Univalence Conditions for Two General Integral Operators

Adriana Oprea, Daniel Breaz

1Department of Mathematics, University of Pitești, Pitești, Romania
2Department of Mathematics, “1 Decembrie 1918” University of Alba Iulia, Alba Iulia, Romania
Email: adriana_oprea@yahoo.com, dbreaz@uab.ro

Received 5 June 2014; revised 1 July 2014; accepted 10 July 2014

Abstract

Let A be the class of all analytic functions which are analytic in the open unit disc $U = \{ z : |z| < 1 \}$. In this paper we study the problem of univalence for the following general integral operators:

$$ F_z(z) = \prod_{t=1}^{n} \left(\frac{f_i(t)}{t} e^{\alpha_i(t)} \right)^{\alpha_i} dt, $$

$$ G_z(z) = \prod_{t=1}^{n} \left(f_i'(t) e^{\alpha_i(t)} \right)^{\beta_i} dt, $$

in the open unit disc U, when $f_i, g_i \in A, \alpha_i, \beta_i \in C$.

Keywords

Analytic Functions, Integral Operators, General Schwarz Lemma

1. Introduction

Let $U = \{ z : |z| < 1 \}$ be the unit disk and A be the class of all functions of the form

$$ f(z) = z + \sum_{k=2}^{n} a_k z^k, \quad z \in U $$

which are analytic in U and satisfy the conditions

$$ f(0) = f'(0) - 1 = 0. $$

We denote by S the class of univalent and regular functions.

In order to derive our main results, we have to recall here the following univalence conditions.

Theorem 1.1. [1] (Becker’s univalence criterion).

If the function f is regular in unit disk U, $f(z) = z + a_2 z^2 + \cdots$ and

$$
\left(1 - |z|^2\right) \left|zf'(z)\right| \leq 1, \text{ for all } z \in U,
$$

then the function f is univalent in U.

Theorem 1.2. [2] If the function g is regular in U and $|g(z)| < 1$ in U, then for all $\xi \in U$ the following inequalities hold

$$
\left|g(\xi) - g(z)\right| \leq \left|\frac{\xi - z}{1 - g(z)g(\xi)}\right| \left|1 - z\xi\right|
$$

and

$$
|g'(z)| \leq \frac{1 - |g(z)|^2}{1 - |z|^2}.
$$

The equalities hold in case $g(z) = e^{\frac{z + u}{1 + au}}$ where $|\xi| = 1$ and $|u| < 1$.

Remark 1.3. [2] For $z = 0$, from inequality (3) we obtain for every $\xi \in U$

$$
\left|g(\xi) - g(0)\right| \leq \left|\frac{\xi}{1 - g(0)g(\xi)}\right| |\xi|
$$

and, hence

$$
|g(\xi)| \leq \frac{|\xi| + |g(0)|}{1 + |g(0)||\xi|}.
$$

Considering $g(0) = a$ and $\xi = z$, then

$$
|g(z)| \leq \frac{|z| + |a|}{1 + |a||z|},
$$

for all $z \in U$.

2. Main Results

In this paper we study the univalence of the following general integral operators:

$$
F_n(z) = \int_0^1 \prod_{i=1}^n \left(\frac{f_i(t)e^{\alpha_i(t)}}{t}\right)^{\alpha_i} dt,
$$

where $f_i, g_i \in A$ and $\alpha_i \in C$,

$$
G_n(z) = \int_0^1 \prod_{i=1}^n \left(f_i(t)e^{\beta_i(t)}\right)^{\beta_i} dt,
$$

where $f_i, g_i \in A$ and $\beta_i \in C$.

Theorem 2.1. Let $\alpha_n \in C$, $f_n \in S$, $f_n(z) = z + a_2^n z^2 + \cdots$, $n \in N^*$, $g_n \in S$, $g_n(z) = z + b_2^n z^2 + \cdots$, $n \in N^*$,

If

$$
\left|zf_n'(z) - f_n(z)\right| \leq 1,
$$

then the function f_n is univalent in U.
for all \(n \in N^* \), for all \(z \in U \) and

\[
\left| g'_n(z) \right| \leq 1
\]

\[
|\alpha_1 + |\alpha_2| + \cdots + |\alpha_n| < 1,
\]

\((9) \)

\[
|\alpha_1 \alpha_2 \cdots \alpha_n| \leq \frac{1}{\max_{|z| \geq 1} \left[2 \left(1 - |z| \right)^2 \right] |z| + |z|}
\]

\((10) \)

where

\[
|c| = \frac{|\alpha_1 (a_1^* + 1) + \cdots + \alpha_n (a_n^* + 1)|}{2|\alpha_1 \alpha_2 \cdots \alpha_n|}
\]

then the function

\[
F_n(z) = \int_0^1 \prod_{i=1}^n \left(\frac{f_i(t)}{t} e^{\epsilon_k(t)} \right)^{\alpha_i} dt,
\]

\((11) \)

is in the class \(S \).

