Matrices Associated with Moving Least-Squares Approximation and Corresponding Inequalities

Svetoslav Nenov, Tsvetelin Tsvetkov
Department of Mathematics, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
Email: nenov@uctm.edu, ttsvetkov@uctm.edu

Received 17 November 2015; accepted 25 December 2015; published 28 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.

Keywords
Moving Least-Squares Approximation, Singular-Values

1. Statement
Let us remind the definition of the moving least-squares approximation and a basic result.
Let:
1. \mathcal{D} be a bounded domain in \mathbb{R}^d;
2. $x_i \in \mathcal{D}$, $i=1,\cdots,m$; $x_i \neq x_j$, if $i \neq j$;
3. $f: \mathcal{D} \rightarrow \mathbb{R}$ be a continuous function;
4. $p_i: \mathcal{D} \rightarrow \mathbb{R}$ be continuous functions, $i=1,\cdots,l$. The functions $\{p_1,\cdots,p_l\}$ are linearly independent in \mathcal{D} and let \mathcal{P}_l be their linear span;
5. $W: (0,\infty) \rightarrow (0,\infty)$ be a strong positive function.

Usually, the basis in \mathcal{P}_l is constructed by monomials. For example: $p_i(x) = x_1^{k_1} \cdots x_d^{k_d}$, where $x = (x_1,\cdots,x_d)$, $k_1,\cdots,k_d \in \mathbb{N}$, $k_1 + \cdots + k_d \leq l-1$. In the case $d=1$, the standard basis is $\{1, x, \cdots, x^{l-1}\}$.

Following [1]-[4], we will use the following definition. The moving least-squares approximation of order l at
a fixed point \(x \) is the value of \(p^*(x) \), where \(p^* \in \mathcal{P} \) is minimizing the least-squares error
\[
\sum_{i=1}^{m} W(\|x - x_i\|)(p(x_i) - f(x_i))^2
\]
among all \(p \in \mathcal{P} \).

The approximation is “local” if weight function \(W \) is fast decreasing as its argument tends to infinity and interpolation is achieved if \(W(0) = \infty \). So, we define additional function \(w : [0, \infty) \to [0, \infty) \), such that:
\[
w(r) = \begin{cases}
1 & \text{if } (r > 0) \text{ or } (r = 0 \text{ and } W(0) < \infty), \\
0 & \text{if } (r = 0 \text{ and } W(0) = \infty).
\end{cases}
\]

Some examples of \(W(r) \) and \(w(r) \), \(r \geq 0 \):
\[
2W(r) = e^{-r^2} \quad \text{exp-weight},
\]
\[
W(r) = r^{-a^2} \quad \text{Shepard weights},
\]
\[
w(x, x_i) = r^2 e^{-r^2} \quad \text{McLain weight},
\]
\[
w(x, x_i) = e^{r^2} - 1 \quad \text{see Levin’s works}.
\]

Here and below: \(\| \cdot \|_2 \) is 2-norm, \(\| \cdot \|_1 \) is 1-norm in \(\mathbb{R}^d \); the superscript \(^t \) denotes transpose of real matrix; \(I \) is the identity matrix.

We introduce the notations:
\[
E = \begin{pmatrix}
p_1(x_1) & p_2(x_1) & \cdots & p_l(x_1) \\
p_1(x_2) & p_2(x_2) & \cdots & p_l(x_2) \\
\vdots & \vdots & \ddots & \vdots \\
p_1(x_m) & p_2(x_m) & \cdots & p_l(x_m)
\end{pmatrix}, \quad a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_l \end{pmatrix},
\]
\[
D = 2\begin{pmatrix}
w(x, x_1) & 0 & \cdots & 0 \\
0 & w(x, x_2) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & w(x, x_m)
\end{pmatrix}, \quad c = \begin{pmatrix} p_1(x) \\ p_2(x) \\ \vdots \\ p_l(x) \end{pmatrix}.
\]

Through the article, we assume the following conditions (H1):
(H1.1) \(1 \in \mathcal{P} \);
(H1.2) \(1 \leq l \leq m \);
(H1.3) rank \((E') = l \);
(H1.4) \(w \) is smooth function.

