¢ (~2a)T () = Tig (x) xdx = f;/z“nmr(—a) (202)
5 (2a)T () = ¢ (2) T (-a) (20

LEMMA 26: If a function, f (x), has derivatives of all orders throughout a neighborhood of a point &, then
v, (k)= (—1)k f(0) and Ramanujan’s Master Theorem is simply the Taylor series.

Proof: The Taylor series of any function f (x) that has derivatives of all orders throughout a neighborhood
of a point £, may be written as:

Thusas &—0,

<>i@ ££(0)

k=0

7. Relation of Power Towers to Transcendental Numbers

1
As can be seen from Figure 6, the function x* only has quadratically equal values (red x’s) at x=2,4, and
1
also at x=1,00. There are no other paired quadratically equal values of x that have the same values for x*

Hence the following LEMMA due to Mladen [14].
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X

1

Figure 6. Shows a plot of the function S(f (x), f(x))=x*.

LEMMA 27:
(Mladen, [14]) For every real number x>1, if f(x)=In(x+1) then, S(f(x),f(x))= “Yx+1, and

a) 5:(0,)—(1.%e)
b) S(1L1)=1S(ee)=e;lim,,, S(f(x), f(x))=1
c) S (f (x), f (x)) is a continuous function strictly increasing on the interval x=(0,e—1) and strictly de-

creasing on the interval (e—1,00) and S(f (x), f (x)) has an absolute maximum at x=e-1, i.e. for
xe(0,e-1):

e =S (f (), F(€))>S(f(x),f(x)>S(F(1),f(1)=

and for x e (e, ),

limS(f(x), f(x))=1.

X—©

LEMMA 28 Let f X) I&r S(f(x), f(x))e(1+w) bea real number, then:
a) For S(f( (x))e ( the equation

S(f(x), f(x))=¥x (204)

has exactly two solutions, x, €(1,e) and x, (e, +x).
b) For S(f(x), f() =¢fe, (207) hastheumquesolutlon X=¢€.
c) For S(f(x), f(x))><%/e, (207)has no solutions.
LEMMA 29: Let x>1 be an algebraic number such that f (x)=1In(x), then,

S(f(x),f (x))zW

a) if xe(1e), then, the infinite Power Tower S”(f (x), f (x))= «X/;J— =q, isa rational number, and

S”(f(x), f(x))=x

m+1
b)if x= (m—ﬂj =S (In (m—HJ In (LD for some integer m>1,then x e (e, ),
m m m+1

stren.00)= 7 s (5 ()
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and the infinite Power Tower S* (f (x), f (x)) = W[ =, isa rational number given by:

(10 1) <[ 21|

m
c) If ne(e,0) andnisan integer, then it is not part of the sequence

el mem) .

m=1

v

then the infinite Power tower S”(f (n), f (n))= Q/ﬁ% = 3, is a transcendental number.
Proof of Theorem 1: For m(s) >0, the Zeta function vanishes when %(s) = %
Let S”(f(n),f(n))=%n" =4,
Starting with the Zeta function for 9%(s)>0:
1 > n+. —S
§(s) == 2 (=) () (205)
- n=1
1 > n+l % -
C()=1m= (17 n (206)
- n=1
1 < Nl o -ns
S (s)= =1) " (S”(f(n),f(n k<o (207)
=z 2 Y 1)
Let 7, be algebraic numbers such that 7, =—In(,) —>e™ = ,, then according to Lindemann-Weiers-
trass theorem, g is transcendental.
Taking k — oo,
W{(-In(4,))

ST M) ="

The sequence of integers x=n=1,2,4 inthe Zeta-function are part of the rational sequence ¢, .