Proof. We have \(f_n \in S, \ f_n(z) \neq 0 \), for all \(n \in N^* \) and \(f_n(z) \to 1 \), when \(z = 0 \).

Let us consider the function:

\[
h(z) = \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \frac{F_n(z)}{F_n'(z)}.
\]

\((12) \)

From (6), we have:

\[
F_n'(z) = \prod_{i=1}^n \left(\frac{f_i(z)}{z} e^{\epsilon_k(z)} \right)^{\alpha_i}
\]

\((13) \)

and

\[
F_n''(z) = \sum_{i=1}^n \alpha_i \left(\frac{f_i(z)}{z} e^{\epsilon_k(z)} \right)^{\alpha_i-1} \left(\frac{zf_i'(z) - f_i(z) e^{\epsilon_k(z)}}{z^2} \right) + \frac{f_i(z)}{z} e^{\epsilon_k(z)} g_i'(z) \prod_{i=1}^n \left(\frac{f_i(z)}{z} e^{\epsilon_k(z)} \right)^{\alpha_i}.
\]

\((14) \)

From (13) and (14), we have:

\[
\frac{F_n'(z)}{F_n''(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z) - f_i(z) e^{\epsilon_k(z)}}{zf_i(z)} + g_i'(z) \right).
\]

Using relations before the function \(h \) has the form:

\[
h(z) = \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z) - f_i(z) e^{\epsilon_k(z)}}{zf_i(z)} + g_i'(z) \right).
\]

\((15) \)

We have:

\[
h(0) = \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \alpha_1 (a_1^* + 1) + \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \alpha_2 (a_2^* + 1) + \cdots + \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \alpha_n (a_n^* + 1).
\]

By using the relations (15), (8) and (9), we obtain:
\[|h(z)| \leq \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \sum_{i=1}^n |\alpha_i| \left(\frac{zf_i'(z) - f_i(z)}{zf_i'(z)} + g_i'(z) \right) \leq \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \sum_{i=1}^n |\alpha_i| \leq 1 \]
(16)

\[|h(0)| = \frac{|\alpha_1 (\alpha_1' + 1) + \cdots + \alpha_n (\alpha_n' + 1)|}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} = |c|. \]
(17)

Applying Remark 1.3 for the function \(h \), we obtain:

\[|h(z)| = \frac{1}{2|\alpha_1 \alpha_2 \cdots \alpha_n|} \left| \frac{F_n'(z)}{F_n'(z)} \right| \leq \frac{|z| + |h(0)|}{1 + |h(0)||z|} \leq \frac{|z| + |c|}{1 + |c| |z|}. \]
(18)

From (18), we get:

\[\left(1 - |z|^2\right) \left| \frac{F_n'(z)}{F_n'(z)} \right| \leq |\alpha_1 \alpha_2 \cdots \alpha_n| 2 \left(1 - |z|^2\right) \frac{|z| + |c|}{1 + |c| |z|}. \]
(19)

for all \(z \in U \).

Let us consider the function: \(H : [0,1] \rightarrow R \)

\[H(x) = 2 \left(1 - x^2\right) \frac{x + |c|}{1 + |c| x}, \quad x = |z|. \]

Since \(H\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{2|c|}{2 + |c|} > 0 \), it results:

\[\max_{x \in [0,1]} H(x) > 0. \]

Using this result and the form (19), we have:

\[\left(1 - |z|^2\right) \left| \frac{F_n'(z)}{F_n'(z)} \right| \leq \max_{|z|} \left[\prod_{i=1}^n |\alpha_i| \right] \left[2 \left(1 - |z|^2\right) \frac{|z| + |c|}{1 + |c| |z|} \right], \]
(20)

for all \(z \in U \).

Applying the condition (10) in relation (20), we obtain:

\[\left(1 - |z|^2\right) \left| \frac{F_n'(z)}{F_n'(z)} \right| \leq 1, \]
for all \(z \in U \) and from Theorem 1.1, we have \(F_n \in S \).