Theorem 1.1. (see [2]): *Let the conditions (H1) hold true.*

Then:
1. The matrix \(E'D^{-1}E \) is non-singular;
2. The approximation defined by the moving least-squares method is
\[
\hat{L}(f) = \sum_{i=1}^{m} a_i f(x_i), \tag{1}
\]
where
\[
\mathbf{a} = A \mathbf{c} \quad \text{and} \quad A = D^{-1}E(E'D^{-1}E)^{-1}.
\tag{2}
\]
3. If \(w(\|x_i - x_j\|) = 0 \) for all \(i = 1, \cdots, m \), then the approximation is interpolatory.

For the approximation order of moving least-squares approximation (see [2] and [5]), it is not difficult to
receive (for convenience we suppose \(d = 1 \) and standard polynomial basis, see [5]):

\[
\left| f(x) - \hat{L}(f)(x) \right| \leq \| f(x) - p^*(x) \|_\infty \left[1 + \sum_{i=1}^{m} |a_i| \right],
\]

and moreover (\(C = \text{const.} \))

\[
\| f(x) - p^*(x) \|_\infty \leq C h^{i+1} \max \left\{ \| f^{(i+1)}(x) \| : x \in \bar{D} \right\}.
\]

It follows from (3) and (4) that the error of moving least-squares approximation is upper-bounded from the 2-norm of coefficients of approximation (\(\| a \| \leq \sqrt{m} \| a \|_2 \)). That is why the goal in this short note is to discuss a method for majorization in the form

\[
\| a \|_2 \leq M \exp \left(N \| x - x_i \| \right).
\]

Here the constants \(M \) and \(N \) depend on singular values of matrix \(E' \), and numbers \(m \) and \(l \) (see Section 3). In Section 2, some properties of matrices associated with approximation (symmetry, positive semi-definiteness, and norm majorization by \(\sigma_{\text{max}}(E') \) and \(\sigma_{\text{max}}(E^\prime) \)) are proven.

The main result in Section 3 is formulated in the case of exp-moving least-squares approximation, but it is not hard to receive analogous results in the different cases: Backus-Gilbert weight functions, McLain weight functions, etc.

2. Some Auxiliary Lemmas

Definition 2.1. We will call the matrices

\[
A_1 = A_2 E = D^{-1} E \left(E' D^{-1} E \right)^{-1} E' \quad \text{and} \quad A_2 = A_1 - I
\]

\(A_1 \)-matrix and \(A_2 \)-matrix of the approximation \(\hat{L} \), respectively.

Lemma 2.1. Let the conditions (H1) hold true.

Then, the matrices \(A_1 D^{-1} \) and \(A_2 D^{-1} \) are symmetric.

Proof. Direct calculation of the corresponding transpose matrices.

Lemma 2.2. Let the conditions (H1) hold true.

Then:
1. All eigenvalues of \(A_1 \) are 1 and 0 with geometric multiplicity \(l \) and \(m - l \), respectively;
2. All eigenvalues of \(A_2 \) are 0 and \(-1 \) with geometric multiplicity \(l \) and \(m - l \), respectively.

Proof. Part 1: We will prove that the dimension of the null-space \(\dim \left(\text{null}(A_1) \right) \) is at least \(l \).

Using the definition of \(A_2 = D^{-1} E \left(E' D^{-1} E \right)^{-1} E' - I \), we receive

\[
E' A_2 = \left(E' D^{-1} E \right) \left(E' D^{-1} E \right)^{-1} E' - E' = 0.
\]

Hence,

\[
\text{im}(A_2) \subseteq \text{null}(E').
\]

Using (H1.3), \(E' \) is \((l \times m)\)-matrix with maximal rank \(l \) (\(l < m \)). Therefore, \(\dim \left(\text{null}(E') \right) = m - l \). Moreover, \(\dim \left(\text{im}(A_2) \right) = m - \dim \left(\text{null}(A_1) \right) \). That is why \(m - \dim \left(\text{null}(A_1) \right) \leq m - l \) or \(l \leq \dim \left(\text{null}(A_2) \right) \).

Part 2: We will prove that \(-1 \) is eigenvalue of \(A_2 \) with geometric multiplicity \(m - l \), or the system

\[
A_2 \eta = -\eta \iff A_2 \eta = 0
\]

has \(m - l \) linearly independent solutions.