The sequence of integers x=n=23,5,6,7,---,c0 in the Zeta-function are a part of the rational sequence S, ,
hence using LEMMA 29 the Zeta function (207) can be written as a function of transcendental numbers, £, in
the form:

4<s>=$[1—(gw<az>)‘s—(gw<a4>)‘s+4y4<—1)”“[%} J (209

-In(B,)

./;(s):1+1_1213[ i (4)”*{%] } (210)

c<s>=ﬁ(1—<z>5—<z>5+ 5 <1)(M]J o)

-In(4,)

Factoring;
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1. 1 & e -(B) Y
‘()= (l+2\/1_5)(1—2\/1_5)n;,4( ) {W(—ln(ﬂn))] @
W (=In(5,))=-In(,)e ") = —in(g,)e ™ (212)

o1 1 & el m(g) )
()=t (1+2J1_5)(1—2J1_5)n;,4( ) [—In(ﬂn) o J &
£(s)=1 S (1) e ) (214)

(1 ZF)(1+ ZF) n¢124

By the Lindemann-Weierstrass theorem, nW (7,) is transcendental since 7, is algebraic, and so if s is ra-
tional, then e ") s algebraic. If s is rational, when the Zeta function vanishes the sum

A= Y (-1)te o (215)

n#1,2,4

is algebraic and the product of a transcendental number (1+ 2@) and a non-zero algebraic number is tran-
scendental.
Thus we are left with the relationship:

A
AN | B A
e
where, A is an algebraic number. See Ref. [15].
The only value for which the left hand side and the right hand sides are transcendental is when ER(S) =

Q.E.D.

N |~

8. Discussion

The Power Tower of the pure complex form with @ a rational number:
S (2ni@, 2nig) = g2 "

not only follow Ramanujan’s Master Theorem, it also converge to exponential functions of the form:
¢" (z) =e™’. Thus the Zeta function takes the form:

{"(2)=s= ez¢ (2)= (216)

It is clear that the function converges only when

20 ”o S
se—— e e— 217
e?’ -1 s-1 (217)

This just shows the self-similarity of the convergence.
Now the only arguments s that satisfy the path to convergence are:

1 .1 1 .1
2m_§+|§tan(¢9)_ s _M_E—lgtan(&)_l_S
T 1 1. TT 1 - (218)

~—i=tan(0) 1-s =~ +i=tan(0) S

2 2 2

2
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See Ref. [17], Ref. [6]. Thus, the solutions to the convergence are on the half-line.
There are an infinite number of possible roots that can independently satisfy (218). For example, if a root is
obtained from the backward iteration, s, =¢™(c,,), then, starting at any iteration point n<m,

E™(Cn) =™ (Cpy) == (c) =0, (219)

Thus any complex root s can be obtained by iterations that go backwards from the real negative line provided
the arguments are chosen to be of the rational form:

£(0) e{s =%} e{%ﬂr} (220)

The solutions to inverse Zeta values is referred to as “a-points”. These points have been extensively studied
by other authors, see [17]. The conditions of convergence of complex power towers of the form:

f(x)=e*"
also require that
1+i1tan(.9) s
|n§ % = <1. (221)
“—iZtan(0) s-1
2 2

The roots of the zeta function obey this condition as can be seen from Table 2:

Remark 2: The arguments that lead to roots have singular solutions to the inverse zeta functions of roots that
generate them in the backward direction. This points to the fact that a root can only be arrived at when there are
no cycles prior to the root. Thus, any argument z that leads to a root can be backward generated for as singular
values of the inverse zeta function that it generates. Not all values of z can generate a root. Those that generate a
root must conform to the power tower structure. The only reciprocal relations that relate the symmetry is
s »>1-seC toreciprocal functions are conjugate complex functions of the exponential forms on the half-line:

1 .1 1 .1

Q20 _ EHEtan (9) _ S g _ E_Iatan (©) _1=s (222)
1—iitan(ﬁ) 1-s 1+i1tan(¢9) S
2 2 2 2

From this, one could surmise that the reflection formula and the inverse zeta power towers prescribe conju-
gate power towers that are also reflection symmetries about unity for the Zeta function. Write the Zeta Power
Tower as follows:

Table 2. The convergence condition for several non-trivial roots of the Zeta

Power Tower.
S
s ['“(HD
%+ 114.133725 0.07071826295
%+ 21.022039i 0.04756015651
%+ 25.010857i 0.03997731031
%+ 98.83110i 0.01011817652
%Jr o 0.00
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W10 _ (ZanaZial(@n) _ ﬁﬁan) —g(z)eC (223)
by=la,=1

Itis clear that g(z)=1, and the values of x are just the products of the (&, )th roots of unity when the

27i

The degree of e ¥ goes to infinity with k. If g (z) had an infinity of roots of unity, it would have elements

of arbitrarily high degree, and thus would not be of finite degree over the rationals, and thus would not, in fact,
be an algebraic number field. Thus, equating the powers of (223), if ¢, is divisible by all the factors of ¢,
then, the power towers can be written as

¢n¢n¢".. — eZinH (224)

These Power Towers are entire functions. An Entire Functions has special properties that relate to exponential
functions. If f (z) is analytic for the entire complex plane, then it is an entire function. An entire function can
be represented by in the linear form:

Sa,2" [ <o (225)
k=0

Anne Beurling demonstrated in all cases the translates of an integrable function defined in the entire interval
[0, o], are represented by at least one exponential form e, x>0,ia<0 and thus will always contain a con-
tinuous banded group character if the function does not vanish identically.

Theorem: (Beurling). Let f (s) belong to a space Lp,1< p <, and let it not vanish almost everywhere
onanyinterval 0<s<a.Then Lp contains at least one exponential function of the form e”*.

The function {(s) can also be represented by exponential terms and, rational functions of its roots can also
be represented by the exponential forms. Since the function is analytic everywhere except for a simple pole with
residue 1 at s =1, the function

S
f(s)=¢(s)+— (226)
1-s
is an entire function, and so one suspects that when the function vanishes, there exists an exponential represen-
tation of its roots p = o +iz in the rational form:

o+ iT 2i0

( ) l-o-ir (227)

Any form of £(s) that expresses its roots as an entire function can be used to relate to exponential forms.

There are many forms of the function that can be represented as rational functions of the roots when it vanishes.

The exponential function is represented by the quotient of conjugate rational complex functions on the half-line:
_ 1 +Ltang

=22 (228)

E—Ltané’
2 2

In all these instances one finds that if the roots are on the 1/2-line, and s = %+ i, then the rational-functions

1 .
—+Ir

, of the roots will give three possible but distinct cases for the exponential arguments @, satisfying
=—ir
2
1 i
5= E+§tan 0, where, 2z =arctan(0):

2ia

1 tir e Real arguments
i =Jle?f Pure complex arguments (229)
51T [e®“) Complex arguments

388



M. M. Anthony

with
1 E+ltan9
6 =—Ilog : =tan*(tan ) (230)
2i 1 i
———tané
2 2

For the real arguments one finds that if the roots are on the 1/2-line then they must obey a certain symmetry
that satisfies:

1 . 1 i
—+Ir —+—tana _
2" _2°2 _ ol (231)
1 . 1 i
“—ir T-—_tana
2
1 i
1 §+§tana ju
a=—logé—~4 ——=tan'tana,a <= (232)
2i 1 Ly 2
T tana
2 2

If the complex roots obey the exponential relation (232) for the arguments, —7z/2 <a < z/2, then only the
fractional parts of the arguments contribute to the solution of (232) and thus all the complex roots of the func-
tion will be on the 1/2-line.