Corollary 2.2. Let \(\alpha \) be a complex number and the functions \(f, g \in S \), \(f(z) = z + a_2 z^2 + \cdots, \quad g(z) = z + b_2 z^2 + \cdots \).

If

\[\left| \frac{zf'(z) - f'(z)}{zf(z)} \right| < 1 \quad \text{and} \quad \left| g'(z) \right| < 1 \]
(21)

for all \(z \in U \) and the constant \(|\alpha| \) satisfies the condition:

\[|\alpha| \leq \max_{|z|} \left[\frac{1}{2|z| \left(1 - |z|^2\right)} \frac{2|z| + |a_2| + 1}{2 + |a_2| |z|} \right], \]
(22)

then the function

\[F_t(z) = \int_0^t \left(\frac{f(t)}{t} e^{\alpha(t)} \right)^u \, dt, \]
(23)
is in the class S.

Proof. We consider $n = 1$ in Theorem 2.1.

Remark 2.3. For $n = 1$, $e^{e_1(t)} = 1$, $\alpha_1 = 1$ and $f_1 = f$ in relation (11), we obtain the integral operator

$$I(z) = \int_0^z \frac{f(t)}{t} dt,$$

introduced by J. W. Alexander in [3].

Remark 2.4. For $n = 1$, $e^{e_1(t)} = 1$, $\alpha = \alpha$, $f_1 = f$ in relation (6), we obtain the integral operator

$$F(z) = \int_0^z \left(f(t) \right)^{\alpha} \frac{dt}{t},$$

defined and studied by V. Pescar in [4] [5].

Remark 2.5. For $e^{e_1(t)} = 1$, for all $i = 1, \ldots, n$, we get the integral operator $I_n(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\alpha_i} dt$, $z \in U$ studied by D. Breaz, N. Breaz in [6] and D. Breaz in [7].

Theorem 2.6. Let $\beta_n \in C$, $f_n \in S$, $f_n(z) = z + a_n^0 z^2 + \cdots$, $n \in N^*$, $g_n \in S$, $g_n(z) = z + b_n^0 z^2 + \cdots$, $n \in N^*$.

If

$$\left| \frac{f_n'(z)}{f_n'(z)} \right| \leq 1, \quad (24)$$

for all $n \in N^*$, for all $z \in U$ and $|g_n'(z)| \leq 1$,

$$\frac{|\beta_1| + |\beta_2| + \cdots + |\beta_n|}{|\beta_1 \beta_2 \cdots \beta_n|} < 1, \quad (25)$$

$$\left| \prod_{i=1}^n \beta_i \right| \leq \frac{1}{\max_{|k| \leq n} \left[2(1-|k|^2) \right]^{1/2} |k|^{1+|k|}}, \quad (26)$$

where

$$|k| = \frac{\beta_1 (2a_1^0 + 1) + \cdots + \beta_n (2a_n^0 + 1)}{2|\beta_1 \beta_2 \cdots \beta_n|}$$

then the function

$$G_n(z) = \int_0^z \prod_{i=1}^n \left(f_i'(t) e^{\delta_i(t)} \right)^{\beta_i} \frac{dt}{t}, \quad (27)$$

is in the class S.

Proof. We have $f_n \in S$, for all $n \in N^*$ and $(f_1'(z) e^{\delta_1(z)})^{\beta_1} \cdots (f_n'(z) e^{\delta_n(z)})^{\beta_n} = 1$, when $z = 0$. Let us consider the function:

$$p(z) = \frac{1}{2|\beta_1 \beta_2 \cdots \beta_n|} G_n'(z). \quad (28)$$

From (27), we have:

$$G_n'(z) = \prod_{i=1}^n \left(f_i'(z) e^{\delta_i(z)} \right)^{\beta_i} \quad (29)$$

and

$$G_n'(z) = \sum_{i=1}^n \beta_i \left(f_i'(z) e^{\delta_i(z)} \right)^{\beta_i-1} \left(f_i'(z) e^{\delta_i(z)} + f_i'(z) e^{\delta_i(z)} g_i'(z) \right) \prod_{i \neq i}^n \left(f_i'(z) e^{\delta_i(z)} \right)^{\beta_i}. \quad (30)$$

From (29) and (30), we get:
Using relation (31) the function p has the form:

$$p(z) = \frac{1}{2|\beta_1 \beta_2 \cdots \beta_n|} \sum_{i=1}^{n} \beta_i \left(\frac{f(z)}{f'(z)} + g'_i(z) \right).$$