Obviously the systems

\[
A_1 \eta = D^{-1} E \left(E' D^{-1} E \right)^{-1} E' \eta = 0
\]

and

\[
E' \eta = 0
\]
are equivalent. Indeed, if \(\eta_0 \) is a solution of (5), then
\[
D^{-1}E \left(E'D^{-1}E \right)^{-1} E' \eta_0 = 0 \Rightarrow E'D^{-1}E \left(E'D^{-1}E \right)^{-1} E' \eta_0 = 0 \Rightarrow E' \eta_0 = 0,
\]
\(i.e. \eta_0 \) is solution of (6).

On the other hand, if \(\eta_0 \) is a solution of (6), then
\[
\left(D^{-1}E \left(E'D^{-1}E \right)^{-1} E' \right) \eta_0 = \left(D^{-1}E \left(E'D^{-1}E \right)^{-1} \right) (E' \eta_0) = 0,
\]
\(i.e. \eta_0 \) is solution of (5). Therefore
\[
\dim(\text{im}(A)) = \dim(\text{im}(E')) = m - l.
\]

Part 3: It follows from parts 1 and 2 of the proof that 0 is an eigenvalue of \(A_2 \) with multiplicity exactly \(l \) and \(-1 \) is an eigenvalue of \(A_2 \) with multiplicity exactly \(m - l \).

It remains to prove that 1 is eigenvalue of \(A_2 \) with multiplicity at least \(l \), but this is analogous to the proven part 1 or it follows directly from the definition of \(A_i = A_2 + I \).

The following two results are proven in [6].

Theorem 2.1 (see [6], Theorem 2.2): Suppose \(U, V \) are \((m \times m)\) Hermitian matrices and either \(U \) or \(V \) is positive semi-definite. Let
\[
\lambda_1(U) \geq \cdots \geq \lambda_m(U), \quad \lambda_1(V) \geq \cdots \geq \lambda_m(V)
\]
denote the eigenvalues of \(U \) and \(V \), respectively.

Let:
1. \(\pi(U) \) is the number of positive eigenvalues of \(U \);
2. \(\nu(U) \) is the number of negative eigenvalues of \(U \);
3. \(\xi(U) \) is the number of zero eigenvalues of \(U \).

Then:
1. If \(1 \leq k \leq \pi(U) \), then
\[
\min_{k \leq i \leq k + \nu(U)} \lambda_i(U) \geq \lambda(kU) \geq \max_{k \leq i \leq k + \nu(U)} \lambda_i(U).
\]
2. If \(\pi(U) < k \leq m - \nu(U) \), then
\[
\lambda_k(UV) = 0.
\]
3. If \(m - \nu(U) < k \leq m \), then
\[
\min_{k \leq i \leq k + \nu(U)} \lambda_i(U) \geq \lambda(kU) \geq \max_{k \leq i \leq k + \nu(U)} \lambda_i(U).
\]

Corollary 2.1. (see [6], Corollary 2.4): Suppose \(U, V \) are \((m \times m)\) Hermitian positive definite matrices. Then for any \(1 \leq k \leq m \)
\[
\lambda_1(U) \lambda_k(V) \geq \lambda_k(UV) \geq \lambda_m(U) \lambda_m(V).
\]

As a result of Lemma 2.1, Lemma 2.2 and Theorem 2.1, we may prove the following lemma.

Lemma 2.3. Let the conditions (H1) hold true.
1. Then \(A_1D^{-1} \) and \(-A_1D^{-1} \) are symmetric positive semi-definite matrices.
2. The following inequality holds true
\[
\lambda_{\max}(A_1D^{-1}) \leq \frac{1}{\lambda_{\min}(D)}.
\]

Proof. (1) We apply Theorem 2.1, where
\[
U = D, \quad V = A_1D^{-1}.
\]

Obviously, \(U \) is a symmetric positive definite matrix (in fact it is a diagonal matrix). Moreover \(\pi(U) = m \),
\[\mu(U) = \xi(U) = 0, \text{ if } x \neq x_i, \hspace{1em} i = 1, \ldots, m. \]

The matrix \(V \) is symmetric (see Lemma 2.1).