For the pure complex arguments, the roots will not satisfy the symmetry (223) since

1 i .
1 —+—tanip
Yij :—__Ioqut tan " tanizg, (233)
2i 1 i .
———tanipg
2 2

Exponential-functions with pure complex argument will not be found since the right-hand side is real while
the left-hand side is pure complex. For solutions with arguments that are complex, if the roots are on the half
line, they must satisfy the symmetry:

1 1+ltan(oc+iﬂ’)
a+iﬁ:—flogi ? =tan'tan(a +ip), (234)
I -
~——tan(a +i
2 2 ( ﬂ)
0 1 1 1 1
6 8 10 14|16 18 20
-10
20
30
-40
-50

Figure 7. Values of iterations of the root s = —2.
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0.780750882593137498686470117643158239770935369209400555629366
-42.0000000000000000037103829470559031780723007455282666145481

0.976512314920661294825052107822641842606733219808156231802742
-22.0006303025081290011253309391727870260344770795718584763821

-21.9855218713537597568162560103612281787424646924586348240745
-21.9855320025224369786834301184966320824407647441307410460570
-21.9855319957289306453932082163062285993794575904067810484136
-21.9855319957334860654222004064588181365314389615372951431951

-21.9855319957334830107622615867033406196779269517855306857148
-21.9855319957334830128105792571805159516160085178019531668656
0.955672796964462500544096696025789585069983701850803711354276
-30.0000000063544093855154268097516952835963685999574984935105
-41.9999999999999998574302112018735692243847004551577693931243
0.976512314920661294744350276007417719133070635625358571510304
-22.0006303025081290011252788909666361481401243179904563763851

-21.9855218713537597568162560452633382547470627988244334229850
-21.9855320025224369786834301184732282964315883425738984879649
-21.9855319957289306453932082163062442929065274986429264147673
-21.9855319957334860654222004064588181260080650170631918695612
-21.9855319957334830107622615867033406196849834534044420845689

Figure 8 shows the iterations of the zeta function leading to the root s =-4 at the top of the
list. Note that the iterations seem to originate from a near periodic cycle near negative roots
at the bottom of the list to the root at the top.
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Figure 8. Values of iterations of the root s = —4.
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Figure 9 shows the iterations of the zeta function leading to the root s =-6 at the top of the
list. Note that the iterations seem to originate from a non-periodic value near a negative
root s =-30 at the bottom of the list to the root at the top.
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Figure 9. Values of iterations of the root s = —6.
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Figure10 shows the iterations of the zeta function from the bottom of the list upward leading
to the root s = -8 at the top of the list. Note that the iterations seem to originate from a near
periodic cycle at the bottom of the list to the root at the top.

Data Plot

— default

Figure 10. Values of iterations of the root s = —8.
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Table 3. Iterations of the arguments below seem to generatealmost periodic
cycles of the set below.
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—0.976512314920661294744350276007417719132
—22.0006303025081290011252788909666361481
—21.9855218713537597568162560452633382547
—21.9855320025224369786834301184732282964
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Figure 11. Shows the plots of inverse iterates of real negative roots.

With the general condition that —% <a< % these solutions satisfy only the real negative even roots of the

function which are the only known real roots of the function. Thus if the roots are on the half-line, the only ex-
ponential arguments that will satisfy the roots are for the complex conjugate roots on the half-line. This indicates
that the arguments that yield solutions to the vanishing of the Riemann-zeta function are symmetries that satisfy
inverse tangent relations and as | will demonstrate in future papers that the arctangent symmetry (223) relates
the Bernoulli numbers, Zeta functions, and the Gamma functions to prime numbers.

9. Discussion of the Result

The convergence of Power towers relates the vanishing of the zeta function to the half-line. This relationship
comes from the property of complex power towers of the exponential-form only converge to exponential func-
tions relating the roots to the convergence. If one iterates backwards from a real root, one finds near misses of
purely periodic states of the function as shown in Figures 7-11. Obviously if the cycle ever gets to be purely pe-
riodic then no roots can be generated since the periodic cycle will prevent any root from being generated back-
wards from the infinite past. Table 3 shows the almost periodic cycles of the function that appears to dominate
some roots. The inverse iterations seem to generate “very near root” misses.
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