We have:

$$p(0) = \frac{\beta_1 (2a_1^2 + 1) + \beta_2 (2a_2^2 + 1) + \cdots + \beta_n (2a_n^2 + 1)}{2|\beta_1 \beta_2 \cdots \beta_n|}.$$

By using the relations (24), (25) and (28), we obtain:

$$|p(z)| \leq \frac{1}{2|\beta_1 \beta_2 \cdots \beta_n|} \left| \sum_{i=1}^{n} \beta_i \left(\frac{f(z)}{f'(z)} + g'_i(z) \right) \right| \leq \frac{1}{2|\beta_1 \beta_2 \cdots \beta_n|} \sum_{i=1}^{n} |\beta_i| \leq 1$$

and

$$|p(0)| = \frac{\beta_1 (2a_1^2 + 1) + \beta_2 (2a_2^2 + 1) + \cdots + \beta_n (2a_n^2 + 1)}{2|\beta_1 \beta_2 \cdots \beta_n|} = |c|.$$ (32)

Applying Remark 1.3 for the function p, we obtain:

$$|p(z)| = \frac{1}{2|\beta_1 \beta_2 \cdots \beta_n|} \left| G^*(z) \right| \leq \frac{|z| + |p(0)|}{1 + |p(0)||z|} \leq \frac{|z| + |c|}{1 + |c||z|}.$$ (33)

From (34), we get:

$$\left| (1-|z|^2) \frac{G^*_u(z)}{G'_u(z)} \right| \leq |\beta_1 \beta_2 \cdots \beta_n| \left| 2(1-|z|^2) \right| \left| \frac{|z| + |c|}{1 + |c||z|} \right|. $$ (35)

for all $z \in U$.

Let us consider the function $Q : [0,1] \to R$

$$Q(x) = 2 \left(1 - x^2 \right) x \frac{x + |c|}{1 + |c||x|}, x = |z|.$$

Since $Q\left(\frac{1}{2} \right) = \frac{3}{4} \frac{1 + 2|c|}{2 + |c|} > 0$, it results:

$$\max_{x \in [0,1]} Q(x) > 0.$$

Using this result and the form (35), we have:

$$\left| (1-|z|^2) \frac{G^*_u(z)}{G'_u(z)} \right| \leq \prod_{i=1}^{n} \beta_i \left| \max_{|z| \in [0,1]} \left[2\left(1 - |z|^2 \right) \frac{|z| + |c|}{1 + |c||z|} \right] \right|. $$ (36)

for all $z \in U$.

Applying the condition (26) in relation (36), we obtain:

$$\left| (1-|z|^2) \frac{x F^*_u(z)}{F'_u(z)} \right| \leq 1,$$

for all $z \in U$ and from Theorem 1.1, we have $G_u \in S$.
Corollary 2.7. Let β be a complex number and the functions $f \in S$, $f(z) = z + a_2z^2 + \cdots$, $g \in S$, $g(z) = z + b_2z^2 + \cdots$. If
\[
\left| \frac{f''(z)}{f'(z)} \right| < 1 \quad \text{and} \quad \left| g'(z) \right| < 1
\]
for all $z \in U$ and the constant $|\beta|$ satisfies the condition:
\[
|\beta| \leq \frac{1}{\max \left| z \right| \left(1 + \left| z \right|^2 \right) \left(2 \left| z \right| + 2a_2 + 1 \right) / \left(2 + 2a_2 + 1 \right) \left| z \right|^2}.
\]
then the function
\[
G(z) = \int_0^z \left(f'(t) e^{\beta t} \right)^\beta dt,
\]
is in the class S.

Proof. We consider $n = 1$ in Theorem 2.6.

Remark 2.8. For $n = 1$, $e^{\alpha_1 t} = 1$, $\beta_1 = \beta$, $f_1 = f$ in relation (27), we obtain the integral operator $G_\beta(z) = \int_0^z \left(f'(t) e^{\beta t} \right)^\beta dt$, defined and studied by V. Pescar in [8] [9].

Remark 2.9. For $n = 1$ and $\beta = \alpha$ in relation (27), we obtain the integral operator $I_\alpha(f, g)(z) = \int_0^z \left(f'(t) e^{\alpha t} \right)^\alpha dt$, introduced and studied by N. Ularu and D. Breaz in [10] and [11].

Acknowledgements

This work was supported by the strategic project PERFORM, POSDRU 159/1.5/S/138963, inside POSDRU Romania 2014, co-financed by the European Social Fund-Investing in People.

References

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either submit@scirp.org or Online Submission Portal.