From the cited theorem, for any index \(k \) \((k = 1, \ldots, m = \pi(U))\) we have
\[\lambda_k(A_i) = \lambda_k(A D^{-1} D) = \lambda_k(V U) \leq \min \{ \lambda(U) \lambda_{m+1-k}(V) \}. \]

In particular, if \(k = m \):
\[\lambda_m(A_i) \leq \min \{ \lambda(U) \lambda(V) \}. \tag{7} \]

Let us suppose that there exists index \(i_0 \) \((i_0 = 1, \ldots, m-1)\) such that
\[\lambda_{i_0}(V) \geq \cdots \geq \lambda_{m}(V) \geq 0 > \lambda_{m+1}(V) \geq \cdots \geq \lambda_m(V). \tag{8} \]

It follows from (8) and positive definiteness of \(U \), that
\[\min \{ \lambda(U) \lambda(V) \} \leq \lambda_{m+1}(U) \lambda_{m+1}(V) < 0. \]

Therefore (see (7)), \(\lambda_m(A_i) < 0 \). This contradiction (see Lemma 2.2) proves that the matrix \(A D^{-1} \) is positive semi-definite.

If we set \(U = D, \ V = -A D^{-1} \) then by analogical arguments, we see that the matrix \(-A D^{-1} \) is positive semi-definite.

(2) From the first statement of Lemma 2.3, \(V = A D^{-1} \) is positive semi-definite. Therefore (see Corollary 2.1 and Lemma 2.2):
\[1 \geq \lambda_k(A) = \lambda_k(V U) \geq \max \{ \lambda_m(U) \lambda_{m+k}(V), \lambda_m(V) \lambda_k(U) \} \]
for all \(k = 1, \ldots, m \). Moreover, all numbers \(\lambda_k(U), \lambda_k(V) \) are non-negative and
\[\lambda_{\max}(D) = \lambda_1(U) \geq \cdots \geq \lambda_m(U) = \lambda_{\min}(D), \hspace{1em} \lambda_1(V) \geq \cdots \geq \lambda_m(V). \]

Therefore
\[1 \geq \max \{ \lambda_m(U) \lambda_1(V), \lambda_m(V) \lambda_1(U) \}, \]
or
\[\lambda_{\max}(A D^{-1}) = \lambda_1(V) \leq \frac{1}{\lambda_m(U)} = \frac{1}{\lambda_{\min}(D)}. \tag{13} \]

In the following, we will need some results related to inequalities for singular values. So, we will list some necessary inequalities in the next lemma.

Lemma 2.4. (see [7] [8]): Let \(U \) be an \((d_1 \times d_2)\)-matrix, \(V \) be an \((d_3 \times d_4)\)-matrix. Then:
\[2 \sigma_{\max}(U V) \leq \sigma_{\max}(U) \sigma_{\max}(V), \tag{9} \]
\[\sigma_{\max}(U^{-1}) = \frac{1}{\sigma_{\min}(U)}, \hspace{1em} \text{if } d_1 = d_2, \det U \neq 0, \tag{10} \]
\[\sigma_{\max}(V) \sigma_{\min}(U) \leq \sigma_{\max}(U V), \hspace{1em} \text{if } d_1 \geq d_2 = d_3, \tag{11} \]
\[\sigma_{\max}(U) \sigma_{\min}(V) \leq \sigma_{\max}(U V), \hspace{1em} \text{if } d_4 \geq d_3 = d_2. \tag{12} \]

If \(d_1 = d_2 \) and \(U \) is Hermitian matrix, then \[\|U\| = \sigma_{\max}(U), \hspace{1em} \sigma_i(U) = |\lambda_i(U)|, \hspace{1em} i = 1, \ldots, d_1. \]

Lemma 2.5. Let the conditions (H1) hold true and let \(x \neq x_i, \hspace{1em} i = 1, \ldots, m \). Then:
\[\|A D^{-1}\| \leq \frac{1}{\lambda_{\min}(D)}. \tag{13} \]
\[
\sigma_{\text{max}}(A_i) \sigma_{\text{min}}(D^{-1}) \leq \sigma_{\text{max}}(A_i D^{-1}),
\]
\[1 \leq \|A_i\| \leq \frac{\sigma_{\text{max}}(D)}{\sigma_{\text{min}}(D)} \]
(14)
(15)

Proof. The matrix \(A_i D^{-1}\) is symmetric and positive semi-definite (see Lemma 2.3 (1)). Using the second statement of Lemma 2.3 and Lemma 2.4, we receive

\[\|A_i D^{-1}\| = \sigma_{\text{max}}(A_i D^{-1}) = \lambda_{\text{max}}(A_i D^{-1}) \leq \frac{1}{\lambda_{\text{min}}(D)}.
\]

The inequality (14) follows from (12) \((d_k = d_3 = m)\).

From (14) and (10), we receive

\[\sigma_{\text{max}}(A_i) \leq \frac{\sigma_{\text{max}}(A_i D^{-1})}{\sigma_{\text{min}}(D)} = \frac{\sigma_{\text{max}}(D)}{\sigma_{\text{min}}(D)}.
\]

Therefore, the equality \(\|A_i\| = \sqrt{\sigma_{\text{max}}(A_i)}\) implies the right inequality in (15).

Using \(E' = E' A_i\) and inequality (9), we receive

\[\sigma_{\text{max}}(E') \leq \sigma_{\text{max}}(E') \sigma_{\text{max}}(A_i),
\]

or \(1 \leq \sigma_{\text{max}}(A_i) = \|A_i\|^2\), i.e. the left inequality in (15).

The lemma has been proved.

\[\square\]

3. An Inequality for the Norm of Approximation Coefficients

We will use the following hypotheses (H2):

(H2.1) The hypotheses (H1) hold true;
(H2.2) \(d = 1, x_1 < \cdots < x_m\);
(H2.3) The map \(c\) is \(C^1\)-smooth in \([x_1, x_m]\);
(H2.4) \(w([x_i - x_i]) = \exp\left(\alpha(x-x_i)^2\right), i = 1, \ldots, m\).

Theorem 3.1. Let the following conditions hold true:
1. Hypotheses (H2);
2. Let \(\dot{x} \in [x_1, x_m]\) be a fixed point;
3. The index \(k_0 \in \{1, \ldots, m\}\) is chosen such that

\[|x - x_{k_0}| = \min \{|x - x_i| : i = 1, \ldots, m\}.
\]

Then, there exist constants \(M_1, M_2 > 0\) such that

\[\|a(x)\| \leq \left(\|a(x_0)\| + M_1 |x - x_{k_0}| \right) \exp\left(M_2 |x - x_{k_0}|\right).
\]

Proof. Part 1: Let

\[H = \begin{pmatrix}
2\alpha(x-x_1) & 0 & \cdots & 0 \\
0 & 2\alpha(x-x_2) & \cdots & 0 \\
0 & 0 & \cdots & 2\alpha(x-x_m) \\
0 & 0 & \cdots & 2\alpha(x-x_m)
\end{pmatrix},
\]

then

\[\frac{dD}{dx} = HD, \quad \frac{dD^{-1}}{dx} = -HD^{-1}.
\]
We have (obviously) \(D = D(x) \), \(H = H(x) \), and \(c = c(x) \)

\[
\frac{da(x)}{dx} = \frac{d}{dx} \left(D^{-1}E \left(E'D^{-1}E \right)^{-1} c \right)
= \left(\frac{d}{dx} D^{-1} \right) E \left(E'D^{-1}E \right)^{-1} c + D^{-1}E \left(\frac{d}{dx} \left(E'D^{-1}E \right) \right)^{-1} \frac{d}{dx} c
= -HD^{-1}E \left(E'D^{-1}E \right)^{-1} c + D^{-1}E \left(\left(E'D^{-1}E \right)^{-1} \left(\frac{d}{dA} E'D^{-1}E \right) \left(E'D^{-1}E \right)^{-1} \right) c + D^{-1}E \left(E'D^{-1}E \right)^{-1} \frac{d}{dx} c
= -Ha + D^{-1}E \left(E'D^{-1}E \right)^{-1} \left(E'D^{-1}E \right)^{-1} c + D^{-1}E \left(E'D^{-1}E \right)^{-1} \frac{d}{dx} c
= \left(D^{-1}E \left(E'D^{-1}E \right)^{-1} E' - I \right) Ha + D^{-1}E \left(E'D^{-1}E \right)^{-1} \frac{d}{dx} c
= A_x Ha + A_0 \frac{d}{dx} c.
\]

Therefore, the function \(a(x) \) satisfies the differential equation

\[
\frac{da(x)}{dx} = A_x Ha + A_0 \frac{d}{dx} c.
\] (16)

Part 2: Obviously

\[
\|A_x H\| = \|A_x - I\| H \leq (\|A\| + 1) \|H\|.
\]

It follows from (15) that

\[
\|A_x\| \leq \sqrt{\frac{\sigma_{\max}(D)}{\sigma_{\min}(D)}}.
\]

Here \(\sigma_{\max}(D) \leq 2 \exp(\alpha r^2) \), \(r = x_m - x_1 \), and \(\sigma_{\min}(D) \geq 2 \). Hence

\[
\|A_x\| \leq \sqrt{\exp(\alpha r^2)}.
\]

For the norm of diagonal matrix \(H \), we receive

\[
\|H\| \leq 2ar.
\]

Therefore \(\|A_x H\| \leq M_2 \), where

\[
M_2 = 2ar \left(1 + \sqrt{\exp(\alpha r^2)} \right).
\]

We will use Lemma 2.4 to obtain the norm of \(A_0 \).

Obviously, \(A_0 E' = A_1 \). Therefore by (12) \((m = d_4 \geq d_3 = l) \), we have

\[
\sigma_{\max}(A_0) \sigma_{\min}(E') \leq \sigma_{\max}(A_1),
\]

i.e.

\[
\|A_0\| \leq \frac{1}{\sigma_{\min}(E')} \sqrt{\frac{\sigma_{\max}(D)}{\sigma_{\min}(D)}}.
\]

Therefore, if we set \(M_{11} = \frac{M_2}{\sigma_{\max}(E')} \), then \(\|A_0\| \leq M_1 \).

Let the constant \(M_{12} \) be chosen such that

\[
\left| \frac{d}{dx} c(x) \right| \leq M_{12}, \quad x \in [x_1, x_m]
\]
and let $M_1 = M_{11}, M_{12}.$

Part 3: On the end, we have only to apply Lemma 4.1 form [9] to the Equation (16):

$$|a(x)| \leq \left| a(x_0) \right| + \left| \int_{x_0}^x A_0 \frac{d}{dx} e^M \right| \left| \exp \left(\int_{x_0}^x A_2 dx \right) \right|$$

$$\leq \left(|a(x_0)| + M_1 |x-x_0| \right) \exp \left(M_2 |x-x_0| \right).$$

Remark 3.1. Let the hypotheses (H2) hold true and let moreover

$$p_1(x) = 0, p_2(x) = x, \ldots, p_l(x) = x^{l-4}, \quad l \geq 1.$$

In such a case, we may replace the differentiation of vector-function

$$c(x) = \begin{pmatrix} p_1(x) \\ p_2(x) \\ \vdots \\ p_l(x) \end{pmatrix}$$

by left-multiplication:

$$\frac{dc(x)}{dx} = \begin{pmatrix} 0 \\ 1 \\ 2x \\ 3x^2 \\ \vdots \\ (l-2)x^{l-3} \\ (l-1)x^{l-2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 2 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 3 & 0 & \ldots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 1 & -2 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 1 & -1 \end{pmatrix} = \bar{c}c(x).$$

The singular values of the matrix \bar{c} are: $0, 1, \ldots, l-1.$ Therefore $\|\bar{c}\| = \sqrt{l-1}.$ That is why, we may chose

$$M_{22} = \sqrt{(l-1)} \max_{1 \leq i \leq l} \left(\max_{a_i < c_i < a_0} |p_i(x)| \right).$$

Additionally, if we suppose $|x_i| \leq |x_m|,$ then

$$\max_{a_i < c_i < a_0} |p_i(x)| = |p_i(x_m)|, \quad i = 1, \ldots, l.$$

Therefore, in such a case:

$$M_{22} = \sqrt{(l-1)} \max_{1 \leq i \leq l} \left(|p_i(x_m)| \right).$$

If we suppose $-1 \leq x_i \leq x \leq x_m \leq 1,$ then obviously, we may set

$$M_{22} = \sqrt{l-1}.$$

References

